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Abstract
Many cyber-physical systems or pervasive systems are built with small devices which are powered by batteries. Energy-saving
problem is essential for these systems. Software-based dynamic voltage and frequency scaling (DVFS) has been a powerful
technique for energy saving. There has been little work using machine learning to derive a software controller for small
devices to save energy. This paper presents a methodology for making FreeRTOS-based embedded systems learn to select
energy-saving techniques for mixed taskset. Simulation has shown that DVFS techniques, along with reinforcement learning,
save energy while handling periodic real-time tasksets. However, algorithm evaluations on a real platform for pervasive
systems are seldom done. We extend the hybrid DVFS approach using reinforcement learning to handle a mixed taskset on
embedded platforms and evaluate the algorithm on real devices. We choose FreeRTOS as the real-time operating system
for the embedded platform as it is one of the most popular RTOS, and it is freely available. To the best of our knowledge,
we are the first to consider experimenting with DVFS approach in a FreeRTOS framework with reinforcement learning on
real-time devices. The implementation and evaluation of the proposed method EHYMT-FreeRTOS are carried out on an ARM
Cortex-M7 (STM32H7B3I-DK). Results show that we can successfully make the system select suitable deadline-guaranteed
DVFS technique while focusing on energy saving. Our implementation can potentially lead to a number of innovative
AI-based DVFS algorithms targeted on FreeRTOS on real embedded systems.
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1. Introduction
Many cyber-physical systems or pervasive systems are
built with small devices which are powered by batter-
ies. Energy-saving problem is essential for these systems.
The latest research shows that the processor accounts for
18% to 30% of total power consumption. On newer fabri-
cation technologies, it can even transcend 50% for CPU-
intensive workloads [1]. A recent experiment shows that
sleep modes do not restore the energy lost at operating
at the higher voltage, and only voltage scaling can save
energy when the device is not shut down. That is, when
not shutdown, to save energy (and therefore battery life),
the operating voltage (and corresponding operating fre-
quency) must be lowered [2]. Software-based dynamic
voltage and frequency scaling (DVFS) has been used as a
powerful technique for energy saving [3] [4] [5] [6], [7],
[8].

Previous research shows that there is no single DVFS
algorithm that is optimal for all applications on a sys-
tem, and a machine learning method was proposed to
select the best DVFS technique suitable for the current
condition [9].
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Most of the implementation has considered experi-
menting with DVFS techniques on simulators. There
has been little work using machine learning to derive a
software controller for small devices to save energy.

In this paper, we implement a learnable, thus adapt-
able software controller to scale the frequency on real
embedded systems with the support of market-leading
real-time operating systems. We choose FreeRTOS as it
is one of the most popular RTOS, and it is built with an
emphasis on reliability, accessibility, and ease of use [10]
and is supported by many hardware platforms.

With the practical application of embedded systems, it
is essential we consider a Mixed task model as real-time
systems are required to respond to aperiodic requests as
well.

The main objective of this paper is to use a machine
learning method to select DVFS technique for applica-
tions with periodic and aperiodic requests running in
a FreeRTOS environment. To the best of our knowl-
edge, we are the first to consider experimenting with
the dynamic frequency scaling approach considering a
FreeRTOS framework with reinforcement learning on a
real-time device.

We have taken online parameters like actual execution
time, real battery power consumption, and frequency
scaling into consideration for the learning algorithm. To
summarize, we work on real hardware considering the
above factors on FreeRTOS for DVFS task scheduling
while focusing on energy saving.
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2. Related Works
Our approach aims to select a suitable DVFS-based
energy-saving technique from a set of existing DVFS
techniques to serve periodic and aperiodic real-time re-
quests in small devices that do not have too much support
for DVFS. We will next discuss some works related to the
various components in the system implementation that
make this possible.

2.1. Learning Based DVFS Approaches
Early researchers [11] [12] proposedDVFS learningmeth-
ods. However, they are based on supervised learning and
cannot learn on the fly.

Huang et al. [13] proposed a double Q-learning energy-
efficient scheduling with a frequency scaling approach
for mobile computing devices. This mechanism reduces
the overestimation in Q-values, consequently enhancing
the accuracy of frequency predictions. The Double-Q
governor is implemented in the Linux kernel. However,
the governor does not take into account the timing re-
quirement of individual tasks.

The hybrid DVFS technique proposed in [9] uses mul-
tiple DVFS techniques and switches to the most effective
one during execution using reinforcement learning. It
is clear that their hybrid DVFS technique outperforms
other single DVFS methods to conserve energy. How-
ever, the evaluation is only conducted in a simulation
environment. We find no consideration of mixed taskset
handling aperiodic requests along with the periodic re-
quest, and no real-platform was considered in the paper.

2.2. DVFS Governors in Linux Kernel
Linux provides good support for DVFS. It has a 𝐹 𝑟𝑒𝑞𝑆𝑐𝑎𝑙𝑒
driver, and Linux Kernel makes both static and dynamic
DVFS governors available. Dynamic governors are able
to change the frequency of the processor dynamically by
monitoring and responding to theworkload changes. The
𝑜𝑛𝐷𝑒𝑚𝑎𝑛𝑑 and 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 governors behave similarly,
except that 𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 slowly changes the frequency to
respond to the workload changes, and 𝑜𝑛𝐷𝑒𝑚𝑎𝑛𝑑 jumps
to the desired level quickly [14].

However, the governors in Linux change the frequency
only based on the performance counters. They are not
designed for real-time tasks and do not have learning
capabilities.

To implement a governor in Linux to support DVFS
for real-time tasks with run-time information is very
complex as the governor modules need to access the
scheduler module. And most importantly, extra real-time
scheduling support is needed for Linux. RTLinux is a
real-time OS. But integrating additional modules with

Figure 1: Mixed Taskset Execution with Various Frequency
Levels

the RTLinux kernel is very complex, without sufficient
support for small devices.

Our goal is to study if small devices can learn to choose
a good DVFS strategy. Instead of working with a complex
OS like Linux, we decide to choose an OS that supports
real-time tasks. We choose FreeRTOS in this work as it
is one of the most commonly used real-time operating
systems for small devices and is freely available.

2.3. Individual DVFS Algorithms
Due to the big implementation effort, we only choose
to extend two individual DVFS algorithms to include in
the set of candidate DVFS techniques for the learning
algorithms. One is cycle conservative (CC), and one is
look-ahead (LA) [15]. Both CC and LA work for real-
time tasks, and they can perform DVFS for a set of pe-
riodic tasks to reduce energy while satisfying the tasks’
deadline. More DVFS techniques can be added to the
candidate list to achieve better energy savings.

The candidate DVFS techniques that we considered
extending to handle mixed task sets include CCMT (ex-
tended from Cycle Conserving CC) and LAMT (extended
from Look Ahead algorithm LA) to handle mixed task
sets.

The extended cycle conserving algorithm (CCMT) for a
mixed taskset considers the slack time of the server along
with the periodic task for calculating the utilization.

The look-ahead algorithm (LAMT) tries to do mini-
mum work before the earliest deadline by pushing as
much work as possible beyond that deadline, but at the
same time, it makes sure that the future deadlines are
met, even if it has to run at a higher frequency [15]. Note
that handling a mixed taskset request on both CCMT,
and LAMT models is the same.

Fig. 1 shows an execution sequence that handles an
aperiodic request using the sever budget with various
frequency settings. Note that the frequency levels are
normalized between 0 and 1, with 1 being the highest
frequency (which consumes the highest power consump-
tion).

As it is unclear when individual DVFS will work bet-



Figure 2: System Framework: Selecting Energy Saving Algo-
rithm in FreeRTOS

ter for different workloads and devices that the work-
loads are executed, our proposed machine learning-based
energy-saving method will learn from different execu-
tion of workloads on the underlying devices and select
a suitable one based on the current running conditions.
Note that the previous machine learning-based hybrid
method cannot deal with mixed task sets, including peri-
odic and aperiodic tasks. Our work applies the machine
learning-based algorithm that makes decisions to select
the extended DVFS algorithms for mixed task sets.

3. Machine-Learning based DVFS
Selection on FreeRTOS

3.1. Framework
This section describes the system framework and im-
plementation for the machine-learning-based DVFS Se-
lection on FreeRTOS. The framework of the Extended
Hybrid Mixed Taskset Model (EHYMT) in the FreeRTOS
environment is shown in Fig. 2. The hardware platform
STM32-H7B3I-DK has frequencies ranging from 64 MHz
to 280 MHz. We use a smart battery device (by CED labs)
to power up the device and measure the voltage and cur-
rent levels. The power consumption is used as feedback
for training the learning model.

The software framework includes the scheduling com-
ponent related to scheduling and deriving OS and task
state 3.3 and the learning component 3.2.

3.2. Learning Component
Q-learning can be used to learn effective policy from its
history of interactions with the environment. Given a
system consisting of a state space 𝑆, and a set of actions𝐴,
Q-learning selects an action 𝑎 ∈ 𝐴 at state 𝑠 ∈ 𝑆, leading
the system to a new state, and results in a reward or
penalty.

For each state-action pair (𝑠, 𝑎), the learning system
maintains a value function 𝑄𝜋(𝑠, 𝑎) that represents the
penalty or reward. Based on the value function, the agent

decides which action should be taken to achieve long-
term rewards in the current state.

In the problem of learning to select a good DVFS
scheduling algorithm, the action is to choose a frequency
scaling method which in turn decides the frequency level
for the system. (Note that the system will consume dif-
ferent amounts of power and energy when running at
different frequency levels.) The details can be found in
3.2.1. The rewards of the action are related to the power
consumption of the system. Unlike the simulation-based
method, our method measures the board power consump-
tion and uses this as reward feedback for the Q-Learning
method. The details can be found in 3.2.2.

Note that the machine learning component is embed-
ded in the device and works together with Real-Time
Operating System to control the device. Some run time
features of the current operating system state are used as
the state of the learning component to make a decision.
The states are described in 3.2.3.

3.2.1. Action: Frequency Scaling Method
Performing Frequency Control in
FreeRTOS

The core of FreeRTOS is mainly based on three files:
task.c, list.c and queue.c [10]. Unlike Linux, the original
FreeRTOS does not have software support for frequency
scaling. We used a hardware platform STM32-H7B31-DK
with FreeRTOS as the OS for the experiment.

The frequency scaling is achieved through a cus-
tomized clock driver on the STM32-H7B31-DK hardware.
The clock control configuration is based on RCC (Reset
and Clock Control) subsystem that supports the oscillator
[16] to select the appropriate clock for the CPU core and
peripherals. Based on the system hardware support and
clock configuration divider values, the system supports
up to 5 different frequencies from 64 MHz to 280 MHz.

Due to limitations of debugging tools and reading hard-
ware registers on real devices, we have considered the
impact of frequency variation on battery power consump-
tion.

3.2.2. Reward: Power Measurement Approaches

In the application level, there are several types of research
and tools available which estimate the amount of power
consumption by each application or device in a system,
e.g., Joulemeter [17], pTop [18], PowerTOP [19], RAPL
[20] etc. As on portable devices, we would not be able to
find battery drivers that are being used by the software
utilities like PowerTop PTop, we have a Smart Battery
pack with I2C Communication support from CEDLabs
that has integrated analog peripherals to measure and
maintain a record of available battery capacity, voltage,
and current [21].



Figure 3: Battery Management Module Output without Load

Figure 4: Battery Management Module Output with Load

The CEDLabs Smart Battery Pack has integrated ana-
log peripherals that act as a power source and also help us
to measure and maintain a record of the available battery
current, voltage, and power. The battery can also report
the data to the system host controller over an I2C/UART
communication [21].

Fig. 3 shows the battery output without connecting to
any load: The output is in the format of current voltage
and power. We see that Data= 10mA,7887mV, 1569513uW
represents the discharge rate of battery current, voltage,
and power.

Fig. 4 shows the battery output when connected to
load: The output is in the format of current, voltage, and
power. We see that Data= 199mA,7887mV,1569513uW
represents the discharge rate of battery current, voltage,
and power.

In our Implementation, we integrate the battery man-
agement module with the Embedded platform. The bat-
tery management module acts as a source of power for
the embedded platform and also provides power con-
sumption feedback via the UART Terminal.

3.2.3. State

The learning component considers the CCMT and LAMT
DVFS models and switches between these models on the
fly at every hyperperiod using reinforcement learning.

The job gets scheduled based on the following events.

1. The time at which a periodic task gets released.
2. The time at which an aperiodic task gets released.
3. The time at which a task gets completed or pre-

empted.

The state adopted is composed of a vector of 2 param-
eters [22]: System Utilization (SU and Dynamic Slack
(DS), computed as in Equation 1 and 3. At the start of
every hyperperiod, a component that we implement as
part of the scheduler control (MixedTask handler) per-
forms the action of calculating the system utilization and
dynamic slack to locate the present state. By using the
present state, it tries to find the appropriate extended
DVFS technique among the CCMT and LAMT models
from the state-action map, which has the lowest Q-value
in the table. The selected DVFS technique will be used
in the next hyperperiod to perform voltage-frequency
scaling [9].

The System Utilization (SU) is calculated as follows
[4], which is based on the rate of the worst-execution
time and the period of tasks.

𝑆𝑈 =
𝑛
∑
𝑖=1

𝑤𝑖
𝑝𝑖

+
𝑤𝑠
𝑝𝑠

(1)

To determine the dynamic slack, we first calculate the
sum of all the tasks’ actual execution times in a hyperpe-
riod.

𝑒𝑡ℎ𝑦𝑝 =
𝑛
∑
𝑖=1

∑
𝑗∈ℎ𝑦𝑝

𝑒𝑡 𝑖𝑗 + ∑
𝐴𝑘∈ℎ𝑦𝑝

𝑒𝑡(𝐴𝑘) (2)

where 𝑒𝑡ℎ𝑦𝑝 is the hyperperiod, 𝑒𝑡 𝑖𝑗 is the actual exe-
cution time of 𝑗𝑡ℎ job and 𝑖𝑡ℎ task, and 𝑒𝑡(𝐴𝑘) is the the
actual execution time of aperiodic job 𝐴𝑘.

In a hyperperiod, the dynamic slack (DS) of a mixed
taskset 𝑇 is calculated as [4], which is the percentage of
slack because some tasks finish early.

𝐷𝑆 = 1 −
𝑒𝑡ℎ𝑦𝑝

∑𝑛
𝑖=1

ℎ𝑦𝑝
𝑝𝑖

× (𝑤𝑖) +
ℎ𝑦𝑝
𝑝𝑠

× (𝑤𝑠)
(3)

Where
𝑒𝑡ℎ𝑦𝑝
𝑝𝑖

is the number of jobs of task 𝑡𝑖 in a hy-
perperiod, 𝑝𝑖 is the period for periodic job 𝑡𝑖, 𝑝𝑠 is server
period, 𝑤𝑖 is worst case execution time of periodic task,
and 𝑤𝑠 is the server budget.

These parameters are updated at every hyperperiod
in a scheduling point. Both SU and DS have values be-
tween [0,1] and are discretized such that the state space
is finite. The system learns the mapping between DVFS
techniques, and environment states by interacting with
the environment. The action set of selecting the mini-
mum Q-value in the state-tech table is the set of DVFS
techniques to be considered. The penalty is calculated



using the average energy consumption in a hyperperiod
[9] to update the Q-value.

The Q-table structure looks like the following. E(𝑠𝑡,

(𝐷𝑠 𝑆𝑢) Actions
CCMT LA MT

...

Table 1
Q-table/State-TechMap

𝑎𝑡)/(Real Battery Power Consumption) is the total power
consumption measured by using the battery device in
the ℎ𝑡ℎ hyperperiod. The state, and penalty evaluation of
the learning approach system are essential components
of the learning algorithm. The choice of the state and the
penalty function typically has to be adjusted or systemat-
ically decided based on the experiments and evaluation
results [9].

3.3. Scheduling Component
The individual candidate DVFS algorithms CCMT and
LAMT are task-based and update the schedule and fre-
quencies at each scheduling point (when a task is released,
completed, or preempted). They both use Deadline First
scheduling (EDF) as the scheduling policy. However, EDF
is not available in FreeRTOS. Carraro [23] implemented
(EDF) algorithm in FreeRTOS. However, their work mod-
ified the original kernel files.

We chose the ESFree library, the open-source Efficient
Scheduling Library proposed by Kase [24], to support
our DVFS schedulers that run with EDF policy because
it does not change the kernel files. The ESFree library
is implemented in the user-space that is user-friendly
and runs with low overhead. The implementation of EDF
scheduling using ESFree results in a context switch to the
scheduler task handler (user-defined) at the beginning
and end of a periodic task. The scheduler task handler
will then calculate and assign priorities for every peri-
odic task according to their absolute deadlines when it
is switched in. This procedure is necessary for ensuring
that the priority policy based on EDF is maintained on
FreeRTOS[24].

We have implemented a polling server for handling
the aperiodic task. Response time is based on the server
period. Fig. 5 shows examples of the polling server pe-
riod, server budget, arrival time representing the time at
which an aperiodic request arrives, and the response time
(the difference between the arrival time and completion
time). Here the aperiodic request is computed offline,
and it is known prior and merged with the Mixed Task
queue.

Figure 5: Handling of aperiodic request in FreeRTOS

We keep track of the period, deadline, actual execution
time, energy value computed in the hyperperiod, and the
DVFS technique to be considered. The data structure
is added using FreeRTOS Vlist (ready and running list)
and sorted based on the priority. The decision of the
chosen frequency is based on the current running state,
considering the slack of the tasks using different strate-
gies depending on which candidate DVFS algorithm is
chosen. The data structures maintained in the scheduling
component in the mixed task queue is used by the mixed-
task controller for scheduling decision. The schedule
(whether it is CCMT or LAMT) is chosen at the end of
each hyperperiod of all the tasks by the learning compo-
nent.

The Mixed-Task-Handler manages the running of pe-
riodic and aperiodic task events, responding to the pre-
emption, and invokes the scheduler before and after the
completion of a task to update the priority and the ac-
tual execution time. Scheduler-Task-Handler is imple-
mented to perform the operation for selecting the DVFS
technique, updating the reinforcement learning method,
scaling the frequency, handling timing error detection,
and handling WCET excess. The context switch hap-
pens from a Mixed-Task-Handler to the Scheduler-Task-
Handler at the beginning and the end of a mixed job.

The algorithm is shown in Algorithm 1.
A snapshot of the running queue and frequency chosen

is shown in Fig. 7.

3.4. EHYMT-FreeRTOS Hardware
Integration

Fig. 8 shows the complete hardware integration of theHy-
brid DVFS Model on the STM32 target. The battery man-
agement module acts as a primary source of power for
the hardware platform STM32H7B3I-DK, and provides
feedback on the battery discharge rate for the Learning
Algorithm. The Real-Time tasks run on the STM32H7B3I-



Figure 6: Mixed Task controller Handling on FreeRTOS

Figure 7: A snapshot of Taskset Execution

Figure 8: FreeRTOS Hardware Integration Overview

DK Hardware Target. The execution of tasks can be ana-
lyzed on the serial terminal using Tera Term. We have
also integrated an extra module using an Arduino con-
troller that shows the battery discharge rate results for
monitoring purposes.

Fig. 9 shows the STM32 IDE supported for pro-
gramming 32-bit ARM Cortex-M controllers, The On-
board STLINK-V3E debugger/programmer present on
STM32H7B3I-DK hardware is helpful for real-time de-

Algorithm 1: EHYMT-FreeRTOS for Mixed Taskset
Handling in FreeRTOS
1: procedure Initialization
2: HAL_Init(): Reset all peripherals.
3: SystemClock_Config(): Configure the system clock.
4: IRQHandler_Config(): Configure Hardware interrupts.
5: SchedulerInit(): Initialize list structure
6: MixedTaskCreate(): creates periodic aperiodic task.
7: prvInitEDF(): Initializes priorities of all periodic tasks.
8: SchedulerTask(): creates the Scheduler Task.
9: Initilization Qtable

10: vTaskStartScheduler(): Start the scheduler
11: Start mixed tasks
1: procedure Initialization Qtable
2: initialize Q-table 𝑄[𝑆, 𝐴] by 0
3: initialize energy 𝑒𝑛 0
4: initialize action 𝑎 0
5: initialize system utilization 𝑆𝑈 to 0 and dynamic slack

𝐷𝑆 to 0
1: procedure Learning-based Scheduling
2: if hyperperiod then
3: Apply Q-Learning:
4: 𝑑𝑠 ← calculate dynamic slack using eq. 3
5: 𝑠𝑢 ← calculate system utilization using eq. 1
6: 𝑝 ← determine reward 𝑝
7: update Q-value at 𝑠: (𝑠𝑡𝑎𝑡𝑒(𝑑𝑠, 𝑠𝑢), 𝑎, 𝑝)
8: select action: DVFS method with min Q-value
9: else

10: select task 𝑡𝑖 based on scheduling algorithm
11: apply the frequency level based on the DVFS

method selected
12: if task-completed-or-preempted then
13: update 𝑒𝑡𝑖 of the task
14: if aperiodic task 𝐴𝑡𝑖 arrives then
15: if budget 𝑤𝑠 then
16: allocate the budget 𝑤𝑠
17: else
18: allocate the budget 𝑤𝑠 in next server period

𝑝𝑠
19: wait( )

Figure 9: STM32 Integrated Development Environment

bugging and configuration of the device on the fly.



Average no. of runs 5
WCET [0.5 ms, 10 s]

System utilization 10% to 80%
Actual execution time 10% to 80% of WCET

Power measurement type Battery management system

Table 2
Task and Experiment Parameters

Figure 10: Variation between Learning based Mixed Taskset
and NON-DVFS based Mixed Taskset on STM3H7B3I-DK

4. Experiment Results on
FreeRTOS

The EHYMT-FreeRTOS Model is implemented and eval-
uated in the real ARM Cortex-M7 device (a FreeRTOS
platform).

The experimental results are based on the following
task parameters.

We have considered measuring the power consump-
tion of the battery device in this experiment using the
BMS (Battery Management system) hardware. We can
observe that the EHYMT-FreeRTOS model can learn and
select the best algorithm to consider resulting in energy
saving when experimented with variation in the number
of tasks, system utilization, dynamic slack, and hyperpe-
riod.

4.1. Variation between Learning based
Mixed Taskset and NON-DVFS based
Mixed Taskset

Fig. 10 shows the power consumption among DVFS tech-
niques with variations in hyperperiods. We can observe
that the EHYMT-FreeRTOS model is able to perform bet-
ter when compared to Non-DVFS approach. Note: The
taskset includes periodic and aperiodic requests.

The following results show the comparisons of
EHYMT-FreeRTOS with CCMT and LAMT with vari-
ations of different parameters, including SU, DS, hyper-
period, and the number of tasks on STM3H7B3I-DK.

Figure 11: Variation in SU on STM3H7B3I-DK

Figure 12: Variation in DS on STM3H7B3I-DK

4.2. Variation in SU
Fig. 11 shows the energy consumption among DVFS
techniques (EHYMT-FreeRTOS, CCMT, LAMT, and non-
DVFS) with variations in system utilization (SU). We
experimented with different system utilization of 20%,
40%, 60%, and 80%.

We observe that there is significant energy saving at
20% to 40% system utilization.

4.3. Variation in DS
Fig. 12 shows the energy consumption among DVFS
techniques (EHYMT-FreeRTOS, CCMT, LAMT, and non-
DVFS) with variation in dynamic slack (DS). We experi-
mented with different dynamic slack 20%, 40%, 60%, and
80%.

The WCETs in each task set are randomly chosen in
the range [0.5 ms, 10 s]. The AET is generated upon
completion of the task and used for further computation.

We can observe that the EHYMT-FreeRTOS model is
able to learn and select the best algorithm to be consid-
ered over the dynamic slack variation.

Note: The taskset includes periodic and aperiodic re-
quest.

We see that variation in dynamic slack is an essential
factor for our learning algorithm, and we see EHYMT-
FreeRTOS model is able to select the best DVFS tech-
nique that significantly reduces energy consumption
when compared to individual DVFS techniques.



Figure 13: Variation in hyperperiod on STM3H7B3I-DK

Figure 14: Variations in number of tasks on STM3H7B3I-DK

4.4. Variation in Number of Hyperperiod
Fig. 13 shows the energy consumption among DVFS
techniques ((EHYMT-FreeRTOS, CCMT, LAMT, and non-
DVFS) with variations in hyperperiod. We experimented
with 20, 40, 60, 80, and 100 hyperperiods.

The task sets have a system utilization of 40%. WCETs
in each task set are randomly chosen in the range [0.5 ms,
10 s]. The AET is generated upon completion of the task
and is used for further computation. We can observe that
the EHYMT-FreeRTOS model is able to have an energy-
saving of up to 2% to 6% over individual extended DVFS
methods on the FreeRTOS.

Note: On the FreeRTOS platform, time is measured
in terms of Ticks. Aperiodic event is not offline or pre-
determined and can arise on the system at any point in
time. And it confirms that our EHYMT-FreeRTOSmodule
handles real-time aperiodic requests.

4.5. Variations in Number of Tasks
We have tried checking the impact of variation in the
number of tasks. We see that the EHYMT-FreeRTOS
model is able to handle multiple tasks and see that
EHYMT-FreeRTOS outperforms each individual DVFS
technique. Fig. 14 shows the power consumption among
DVFS techniques with variations in the number of tasks.
We experimented with 2, 4, 6, 8, and 10 tasks.

The task sets have a system utilization of 40%. WCETs
in each task set are randomly chosen in the range [0.5
ms, 10 s]. The AET is generated upon completion of the
task and is used for further computation.

To summarize, Over 5% to 10% energy savings can be

achieved for a standard real-time scheduling mechanism
without loss of application throughput. And the method
generally reduces energy consumption more than the
extended DVFS techniques (CCMT and LAMT) in the
candidate list.

5. Time and Space Overhead
The learning method consists of a set of extended DVFS
techniques and selects the best one based on the system
state by looking up the Q-table. In order to determine
the system state, it needs to calculate two parameters:
system utilization (SU) and dynamic slack (DS). Among
these, DS is updated at each scheduling event, and SU
is updated only when new tasks are added, or existing
tasks are removed from the task set.

The procedure to update the actual execution time
needed to compute the dynamic slack has an O(n) time
complexity in the worst case, where n is the number of
tasks in a hyperperiod.

The size of the Q-table isO(SU ×DS ×N), whereN is the
number of extended DVFS candidate techniques that can
deal with mixed task set, and SU and DS are the number
of discrete levels chosen for the system utilization and
dynamic slack [4].

In our learning-based implementation, the reinforce-
ment learning system on the FreeRTOS platform has a
small table size of 100. From the analysis, we can see that
the learning-based DVFS does not add much computa-
tional overhead to the system but gradually becomes an
expert in determining the best action if the number of
tasks in a hyperperiod 𝑛 is small.

6. Conclusions
This study shows a machine-learning-based method that
works on a real-time embedded system supported by
FreeRTOS to select suitable DVFS techniques to achieve
energy reduction for mixed tasksset. To summarize, we
have achieved the following.

1. We perform experiments with dynamic frequency
scaling with a reinforcement-learning approach
in the FreeRTOS framework for real devices that
can be used for pervasive systems.

2. We have chosen online parameters like actual
execution time, real battery power consumption,
and frequency-scaling into consideration while
scheduling the task.

3. We have approached a new way of measuring
power consumption on embedded platforms us-
ing a Battery Management system and use the
power consumption as feedback for the reinforce-
ment learning method to update the Q-table.



4. Our implementation can be ported onto other
embedded platforms powered by FreeRTOS with
customization of frequency module. Our study
can help the implementation of other individual
DVFS techniques or learning-based DVFS meth-
ods on the FreeRTOS platform.

5. Experimental results on an ARM Cortex device
show that the proposed method reduces more en-
ergy consumption than the individual DVFS tech-
nique in the candidate list for mixed task set and
reduces substantial energy than the non-DVFS
scheduling method.

6. Future works include experiments on differ-
ent FreeRTOS platforms, extending with more
candidate DVFS methods, and exploring other
machine-learning methods.
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