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ABSTRACT 
Aiming to solve the problem that the joint range and azimuth super-resolution algorithm of 
vehicle millimeter wave radar is too complex to be implemented quickly, a low complexity 
joint super-resolution method based on direct selection of frequency domain data is presented. 
The algorithm first transforms the space-time range-domain joint data into frequency domain 
by fast Fourier transformation, and stores and processes the two-dimensional frequency 
domain data of the area of interest. Based on the equivalence between Fourier transformation 
and beam space transformation based on DFT transformation, the range-azimuth joint 
MUSIC super-resolution in frequency domain data is achieved, and the fast joint estimation 
of target information is completed. The orthogonality of frequency domain subspace and the 
theory of frequency domain beam dimension reduction super-resolution algorithm are 
deduced. The relationship between the resolution and estimation performance of distance and 
azimuth of the algorithm and signal-to-noise ratio is simulated. The simulation results show 
that the accuracy and resolution of the algorithm are much higher than traditional FFT, and 
the computational complexity of the algorithm is greatly reduced compared with traditional 
MUSIC.  
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1. Introduction  

Among the target parameter estimation algorithms of vehicle mounted radar, the estimation 
accuracy and resolution of the traditional Fast Fourier Transform (FFT) algorithm is insufficient.  And 
super-resolution algorithms such as Multiple Signal Classification (MUSIC) algorithm and Estimating 
Signal Parameter via Rotational Invariance Technologies (ESPRIT) algorithm have high accuracy and 
resolution but huge computation.  

The high efficiency and low complexity of space-time multi parameter joint super-resolution 
algorithm is an urgent problem to be solved at present, which can not be avoided in engineering. 
Bienvenu G[1] et al. proposed a high-resolution target bearing estimation method to improve accuracy 
and resolution and even the statistical stability[3]-[4]. 

Based on the joint super-resolution complexity of vehicle mounted radar, this paper proposes a 
range azimuth joint super-resolution method based on frequency domain beam dimensionality 
reduction. Based on the equivalence of range angle FFT and multi-dimensional Discrete Fourier 
Transform (DFT) beam space transformation of space-time data, the corresponding frequency domain 
data area of the target area is selected according to the prior information of the target, MUSIC joint 
super-resolution based on beam dimension reduction. The dimension of beam space data is greatly 
reduced, which makes it possible to realize joint super resolution engineering and realize fast joint 
estimation of multiple parameters of vehicle borne radar. Compared with the traditional FFT 
algorithm, the resolution of target parameter estimation is significantly improved, which is a fast joint 
super-resolution algorithm feasible in engineering.   
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2. TDM-MIMO LFMCW Radar Signal Model 

Set the number of transmitting antennas of Division Multiplexing Multiple Input Multiple Output 
（TDM-MIMO）radar as TXL , and the number of receiving antenna elements as RXL . The simplified 
array model is shown in Figure 1(a). Set the spacing of receiving antenna elements as = 2rd λ , the 
spacing of transmitting antenna elements as td , and meet the requirements of =t RX rd L d× . Assume 
that the spacing between any receiving antenna RXl  and the first receiving antenna in the receiving 
antenna array is ( )= 1rlRX RX rd l d− .  
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                    (a)TDM-MIMO radar array model.                                    (b) Sawtooth time-frequency diagram. 

Figure 1. Radar model and signal time-frequency diagram. 
 

The sawtooth Linear Frequency Modulated Continuous Wave (LFMCW) signal and echo signal is 
shown in Figure 1(b).  

Under the above model, obtain TDM-MIMO LFMCW radar sawtooth beat signal model[5] ( )tx as 
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In the formula, mpA  represent the signal amplitudes, cf  represents the signal carrier frequency, 

mB Tμ =  represents the FM slope, where B  represents the signal bandwidth, mT  represents the signal 
repetition period, 0,1...., 1m M= −  represents the sequence number of repetition period, 0,1...., 1l L= −  
represents the array element sequence number of virtual array receiving antenna, 2rd λ=  is the 
virtual antenna spacing. ( )tG  is additive white Gaussian noise. 

Assume that the number of sampling points in each Chirp is N , and according to space-time 
equivalence, the guidance vectors for super-resolution of angle dimension and distance dimension are: 
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3. Beam space transformation in frequency domain based on time-frequency 
equivalence 

The beam space dimension reduction super-resolution algorithm based on DFT transform is to 
obtain the beam space data by multiplying the original sampling data and the beam space conversion 
matrix. At the same time, the steering vector also reduces the dimension according to the beam 
selection. In this method, the multi-dimensional data are first FFT transformed, and only the 
frequency domain data corresponding to the parameter region of interest are stored; Only when the 
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data directly selected in the frequency domain is equivalent to the beam space transformation data, the 
super-resolution of some frequency domain data is equivalent to the beam space reduced super-
resolution of the original data. 

According to reference [6] and space-time equivalence, the beam conversion matrix in the beam 
space array flow pattern of each dimension is defined. The beam transformation matrices defining the 
angle and range dimensions are ,b bL L N NH H

θ R
× ×∈ ∈W W   respectively, and the number of effective 

beam selections in the angle and range dimensions are ,b bL N  respectively, that is, the reduced 
dimension data length. Then the l  and n  elements are 
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In the formula, ( ),0 1 ,b bl l L L L≤ ≤ − ≤  , when bL L= , that is, H
θW  is the angle dimension full beam 

transformation matrix. ( )0 1 ,b bn N N N£ £ - £ , when bN N= , R
HW  is the range dimension full 

beam transformation matrix. 
Assuming that the matrices of one-dimensional Fourier transform are NF  and LF  respectively, 

where N L、  respectively represent the length of the vector to be operated in the distance dimension 
and angle dimension, and data NLX  is the distance angle two-dimensional raw data of N L× , then the 
frequency domain data matrix NLY  obtained by two-dimensional Fourier transform is expressed as: 
 T

NL N NL L=Y F X F  (4) 

From left to right, it is FFT for each column, from right to left, it is FFT for each row, and it is the 
same to do the left first and the right first. Two dimensional Fourier transforms are two one-
dimensional Fourier transforms, and they are independent of order. The same is true for higher 
dimensional Fourier transforms. If 1, , Lx x  is the column vector of NLX , NLX  can be written as 

L
T
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i
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Where ⊗  represents Kronecker multiplication. Reference [7] defines the data matrix after two-
dimensional beam space transformation as Z , and 
 ( ) ( ) ( )R

H H
θ NLvec vec= ⊗Z W W X  (6) 

From Eq. (5)and Eq.(6), it can be seen that the two-dimensional beam space transform is 
equivalent to the two-dimensional Fourier transform. Eq. (5)is another expression of two-dimensional 
FFT, and also has the same form as that of two-dimensional beam space transformation when all 
beams are taken; That is, two-dimensional FFT and two-dimensional beam space are equivalent in full 
beam. When the two dimensions of beam space dimensionality reduction are reduced to bL  and bN  
respectively, it is also corresponding to the two-dimensional FFT data directly selecting data 
according to the linear correspondence of the beam. Therefore, it is equivalent to take 2D frequency 
domain data directly and reduce the dimension of 2D beam space. 

The above proves the equivalence of beam space dimensionality reduction and direct selection of 
frequency domain data. For the beam space super-resolution algorithm, literature [6] has completed 
the one-dimensional MUSIC proof based on the beam space. The beam space based MUSIC 
algorithm can be expanded from one-dimensional to two-dimensional through equation (5). In the 
range azimuth two-dimensional joint estimation, equation (6) realizes the dimensionality reduction 
transformation from the original data matrix NLX  to the data matrix Z , which is covariance 
estimation It provides a basis for reducing the computation of eigenvalue decomposition and 
subsequent peak searching operations. The beam space search guidance vector is defined as: 
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 ( ) ( ) ( )R,R H H
R θ θ R θθ = ⊗ = ⊗b W a W a b b  (7) 

The covariance matrix is: 

 2
1 H

beam MUSIC
b bN L− =R ZZ  (8) 

After eigenvalue decomposition, the noise subspace n 2beam MUSIC− −U  can be obtained, and the spectral 
peak search function is obtained as follows: 
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n 2 2
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=
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The spectral peak is obtained by searching the spectral peak of the above equation, and the 
corresponding information of the peak is the two-dimensional information of the range azimuth angle 
of the target. Compared with the traditional two-dimensional MUSIC algorithm, the MUSIC 
algorithm after the beam space reduces the data dimension in terms of covariance estimation, 
eigenvalue decomposition and spectral peak search, greatly reducing the calculation time.Based on the 
joint super-resolution in the frequency domain, the data storage pressure and computational 
complexity have been significantly reduced. According to existing research, the resolution and 
parameter estimation performance of the beam space dimension reduction algorithm under the 
condition of reasonable beam selection. 

4. Simulation experiment 

The conditions for simulation are as follows: The 24GHz millimeter wave TDM-MIMO radar 
platform transmits FMCW signals with a bandwidth of 150MHz. The period of a Chirp is 16 us, the 
number of snapshots is 300, the number of transmitting and receiving antennas is 2 and 15 
respectively. The search points of azimuth dimension and distance dimension are 89, 236s sl n= = . The 
number of wave beams in angle dimension and distance dimension is 8bL =  and 13bN =  respectively. 
Set the parameters as Target1: (110 m, 12 °); Target2: the (110.5 m ,15 °). 

4.1  Effective Estimation Diagram of Target Information 

When plotting 0 dBSNR = , the range velocity dimension effectiveness estimation diagram of the 
range azimuth joint frequency domain beam reduction MUSIC algorithm is compared with the 
effectiveness estimation diagram of the traditional 2DFFT algorithm, as shown in Figure 2 and Figure 
3 respectively. 
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(a) The proposed algorithm spectral peak estimation              (b) Effective estimation of the proposed algorithm 

Figure2. Spectral Peak Estimation and Effective Estimation of the proposed algorithm. 
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(a) 2DFFT algorithm joint information estimation spectral peak    (b) 2DFFT algorithm joint information effective estimation 

Figure3. Effectiveness estimation of joint range azimuth information of target using 2DFFT algorithm. 
 
It can be seen from the observation in Figure 2 that the algorithm proposed in this paper can 

effectively realize the effective estimation of target information. The comparison between Figure 3 
and Figure 2 shows that under this condition, 2DFFT cannot distinguish two targets. The algorithm 
proposed in this paper can achieve effective resolution of two targets and more accurate parameter 
estimation. 

4.2  Target Information Distribution Map 

Through 50 Monte Carlo experiments, parameters distribution diagram of the proposed algorithm 
in this paper and 2DFFT algorithm are compared as in Figure 4.  
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   (a) Distance dimension target information distribution.            (b) Azimuth dimension target information distribution. 

Figure4. Joint estimation information distribution map of target range and azimuth information. 
 
It can be seen from Figure 4 that under the current simulation conditions, the traditional 2DFFT 

algorithm cannot complete the target resolution of Target1 and Target2, while the algorithm proposed 
in this paper can successfully resolve two targets. The algorithm realizes two-dimensional super-
resolution. 

4.3  Performance Analysis - RMSE Statistics 

Set the echo signal to noise ratio variation range of the signal as 30 dB:10 dB:20 dB− , and the 
number of Monte Carlo is 50. The traditional 2DFFT algorithm and the proposed algorithm proposed 
in this paper are used to analyze the estimation error of Target1. The experimental results are as 
follows. 
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(a) Distance dimension RMSE.                                         (b) Azimuth dimension RMSE. 

Figure5. Simulation Experiment of Target Range and Azimuth Estimation Performance Comparison. 
 

It can be seen from the simulation results in Figure 5 that under different signal-to-noise ratios, the 
proposed algorithm proposed in this paper has higher estimation accuracy than the traditional 2DFFT 
algorithm in terms of target range and angle dimensions, and its estimation performance improves 
with the increase of signal-to-noise ratio, and the range dimension estimation accuracy is slightly 
higher than the angle dimension estimation accuracy.  

4.4  Complexity analysis 

According to the above parameters, for the traditional 2DMUSIC algorithm, the data storage 
amount is ( )( )NL  after data acquisition. The algorithm proposed in this paper can reduce the data 

storage amount to ( )( )b bN L , which can reduce the data storage amount by ( ) ( )30 200 8 13 57.7× × = . 

Based on MUSIC joint super-resolution algorithm, the computational complexity includes ( )NL
3æ ö÷ç ÷ç ÷çè ø

  

of eigenvalue decomposition processing part and ( )( )NL ln  of spectral peak search part. The total 

complexity of the algorithm is ( ) ( )NL NL l
3
+ n

æ ö÷ç ÷ç ÷çè ø
 . The complexity of the proposed algorithm, 

eigenvalue processing and spectral peak search is reduced to ( )b bN L
3æ ö÷ç ÷ç ÷çè ø

  and ( )( )b bN L ln  

respectively, and t Total computational complexity reduced to 46.5 10× . When the selected target area 
is small, the number of beams can also be smaller to further reduce the complexity. 

5. Conclusion 

In this paper, a range azimuth joint super-resolution algorithm based on frequency domain beam 
dimensionality reduction for vehicle borne radar is proposed. Compared with the traditional 2DFFT 
algorithm, the algorithm can effectively improve the resolution and estimation accuracy. Compared 
with the general MUSIC algorithm, the dimensionality reduction of the frequency domain space-time 
beam greatly reduces the data storage pressure and the scale of data processing, realizes the multi-
level reduction of data storage and computational complexity, facilitates the realization of engineering 
applications, and provides effective technical support and reasonable solutions for the solution of the 
vehicle borne radar target accurate detection problem. 
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