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Abstract

Nonlinear systems widely exist in practical applications, like communication systems,
chemical processes, biomedical systems and so on. Therefore, nonlinear systems identificati
Jingfan Liu on is quite significant both in theory and application. This thesis presents the
identification algorithms for a class of nonlinear systems based on the Youth Project of
Central University. Considering the identification of the input nonlinear systems with the
colored noise, An extended Newton recursive algorithm are derived for comparison. In the
simulation, the results show that the Newton recursive algorithm can get better accurate
parameter estimates, The simulation results show the effectiveness of the proposed
algorithms.
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1 Introduction

System identification plays an important role in system modeling, for example,signal
processingand control engineering '*!. Parameter estimation is basic for system modeling and
analysis ). Its purpose is to estimate system parameters according to a certain criterion function by
using the observed input and output data. There are many effective methods in identifying systems
such as the gradient search based algorithms !*°! least squares approximation """l System
identification is advancing at a fast speed, and new ideas and methods are emerging in many fields.
This paper mainly studies the identification of the Hammerstein nonlinear systems with color noise.
The system is widely used in practice, for example, the description of PH value, the process with
nonlinear characteristics such as curtain function, dead zone, switching and so on. Therefore, it is of
great significance to study this kind of time series model.

Many scholars have done a lot of work on the parameter identification problem of Hammerstein
system. Narendra and Gallman proposed a selection identification algorithm for nonlinear systems,
referred to as NG algorithm '] Stoica pointed out that there was a convergence problem in this
algorithm '3, Later, Rangan, Wolodkin and Poolla proved that when the linear part of the
Hammerstein system was a finite impulse response model (FIR) and the system input was white noise,
NG algorithm converges !'®.. Chang and Luus proposed to identify Hammerstein system with colored
noise by generation selection algorithm, but failed to prove the convergence of the algorithm !
Ba,Cerone and Regruto deduced that D(z)/A(z)=1 (Figure 1) Hammerstein model output error is

bounded, then parameters are also bounded !'*!. In recent years, Bai proved the convergence of the
generation selection algorithm in succession, but the generation selection algorithm wasn’t suitable
for online identification . Ding and Chen proposed a recursive method of Hammerstein system that
could be used for online identification by using the principle of least squares, and proved its
convergence by using the martingale convergence method ***!), Vanbeylen, Pintelon and Schoukens
researched the maximum likelihood identification method for Hammerstein systems with Gaussian
noise, invertible nonlinearity and zero output error 221" Giri, Rochdi, Chaoui and Brouri identified the
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linear and nonlinear subsystems of the hysteresis Hammerstein system respectively using least
squares !, Xiang Wei and Zonghai Chen proposed a new identification method for Volterra
sequence (Laguerre function), a specific dynamic model of the nonlinear system. Many new methods
are also used to identify nonlinear systems such as neural networks and genetic algorithms 24!,

2  System description and identification model

Hammerstein model nonlinear system is the input nonlinear system, it consists of a static nonlinear
segment and a dynamic linear segment(Figure 1) *° where y(¢)is output, u(r)is input, u(s)is the
output of the nonlinear part and the noise v(¢) is assumed to be i.i.d. random sequences with zero

mean, 4(z), B(z)and D(z) are polynomials in the unit backward shift operator -™'[z"'y(¢) = y(t - 1], with

v(r) D(2)
—

w0 Lo [ 3@

Figure 1 Hammerstein system

A)=l+az" +az ++a, z ",
B(z)=Bz"+Bz7 + Bz 0+ + B,z",
D(z)=1+dz" +dyz7 +---+d, z7".

The intermediate variables u(z), x(f)and h(¢) are immesurable, and g(-) is static nonlinear function
of state. The nonlinear part is an unknown polynomial that can be expressed as "'

u(t) = g(u(2))

=ag(u)+e,g @) +---+c, g, (U®) (D
=g(u®)c
We can write the Hammerstein-CARMA model (Figure 1) into the following formula:
A(2) y(1) = B(2)u(t) + D(2)v(?) (2)

The unknown parameters needed to be estimated are: the linear subsystem parametersa , #,d and
the nonlinear part parameters ¢ .Let the superscript T represent the matrix transpose.

a :=[0(1,a2,-~-,0(na]T € R”a’ ﬂ:: [ﬂ]aﬂza”'aﬂnb]T € R”b’
d=[d,dy,.d, ] eR",

a ]Rn +n
= e R,
P

7
O0=|p|leR" \n=n,+n,+n +n,.

K4
ﬁt b4
Let é(t): = ﬁt denote the estimate of @ :=| f | at time ¢ .Define the information vector ¢(¢) as:

A

c c

t
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o) =[-y(t =D, y(t=2),--,—y(t—n,),
v(z‘ — 1)’ V(f — 2)’ ey V(t —n, )]T c R
The output sequence can be written as:
y(0)=¢ (0T + (1) )

Thereinto J is the parameterized vector, {(¢) is the information vector, and they are defined as:

a
J :: e ]Rn"“'ﬂbn(“f'}’ld ,
p®c

() =[p" (1), g(u(t=1)),g(u(t =2)),--
g(u(t—n,)]" e R ™",

B ®c is the Kronecker product of gand ¢ . In most of the existing papers, the combined parameter

)

B ®c is identified, and the combined parameter needs to be decomposed after the identification result

is obtained **, which increases the computational burden. The goal of this paper is to identify the
parameters through the extended Newton recursive algorithm, obtain the parameter vectors
a,B,candd .

3  The extended Newton recursive algorithm
3.1 The algorithm description

In this section, Newton method will be used to derive the augmented Newton recursive
identification algorithm based on Hammerstein-CARMA model, its basic idea is to introduce stacking
output vector and stacking information matrix. Define the input information:

g(u(t-1))
c=| FHCD) | g s
g(ut—n,))
From Eq.(1) and Eq. (2), we have:
yO) =" Oy + B G(t)e+v(2) (6)
We define a quadratic criterion function as follows:
Ji(0)=J,(y.B.0)=[y()—9" ()y - B G(1)c] (7)

Since the Hessian matrix H[J,(y,B,c)] of the criterion function J, is singular, it is useful to

introduce the stacked data, so Newton algorithm is used to solve the identification optimization
problem.
P’ () P(c'G' (1) PP G(1)
HIJ\ (7. B.0)]F2| G(t)ep' (1) G(t)ep' (DG (1) hyy(y,p.c.t) |€ R™
G'(OBp" (1) hy(.B.c.t) G (DFR'G(r)
Where:

___i T T
s, .. = =5 AGODO =" O+ B GO 10— 2167 04150097 07+ 46101

==GOly") -9 () + B G()c] ==G (OO ~9" Oy + B COHG (e’ G (1)
+G(l)cﬂTG(t) e Rm,xrr(, :hzzT (y’ ﬂ, c. t) cR" sy
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Consider the newest p data and define stacked output vector v(p,) and stacked matrices
@,(p,0) , P(c,t)and Y(B,1) .

(1)

»(t=1)

Y(p,t)= e R’

y(t—p+1)
9" (1)

T
QO (p,t)!= ¢ (t 1) c RPX(”a"'”d)
0" (1—p+])
[ TG

c'G'(t-1)

@(c,t):= e R”™

_cTGT (t—p+ l)_
B'G1) |
ﬂTG(t-l)

c Rpxnr

Y(p,t)=

B G(t—p+1)
Then define a new criterion function:
J,(0)=J,(,pB,¢)

=Y (p,0) - B, (p,0)y P (B,0)c| (8)

2
:||Y(Pat)_¢o(l7»t)3’ —dj(ﬂ,t)j’”
Eq.(8) is equivalent to the following criterion function constructed from the data in a dynamical
window with length p .

t
S(.8,0)= Y v -9" )y - G(0)cT 9)
i=t—p+1
That is J,(0)=J,(y,B.c) . If we take 1= N and p= N (N is the data length), then Eq.(8) and Eq.(9)
[29]

are the least squares criterion functions
Computing the gradient of J,(y, B,¢) gives:
2 (p.0)]
gradg[Jz(y,ﬂ,c)] =-2 ¢T(Cat) [Y(pa[)_¢0(p7[)y _W(ﬁat)c]
| P(B.) |
_¢0T(p7t)_
==2| ®'(c,1) |[Y(p,1)=P,(p,0)y —P(c,1)p]
| P(B.) |
Define the extended generalized information matrix Z(t) and expanding innovation into

innovation vector E(p,t) as:

¢0T (pa t)
E(t):=| @' (¢,_,1) |e R™

Y (1)
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E(p,0)=Y(p,0)~ B, (p,0)j,_, (B, 1)é,,

i (10)
= Y(pa t)_djo(pat)j;t—l _dj(ét—l’[)ﬂt—l eR’
Thus, we have:
@) | )
grad,[J,(p. B.0)]==2| D" (@_.0) |¥(p.O)~By(p.0)f,, —¥(B.0¢.
| (B0
[ @ (p.1) | (11)
==2| @@, .t) |Y(p.O)-By(p.1)f,, ~ P, . DB,
¥ (B

=—2Z(E(p,1)
Computing the Hessian matrix of the criterion function J,(y, 8,¢) .

dgard,[J,(y, B,0)]
00"
@, (p,0)Dy(p,1) B, (p,)(c,1) B, ()P (B,1)
=2 ¢T(c,t)¢0(p,t) " (c,n)D(c,1) H,(y,p.c,t) |eR™
Y (B.0P(p,0) H (@, p.c.0) P(BOP(S)

H[J,(7,8.0)1=

Where:
sz(y,/f,c,n::—%{w @)Y (p.0)-b,(p.0yy P (B.0)c]}
:—%{[G(I)C,G(t-l)c,~~~,G(t—p+1)c][Y(p,t)—(D“(p,t)y -¥(p.0c]}
:_%{EG(t—i)c[y(t i) =" (t—i)y —/XTG(t—i)c]}
:—2{6(1 =D e=D=g" =iy~ B Gt =) ]~ G(t~i)eB Gt~ i)}
ot

YAGu=-D[-y=D+o" t-Dy+ B Gt -i)e |+ G(t—i)eB G(t— )}

i=0

JE{G(: —D[y=D)+9 (=D + f1Ge-De ]} + D" (e, )P (1) € R*™

Using the Newton method to minimize J,(0), we can obtain the following recursive relation of
computing 0r):

01)= 01~ HLJ,G5,.b.é.)]} grad,[J,(1,.bis. )] (12)

=0(—-D+2{H[J, (i, ,.b,,¢.)I} EOE(p,b)
On the right side of the equation(12) containing the unknown Hessian matrix H[J, (3, ,, 5, ,.¢,_)],
extended generalized information matrix £(¢) and innovation vector E(p,t), and ¢(¢) contains the
unpredictable noise v(r—i),i=1,2,---,n, In order to solve these difficulties, according to the principle

of recursive identification, replacing H[J,(5,_,.8,_.¢_)],Z()and E(p,t) in the above Eq.(12) with
H[J,(},,, ﬁH,éH )], E(t)and E( p,t), let v(t—i) denote the estimate of v(z—i) to define the estimate of
o(t) as follows:

(b(t) = [—y(t—1):—y(t—2)>"':_)’(t_”a),
vt =1), ¥(t=2),-,9(t—n,)]"

From Eq.(6), v(r) can be written as:

W=y (O7-B G

We can summarize the Newton extended recursive algorithm (the H-ENR algorithm) for the
Hammerstein-CARMA models as follows:

0(t)=0(t-1)+T1" (OEW)E(p,1) (13)

WO =y0)-9 () -B G)e (14)
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0= { 1,656,

. . ) (15)
D, (pOB(p.) B (p.t)ybc_ 1) P (POP(Bs0)
= &' (c . OBy (p1) P (e OP(c,.,.0) I1,,(0)
Y (8.0, (p.t) 1L, () (B OP(B..0)
=3 G| =+ -0+ B G-, | (16)
+ @, )P(P,_,.1)
— T T/n T/ p T
E=] 8 (p1) ®'Ct) PT(B0)] (7
E(p,0y=Y(p,0)-®,(p,0),_, —P(E_.0)B,_, (18)
T
Y(p,0)=[y@), y(t—1),---» y(t—p+1)] (19)
2~ N A A T
D, (p,0)=[p(1)s p(t-1)s--+» (t—p+1)] (20)
P(h 0y G OB, .G (-Df G - p+Df, | @1
D, 0=[G(1)é_,,Gt-1)é,, Gt —p+1)é ] (22)
o(t) =[-y(t=1),—y(t-2),"--,—y(t—n,), o
"}(1_1): ‘;(t_z)a.“v‘;(t_nd)]T
&, =senld,, () —m 220, 2L 4)
oo IO, +n, +n,+1:n)|
[0()](n, +n, +n, +1:n)=¢, (25)

The inverse matrix Q' (r)in Eq. (13), for all ¢,the stacked data length p in the nonsingular matrix

Q(r) should be large enough to invert the nonsingular matrix. The process of computing () by the

H-ENR algorithm is summarised as follows:
(1) Choose the stacked data length p and initialize: let £ =1, 6(0) be an arbitrary real vector with

=1.

(2) Collect the measured data u() and y(¢r) ,form stacked vector ¥(p,r) by Eq.(19) , G(¢) by
Eq.(5) the information vector ¢(t) by Eq.(23) and &,(p,7) by Eq.(20).

(3) Compute and form ¥(b,_,,1) by Eq. (21) and &(¢,_,,¢) by Eq. (22).

(4) Form information matrix Z(¢) by Eq. (17) and compute innovation vector E(p,t) by Eq. (18).

(5) Compute IT,,() by Eq. (16) and II(r) by Eq. (15).

(6) Update the parameter estimation 6(») by Eq. (13).

(7) Normalize ¢, by Eq. (24) and Eq. (25) with the first positive element.

(8) Increase ¢ by 1 and go to Step 2.

A

)

3.2 Example

Consider the following Hammerstein nonlinear system:
A(2)y(1) = B@)u(0)+ D(2)v(1)
A)=1+oz" + 0o,z =1-1.07z"+0.675z7, B(z)=fz"'+B,z7 =1.55z""+1.20z7,
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D(z)=1+dz"' =1+0.13z"",

H(t) = g (D)) = cu(t) +,pt” (1) + 517’ (1)
=0.804(¢)+0.5044° (1) +0.33166 4 (¢),

T

0=[a,0,.d,.5,5,c.c,.¢] .
In simulation, the input {u()} is taken as a persistent excitation signal sequence,the noise {v(r)} is
taken as a white noise sequence with zero mean and and variance ¢” =0.30°, and the data length is
taken as p=100and p=160.Adopting the the Newton extended recursive algorithm(H-ENR) to estimate

the paramelers of this Hammerstein-CARMA process,the corresponding noise-to-signal ratio is
3, =876%, where the noise-to-signal ratio g, is as follows( () and x(r) in Figure 1):

D(z)
WoF——wW1),  x(t)
A2) A2)
The parameter estimates and their errors are shown in Table 1, the estimation errors versus ¢ are
shown in Figure 2.
From Table 1 and Figure 2, we can get the following conclusions:

(1) For the confirmed Hammerstein-CARMA model( v(t) =0 or 6°=0 ),the Newton extended recur-
sive algorithm can converge to the true value faster than the extended projection algorithm. For
the stochastic Hammerstein-CARMA model ( o° #0,6°=0.30" ),the parameter estimation of

Newton extended recursive algorithm fluctuates greatly, especially for the small stacked data
length p, and its estimation errors cannot converge to zero even if the data length rtends to

59 e,

infinity. The reason is that the increment of the extended recursive algorithm does not approach
zero. However, when the length of stacked data length p increases, the parameter estimation

will become getting more stationary, as shown Table 1 and Figure 2 with p=100 and p=160.

(2) The parameter estimation errors rapidly converges to a small constant as the data length ¢ in-
creases. As the data length ¢ goes to infinity, this constant is going to get very small and close
to zero. This shows that the extended Newton recursive algorithm is effective.

4 Conclusions

This paper studies the parameter estimation methods for the nonlinear Hammerstein-CARMA
model. A extended Newton recursive(H-ENR) algorithms are derived based on the Newton method.
Aiming at the difficulty that the information vector of Hammerstein-CARMA model contains
unmeasured noiseterms, the principle of recursion identification is applied. The unknown noise terms
contained in the information vector are replaced by its estimated value, and the estimated value is
calculated by the parameterestimated value of the previous time or the previous time. Compared with
the extended stochastic gradient algorithms the H-ENR algorithm has improved parameter estimation
accuracy.The numerical example shows that the parameter estimates for the proposed H-ENR
algorithm converge to their true values.At present, there is a lot of work tobe done in the study of
nonlinear systems. In this paper, only single-input single-output nonlinearsystems are studied. How to
extend it to multi-inputmulti-output nonlinearsystems and apply it in the field is the next problem to
be considered.
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Table 1 The H-ENR estimates and errors with p=100 and p=160 (o’ =0.30%)
Pt G % d B B G G & S0

100 1 -1.06888 0.67413 3.04450 1.34687 0.90049 0.80049 0.48525 0.35177 115.55488
2 -1.05271 0.65084 0.48409 1.50838 0.94563 0.80375 0.49613 0.32839 17.27314
5 -1.08051 0.66901 -0.47730 1.48392 1.23121 0.79981 0.50128 0.33017 24.07139
10 -1.07007 0.67512 0.05824 1.54652 1.19742 0.80015 0.49985 0.33151  2.82854
15 -1.07022 0.67525 0.20194 1.54906 1.19976 0.80017 0.49991 0.33140 2.83091
20 -1.07026 0.67529 0.15804 1.54935 1.19966 0.79982 0.50015 0.33187 1.10366
50 -1.07013 0.67531 0.17327 1.55137 1.20127 0.80093 0.49948 0.33020 1.70550

160 1 -1.06684 0.67191 3.65162 1.34688 0.89635 0.80869 0.47924 0.34109 139.30408
2 -1.05152 0.64952 0.51147 1.52817 0.94528 0.79505 0.50071 0.34233 18.11615
5 -1.08051 0.66901 -0.47730 1.48392 1.23121 0.79981 0.50128 0.33017 24.07139
10 -1.07007 0.67512 0.05824 1.54652 1.19742 0.80015 0.49985 0.33151  2.82854
15 -1.07022 0.67525 0.20194 1.54906 1.19976 0.80017 0.49991 0.33140  2.83091
20 -1.07026 0.67529 0.15804 1.54935 1.19966 0.79982 0.50015 0.33187  1.10366
50 -1.07013 0.67531 0.17327 1.55137 1.20127 0.80093 0.49948 0.33020  1.70550

True values -1.07000 0.67500 0.13000 1.55000 1.20000 0.80000 0.50000 0.33166

08
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04r

0.2 u\fioo
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=160
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0 N e
0 10 20 30 40 50 60 70 80
t

Figure 2 The H-ENR estimation errors ¢ versus ( ¢° =030°)
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