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Abstract
Many scientific disciplines heavily rely on statistically aggregated spatial and temporal data to describe,
analyze and predict events and their interrelations. To help clarify and distinguish different kinds of
statistical aggregations of temporally and spatially aggregated data, an ontology design pattern that aids
in the specification of the semantics of such aggregations is presented. The ODP is specified in OWL and
designed to guide the semantically correct fusing of spatio-temporally aggregated data and knowledge.
Its use is illustrated using the climate normal of a Mean Summer Temperature.

1. Introduction

With advances in positioning techniques, sensor network technology, and remote sensing,
spatio-temporal data about our environment has become increasingly available and opens up
new opportunities for data analysis over larger geographic areas and multiple time spans. But
the need to syntactically and semantically integrate data from multiple sources remains a major
hurdle in realizing such large-scale research [15].

Scaling up environmental data analysis from local to regional or global levels heavily relies
on aggregating data temporally and spatially. Generally, such data aggregation consists of
applying statistical operations, such as average, minimum, maximum, sum, and count, to
combine individual data points into summary statistics. It enables the processing of data in
clusters rather than as individual data points and thereby reduces the amount of memory and
processing power needed to further process such large scientific datasets. At the same time,
aggregated data is easier to use for decision making. For example, trends such as global warming
are easier to spot from annual summer temperature means than from daily or even hourly
temperature readings. As an added benefit, data aggregation can also address privacy concerns
by providing increased anonymity when compared to individual data points.

1.1. Motivation

While much progress has been made towards semantic interoperability of environmental data
through the development of community-developed domain specific ontologies (e.g. EnvO [5]),
the different ways of how spatial, temporal and spatio-temporal data are aggregated are still
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largely unaddressed by existing ontologies. Two seemingly straightforward statistical measures
with a rather precise-sounding label, such as “mean summer temperature” may be semantically
incompatible because of differences in how the measures have been computed and what raw
data has been used for it. More generic terms, such as “temperature”, in ontologies or database
row headers hide altogether whether the values are raw or aggregated measures and the kind
of aggregations that have been applied.

Any aggregated measure, such as a mean summer temperature, is based on a set of other
data – raw or aggregated. In this example, these underlying “base” data are typically a set of
daily temperature values, which may themselves be statistical aggregations of more frequent
measures. Daily temperatures, for example, are often the means computed using one of two
approaches: twice-daily averaging (i.e., the average of the maximum and minimum temperature
for that day) or hourly averaging (i.e., using the 24 hourly values of a day). Significant differences
have been reported in the resulting daily mean temperatures [3], with some rapid weather
events being linked to the daily mean temperature skewing towards the maximum or minimum
daily temperature [3]. This distinction might affect a user’s decision about which data to employ
in a specific analysis, yet most data available on the web entirely lack the metadata that would
convey to users how the aggregated data was calculated. If daily mean temperature is calculated
via twice-daily averaging for certain states but hourly averaging is utilized for other states, an
analysis that includes data from multiple states may be incorrect or biased as the result of the
discrepancies in approach and granularity of the compared values.

1.2. Objectives

To help identify such issues, we aim to develop an Ontology Design Pattern (ODP) for spatial and
temporal aggregate data (STAD) as a template for expressing the semantics of spatial, temporal,
and spatio-temporal aggregated data more precisely. The ODP is intended to be used in anno-
tating data and, later, comparing data from different datasets and spotting incompatibilities that
may prevent data integration or require additional processing steps. The pattern development is
motivated by concrete needs in the INSPIRES research project (https://crsf.umaine.edu/inspires/)
to integrate different kinds of bioclimatic and soil-related forest data from New England into an
integrated knowledge base – the “Digital Forest” – as a tool for improving our understanding of
Northern Forest ecosystem resilience. The STAD ODP should specifically be able to represent
the aggregations resulting from raster surface (such as satellite imagery) and raw point-based
data. To construct the pattern, we first investigate what are central and distinct aspects of
different kinds of spatial or temporal aggregations and thus must be semantically captured. The
following questions guide the development:

• Is the data spatial and/or temporally aggregated?
• What statistical aggregation strategy has been applied to the data (average, minimum,
percentile, standard deviation)?

• What is the spatial extent (i.e. different locations and their spatial distribution) of the
aggregated data?

• What is the temporal extent (i.e. over what period of time and with raw data collected at
what interval) of the aggregated data?

• What base quantities are used for the spatial and/or temporal aggregation?



2. Background and Related Work

A quantity is a measurable property of some object or collection of objects. Examples are the
temperature in a room or the snow depth at a given location. Most scientific research concerns
the measure and analyses of some quantities of some objects or events to discover trends and
help understand both natural and artificial objects and occurrences. This requires understanding
and communicating how quantities are measured, stored and shared.

Because various kinds of sensors are used to obtain measurements, ontologies of sensors
and observations, such as the Semantic Sensor Network (SSN) ontology [7] and its revamped,
more modular version [19] and the closely related Sensor, Observation, Sample, and Actuator
(SOSA) ontology [16], can be used to describe, retrieve and share raw and statistical measures.
A key concept in these ontologies is that of an observation, which encapsulates the idea of a
sensor being used to measure or estimate the value of a property of an object or event. But this
treats the sensor as a black box and its output as raw measurements, even if the sensor already
performs some kind of aggregation. Comparison of whether data from different sensors can be
integrated thus relies on comparing the devices, rather than the aggregation or computation.
Our focus is on capturing the subsequent aggregations performed on sensor outputs.

But SSN, SOSA, as well as other ontologies that provide concepts for representing measures
and quantities, such as the OGC standard on Observation and Measurement (O&M) [8], the
Ontology of Units of Measure (OM) [12], Quantities, Units, Dimensions and Types (QUDT) [14]
and a more recent formalization of quantity kinds, values and units of measures [1], all miss
terminology to describe whether and how data is aggregated. Both OM and QUDT provide
means to describe quantities with type, numerical value and unit of measurement, which may be
enough for single quantities (i.e. raw data points) but are inadequate for describing distinctions
between aggregate quantities.

While aggregating data before analysis or modeling is a common practice in many domains,
there is a shortage of ontologies and patterns for describing spatially and temporally aggregated
statistical quantities. The Statistical Methods Ontology (STATO) [11] is most closely related to
STAD by providing a taxonomy of statistical methods (e.g. “arithmetic mean calculation”) –
which we reuse – and the aggregates produced by these methods (e.g. “average value”). STATO
also provides a relation “computed_from” which links a computed quantity to its base quantity
synonymous with our “hasBaseQuantity” relation. STATO, however, does not provide any
spatial or temporal characteristics of aggregated quantities.

3. Conceptual Pattern

The Spatial and Temporal Aggregate Data (STAD) Ontology Design Pattern, of which we
present a first iteration here, describes a unified framework for representing both individual and
aggregate quantities. Aggregate quantities are described not only via the kind of transformation
applied to the data but also by what base quantities are aggregated, and the critical temporal
and/or spatial parameters that define how they are aggregated, as summarized in Figure 1.

At the highest level, we distinguish single quantity kinds, which represent raw measurements,
from statistical quantity kinds, which represent quantities that are the outcome of applying



Figure 1: The essential characteristics of temporal, spatial and spatiotemporal aggregate quantities
that STAD encodes are shown in the center, with connections to the existing ontologies Geosparql
(geo)[17], OWL Time (time)[13], Observations and Measurements (om)[12], and Ontology of Biomedical
Investigation (obi)[2] used to capture details of these characteristics.

some statistical transformation to a set of data points. Statistical quantity kinds are further
categorized into: (1) model output quantity kinds (class StatisticalModelOutputQuantityKind)
and (2) aggregate quantity kinds (class StatisticalAggregationQuantityKind). Model output
quantities are produced by running some statistical model, e.g. a prediction model, with the
base quantities as input. Aggregate quantity kinds capture the outcomes of simple statistical
transformations that yield a summary statistic of the base quantities and are the focus of this
paper. Examples include mean, mode, minimum, and variance of a dataset.

For environmental data, we’re specifically interested in aggregated quantities that involve
some spatial or temporal aggregation. In that respect, we distinguish three categories: data that
are only spatially, only temporally, or both spatially and temporally aggregated (see the three
subclasses of aggregate quantity kinds). Aggregation of a set of data points for a single resource
(i.e. location) over multiple intervals of time or multiple time points forms a temporal (time)
aggregate, while aggregation of data over a larger region or multiple locations but at a fixed
time frame forms a spatial (space) aggregate. Finally, aggregating data over one or more regions
or locations and a number of times produces a spatiotemporal (space & time) aggregate.

In the next section, we expand on the four characteristics that we have identified as essential
for capturing the semantics of spatial temporal aggregates: spatial support (where), temporal
support (when and, more precisely, how long and how frequently), base quantity (what), and
transformation method (how). As seen in Figure 1, only spatiotemporal aggregates require all
four characteristics, while only temporally aggregated data requires no spatial support and only
spatially aggregated data requires no temporal support.



4. Ontology Formalization

In formalizing the pattern in this work, some relations and classes from existing ontologies
have been reused (see Figure 1) to maximize interoperability of the STAD pattern with existing
datasets and ontologies that use or expand those ontologies. In particular, the STAD pattern
can be used in conjunction with existing ontologies for quantities and units, such as OM and
QUDT, while offering concepts to explicitly capture the spatial and temporal characteristics of
aggregate quantities for improved documentation of data provenance. To illustrate the use of
the pattern, consider the encoding of a specific calculation of the summer mean temperature
shown in Figure2̃. We will use this example to present how the four key characteristics of
spatial and temporal aggregate data are formally captured. The full formalization of the pattern
and the example are provided at https://github.com/thahmann/spatialai/tree/master/Stad.

Figure 2: An instance of a summer mean temperature as a temporally aggregated quantity and its
instance properties for the measure’s unit and value (in yellow, upper right corner) and the four essential
characteristics.

4.1. Temporal Aspects in Aggregations

To fully understand climate normals such as “summer mean temperature” or “winter mean
temperature”, one must understand two temporal variables. The first is the – often implicit –
interval (e.g. 30 years) over which the normal has been calculated. In the example from Figure 2,
“summer mean temperature” aggregates data from the years of 1961 to 1990. It is important
to explicitly capture the aggregation interval because two summer means calculated during
different years may actually differ if they used the immediate 30 years prior to their calculation.
The second kind of temporal support concerns the time points (or subintervals) from which
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data have been aggregated. For example, a summer mean temperature is calculated by using
only the temperatures during a period defined as summer. Because the exact start and end of
the interval referred to as “summer” could vary across organizations, regions or purposes (e.g.
mereological summer vs. astronomical summer vs. summer growing season), it must also be
made explicit. The two time variables are expressed by the relations stad:hasTemporalCoverage
and stad:hasAggregationPeriod.

4.1.1. Aggregation Period

stad:hasAggregationPeriod is used to relate an aggregate to the temporal entities describing the
included period of observation (e.g. every summer). The range of the relation is a subclass of
time:TemporalAggregate the concept of a “Temporal aggregation” from the draft OWL Time ex-
tension ontology https://www.w3.org/TR/vocab-owl-time-agg/. In addition to the time:hasPart
relation that relates an aggregate to a period therein, we capture the overall extent (which may
be larger than the sum of parts) via the stad:hasExtent relationship:

stad:hasExtent rdf:type owl:ObjectProperty ;
rdfs:domain stad:TemporalAggregate;
rdfs:range time:ProperInterval.

stad:AggregationPeriod rdf:type owl:Class;
rdfs:subClassOf time:TemporalAggregate,

[rdf:type owl:Restriction;
owl:onProperty stad:hasExtent;
owl:cardinality “1” ∧∧xsd:nonNegativeInteger;
owl:allValuesFrom time:ProperInterval].

The property stad:hasExtent refers to a time period that is the complete extent of the aggre-
gation whiles stad:hasPart connects to each sub-interval or time instant that is a component of
the aggregation, in this case every summer from 1961 to 1990. The temporal intersection of the
extent with all time intervals or instants that are part of the aggregation period produces the
possibly non-convex time interval that precisely describes the aggregated time points (e.g. all
summers that fall into the period 1961 to 1990 in the example from Figure 2). The relationship
between the aggregated parts and the overall temporal extent is constrained by a property
chain axiom on the time:intervalIn property from OWL Time [13] for time intervals and stad:in-
stantWithin1 for time instants.

time:intervalIn owl:propertyChainAxiom (stad:intervalPartOf stad:hasExtent).

time:instantWithin owl:propertyChainAxiom (stad:isExtentOf stad:hasInstantPart).

To be able to describe our example stad:AggregationPeriod, we need to first define what
summer means in this particular dataset. Assuming the base quantities used for this aggregation

1stad:instantWithin is defined as the relationship between a time instant and a time interval such that the instant is
either the beginning (time:hasBeginning) or end time (time:hasEnd) of the interval, or inside the interval (time:inside).

https://www.w3.org/TR/vocab-owl-time-agg/


were collected from May 1 to September 30 of each year, we can define summer in OWL Time
as follows:

ex:BeginningOfSummer rdf:type owl:Class;
rdfs:subClassOf time:Instant;
owl:equivalentClass [a owl:Restriction;

owl:onProperty time:inDateTime;
owl:allValuesFrom ex:BSDTD].

ex:BSDTD rdf:type time:DateTimeDescription;
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty time:day;
owl:hasValue “—01”∧∧xsd:gDay],
[a owl:Restriction;
owl:onProperty time:month;
owl:hasValue “–05”∧∧xsd:gMonth],
[a owl:Restriction;
owl:onProperty time:year;
owl:someValuesFrom xsd:gYear].

Analogously, we can define the end of summer ex:EndOfSummer. To ensure that any specific
summer covers only a single summer (and, for example, does not start in one year and ends
after 17 months at the end of the next year’s September), we explicitly enforce that any summer
has a duration of 5 months.

ex:DurationOfSummer rdf:type time:Duration;
time:numericDuration “5”∧∧xsd:decimal;
time:unitType time:unitMonth.

We now use the definitions of the beginning, end, and duration of summer to define a class
Summer as any time interval that begins on May 1 and ends on September 30 and has a duration
of 5 months.

ex:Summer rdf:type owl:Class;
rdfs:subClassOf time:ProperInterval,
[owl:intersectionOf([a owl:Restriction;

owl:onProperty time:hasBeginning;
owl:allValuesFrom ex:BeginningOfSummer]
[a owl:Restriction;
owl:onProperty time:hasEnd;
owl:allValuesFrom ex:EndOfSummer]
[a owl:Restriction;
owl:onProperty time:hasDuration;



owl:hasValue ex:DurationOfSummer]);
rdf:type owl:Class].

The summer aggregate can then be expressed by restricting its parts to only intervals that
are summers:

ex:SummerAggregate1961-1990 rdf:type stad:AggregationPeriod,
[a owl:Restriction;

owl:onProperty time:hasInterval;
owl:allValuesFrom ex:Summer];
stad:hasExtent ex:yearsBetween1961-1990.

Its extent is defined in a straightforward way using OWL Time: ex:yearsBetween1961-1990 a
time:ProperInterval;

time:hasBeginning ex:beginning1961;
time:hasEnd ex:ending1990.

ex:beginning1961 a time:Instant;
time:inXSDDateTimeStamp “1961-01-01T00:00:00-05:00”∧∧xsd:dateTimeStamp.

ex:ending1990 a time:Instant;
time:inXSDDateTimeStamp “1990-12-31T24:00:00-05:00”∧∧xsd:dateTimeStamp.

ex:pol_12408987tavesm_1961_90 stad:hasTemporalCoverage ex:yearsBetween1961-1990.

4.1.2. Temporal Coverage

stad:hasTemporalCoverage is then just the convex time interval that describes the overall tempo-
ral extent of the TemporalAggregate. For ease of use, we link a temporal (or spatio-temporal)
aggregate directly to its temporal coverage via the stad:hasTemporalCoverage relationship, which
is defined via a property chain axiom as follows:

stad:hasTemporalCoverage rdf:type owl:ObjectProperty ;
rdfs:domain stad:TemporalStatisticalQuantityKind;
rdfs:range time:ProperInterval;
owl:propertyChainAxiom (stad:hasAggregationPeriod stad:hasExtent).

4.2. Spatial Aspects in Aggregations

Spatial support is a term used in geostatistics to refer to the spatial unit used to sample the
environment [18]. For spatial and spatiotemporal aggregates it is critical to track the spatial unit
over which data are aggregated because its size and configuration can influence the distribution.
The first-order statistics (such as central tendencies) of these distributions may be the same,
but their second-order (such as variance) and higher-order statistics almost certainly would be
different [9]. Also, it is critical to explicitly capture the spatial support to compare whether two



or more spatial aggregates (or base quantities) are about the same location and can be combined
in a new aggregate.

STAD’s relation stad:hasSpatialCoverage links an aggregated quantity to its spatial location
that contains the locations of all its base quantities. We reuse GeoSPARQL’s [17] geo:SpatialOb-
ject class with the subclasses geo:Feature and geo:Geometry to represent locations. geo:Feature
is used to represent real world objects while geo:Geometry captures abstract geometric objects,
such as points or ploygons, within a coordinate system. GeoSPARQL links features to their geo-
metric representations via the geo:hasGeometry property. The spatial coverage of the example
in Figure 2 can be expressed using GeoSPARQL as follows:

ex:pol_12408987 a geo:Feature;
geo:hasGeometry ex:pol_12408987Geo.

ex:pol_12408987Geo a geo:Geometry;
geo:asWKT “<http://www.opengis.net/def/crs/EPSG/8.5/4326> POLYGON
((-68.334 46.626,-68.335 46.6262,-68.335 46.627,-68.334 46.627,-68.337 46.626))”∧∧

<http://www.opengis.net/ont/geosparql#wktLiteral>.

ex:pol_12408987tavesm_1961_90 stad:hasSpatialCoverage ex:pol_12408987.

4.3. Base Quantity

To produce sensible aggregate quantities, only similar base quantities can be aggregated. STAD
captures an aggregate’s base quantities via the stad:hasBaseQuantity relation, where the range
for specific aggregates can be restricted to any subclass of quantity kind, such as single quantity
kinds or certain aggregate quantity kinds. For example, a mean temperature aggregate can be
described to only aggregate base quantities that are temperatures themselves and have a similar
spatial and/or temporal support.

4.4. Transformation (Aggregation) Kind

Several studies [4, 6, 10] have shown that the choice of aggregation technique that is applied
to a dataset can impact the distribution and further analysis. Thus, it is critical to capture
the kind of transformation applied for each aggregate quantity, which is accomplished by the
stad:transformationKind relation that links an aggregate quantity to the aggregation technique.
For describing different aggregation techniques, STAD reuses the data transformation class
(OBI:0200000) provided by the Ontology for Biomedical Investigations (OBI) [2]. While OBI’s
data transformation class already defines several subclasses for some common statistical data
transformation techniques, more can be added as needed. For example, we introduce minimum
calculation and maximum calculations as subclasses of OBI’s descriptive statistical calculation
data transformation.



5. Use Case

Most environmental data share common attributes. For instance, quantities could be of the
same type, share spatial coverage, temporal coverage, aggregation period or transformation
kind. For instance, several mean temperatures values would have one thing in common in
order the meaningfully apply a transformation kind such as arithmetic mean. Annotating
environmental data with relations specified by STAD allows us to define new classes as groupings
of dataset by a common characteristic as illustrated in Figure 3. Grouping may be by location
(e.g. Mean Temperature_Bangor, by temporal coverage (e.g. 1991 to 2020), or by aggregation
period (e.g. all that use a definition of summer lasting from May 15 to September 30). Such
defined subclasses help reduce redundancy in the annotations and ease information retrieval
for answering questions such as the competence questions that guided the design of the STAD
pattern.

Figure 3: Using STAD to describe one specific kind of summer mean temperature (Summer_1 Mean
Temperature_91-20_Orono shown at the bottom) as the arithmetic mean of daily mean temperature
data for over the summers (June 21 to Sept. 30) from 1991 to 2020 at the location Orono, ME, which
has a value of 16.6∘𝐶. An alternative definitions of summer as begins on May 15 is encoded as Sum-
mer_Mean_Temperature_2. The four colored boxed contain subclasses of Mean Temperature that fix one
of the four aspects that describe a statistical aggregate.



6. Conclusion

This paper outlined STAD as an Ontology Design Pattern for spatially and temporally aggregated
data. We identified key aspects for describing the semantics of a statistical aggregation and
leveraged existing ontologies for time, space, statistical methods, and measurement quantities
as much as possible. As next steps, we will test the ODP by annotating and disambiguating
various kinds of statistical aggregations from bio-climatic variables in the INSPIRES project.
We also plan to test the pattern’s applicability to outputs of complex statistical models.
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