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Abstract
We present a proof-theoretic account of anaphora resolution, namely a sequent calculus corresponding
to dialogical games where two players argue to find the reference of some anaphor.
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1. Introduction

In our ongoing work, we propose a proof-theoretic account of anaphora resolution, focusing
on pronominal reference to entities. Our account is motivated by the view that knowledge of
possible anaphoric dependencies in natural language should be considered part of semantic
competence rather than merely the byproduct of extralinguistic mechanisms. Consequently, our
account uses the standard tools of contemporary semantic theory, namely formal logic, to model
possible resolutions of anaphoric expressions. Unlike most previous work in this tradition [1, 2],
we resolve anaphora in the proof theory of our logic, not by checking the model-theoretic truth
of some oracle’s chosen indexing or reuse of variables. In [3] two of the authors of the present
work introduced a dialogical argumentation framework for solving anaphoric dependencies in
sentences. This framework introduced a new quantifier (the anaphoric quantifier A ) whose
formal meaning is defined by the way in which a formula having A as main connective can
be attacked and defended in a dialogical logic [4, 5] inspired framework. Here we present a
sequent calculus formalism in which the two rules for the quantifier A precisely capture those
of the above-mentioned dialogical system above.

In Section 2 we introduce the linguistic phenomenon to be modelled — anaphoric reference to
entities by pronouns. Section 3 introduces the sequent calculus whose rules implicitly define the
meaning of our new quantifier. Section 4 illustrates applications of the logic with commented
proofs of the expected readings of pronouns. In particular, we give examples of specific patterns
of reference which have attracted the attention of linguists and logicians in the literature:
donkey sentences [6] and bathroom sentences.1 Section 5 briefly discusses soundness for our
logic, and Section 6 concludes.
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1Roberts [7] attributes the bathroom sentence to Barbara Partee while noting a similar example in [8]
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2. Anaphora, pronouns and inferences

Anaphora is the linguistic phenomenon whereby the interpretation of one occurrence of an
expression depends on the interpretation of an occurrence of another expression. This char-
acterisation allows us to recognise that in the two sentences “Gertrude eats an apple. It is
delicious” the pronoun “it” is anaphoric. The interpretation of the pronoun “it” is the same as
the interpretation of the noun “an apple”. Let us call the linguistic expression on which the
interpretation of an anaphor depends the antecedent. Humans are generally able to resolve
anaphora correctly, i.e., find an appropriate antecedent for an anaphoric expression. Anaphora
resolution is a difficult task in natural language processing. We consider anaphora resolution
to be an inferential problem. If, for example, the assertion of the two sentences “(A) someone
does not smile” and “(B) he has a headache” is justified, then we can conclude that the sentence
“(C) someone has a headache and does not smile” is justified. On the contrary, if the assertion
of the two sentences “(D) not everyone smiled” and “(B) he had a headache” is justified, then
we cannot conclude that the assertion of the sentence “‘(C) someone has a headache and does
not smile” is justified. In our framework, this will be represented by the fact that the logical
representation of (A), together with the one of (B), implies the logical representation of (C).
That is: the following formula should be derivable.

(1)

(𝐴)⏞  ⏟  
∃𝑥1¬smile(𝑥1) ∧

(𝐵)⏞  ⏟  
A 𝑦 has-headache(𝑦)⇒

(𝐶)⏞  ⏟  
∃𝑧(¬smile(𝑧) ∧ has-headache(𝑧))

On the contrary, the representation of (D) together with the one of (B) does not imply the logical
representation of (C). Thus, the following formula should not be derivable

(2)

(𝐷)⏞  ⏟  
¬(∀𝑥1smile(𝑥1)) ∧

(𝐵)⏞  ⏟  
A 𝑦 has-headache(𝑦) ⇒

(𝐶)⏞  ⏟  
∃𝑧(¬smile(𝑧) ∧ has-headache(𝑧))

Remark that we represent the pronoun “he” by a variable bound by an occurrence of the
quantifier A .

3. The sequent calculus SAC
We consider a standard first order multisorted language (the reader can consult [9, Chapter 3]
for definitions) in which the set of sorted terms only contains variables and constants. Formulae
are generated from a set of atomic formulae using the the usual connectives and quantifiers of
first order logic ¬,⇒,∧,∨,∀,∃ , and the anaphoric quantifier A . That is: we add the following
formation rule to the usual ones of multisorted first-order logic: if 𝐴 is a formula and 𝑥s is a
variable of atomic sort 𝑠, then A 𝑥s𝐴 is a formula (in which any occurrence of 𝑥s is bound).

A sequent Γ ⊢ Δ, is an expression where Γ and Δ are finite (possibly empty) multisets of
formulae. We use Greek capital letters Γ,Δ,Π,Σ, . . . to denote arbitrary multisets of formulas.

A sequent calculus is a formalism to construct formal deductive arguments. The arguments,
called derivations or proofs, are obtained through the application of inference rules. Inference
rules have a (possibly empty) list of sequents as premise and a sequent as conclusion. Proofs in
the sequent calculus are trees of sequents that are constructed from a given set of rules.



Table 1
The sequent calculus SAC

Ax
𝐴 ⊢ 𝐴

Γ, 𝐴,𝐴 ⊢ Δ
CL

Γ, 𝐴 ⊢ Δ

Γ ⊢ 𝐴,𝐴,Δ
CR

Γ ⊢ 𝐴,Δ

Γ ⊢ Δ, 𝐴
¬L

Γ,¬𝐴 ⊢ Δ

Γ, 𝐴 ⊢ Δ
¬R

Γ ⊢ Δ,¬𝐴

Γ ⊢ 𝐴,Δ Σ, 𝐵 ⊢ Π
⇒L

Γ,Σ, 𝐴 ⇒ 𝐵 ⊢ Δ,Π

Γ, 𝐴 ⊢ 𝐵,Δ
⇒R

Γ ⊢ 𝐴 ⇒ 𝐵,Δ

Γ, 𝐴,𝐵 ⊢ Δ
∧L

Γ, 𝐴 ∧𝐵 ⊢ Δ

Γ ⊢ 𝐴,Δ Σ ⊢ 𝐵,Π
∧R

Γ,Σ ⊢ 𝐴 ∧𝐵,Δ,Π

Γ, 𝐴 ⊢ Δ Σ, 𝐵 ⊢ Π
∨L

Γ,Σ, 𝐴 ∨𝐵 ⊢ Δ,Π

Γ ⊢ 𝐴,𝐵,Δ
∨R

Γ ⊢ 𝐴 ∨𝐵,Δ

Γ, 𝐴[ks/𝑥s] ⊢ Δ
∀L

Γ,∀𝑥s𝐴 ⊢ Δ

Γ ⊢ 𝐴[ks/𝑥s],Δ
∀R

Γ ⊢ ∀𝑥s𝐴,Δ

Γ, 𝐴[ks/𝑥s] ⊢ Δ
∃L

Γ, ∃𝑥s𝐴 ⊢ Δ

Γ ⊢ 𝐴[ks/𝑥s],Δ
∃R

Γ ⊢ ∃𝑥s𝐴,Δ

Γ1, 𝐴[k1s/𝑥s] ⊢ Δ1 · · · Γ𝑛, 𝐴[k𝑛s/𝑥s] ⊢ Δ𝑛
A L

Γ1, . . . ,Γ𝑛,A 𝑥s𝐴 ⊢ Δ1, . . . ,Δ𝑛

Γ ⊢ Δ, 𝐴[ks1/𝑥
s], . . . , 𝐴[ks𝑛/𝑥

s]
A R

Γ ⊢ Δ,A 𝑥s𝐴

Definition 1. Given the rules in Table 1, a prederivation in SAC (Sequent Anaphoric Calculus) is
a tree where each local subtree is an instance of one of the rules subject to the following conditions:
in the premises of ∃L and ∀R, 𝑘s does not appear in Γ, Δ. The number of premises of A L is at least
one. In A R, the constant 𝑘s1, . . . , 𝑘

s
𝑛 are all and only the constants of sort s appearing in Γ.

The first condition is the usual condition on quantifiers in first-order logic. For the A R, we
require that the constants 𝑘s𝑖 does appear, but they must appear in Γ on the left-hand side of the
turnstile. For the A L we require for the moment only that the rule has at least one premise, but
we will refine this when moving from prederivations to derivations.

We say that a constant k appears negatively in a sequent Γ ⊢ Δ if k appears in some formula
in Γ. Let D be a prederivation, and 𝒫 = 𝑥0, . . . , 𝑥𝑛 a path in D where 𝑥0 is the root of D
and 𝑥𝑖 is the mother of 𝑥𝑖+1 for all 𝑖 < 𝑛. We say a constant k𝑠 appears negatively in 𝒫 if k𝑠
appears negatively in one of the path’s sequents.

Definition 2. A prederivation is a derivation if, whenever Γ1, 𝐵(k𝑠1), . . . ,Γ𝑛, 𝐵(k𝑠𝑛) are the
𝑛 premises of an 𝒜L rule then 𝑘s1, . . . k

s
𝑛 are all and only the constants of sort s which appear

negatively in the path from the root of the derivation D to the conclusion Γ1, . . . ,Γ𝑛,𝒜𝑥𝑠𝐵 ⊢
Δ1, . . .Δ𝑛 of the rule.

Notation we use 𝑥1, 𝑥2, 𝑥3, . . . for variables that are bounded by a universal or an existential
quantifier and 𝑦1, 𝑦2, 𝑦3 . . . for variables that are bounded by an anaphoric quantifier.



4. Linguistic examples

Bathroom sentence Consider the sentence “Either there is no bathroom in this house or it is
upstairs”. Clearly the pronoun “it” refers to “the bathroom” i.e., we expect that 3 below entails 4.

(3) (¬∃𝑥1Bathroom(𝑥1)) ∨ A 𝑦1Upstairs(𝑦1)

(4) (¬∃𝑥1Bathroom(𝑥1)) ∨ (∃𝑥2(Bathroom(𝑥2) ∧ Upstairs(𝑥2))

The proof below shows how we derive the entailment 3 ⊢ 4. The condition on the A L rule is
satisfied trivially, since 𝑘1 appears directly in the conclusion of the rule (in the formula coloured
blue) and 𝑘1 is the only constant 𝑘𝑖 which appears in the path from the conclusion of the rule
to the root of the proof.

Ax¬∃𝑥1𝐵(𝑥1) ⊢ ¬∃𝑥1𝐵(𝑥1)

Ax
𝑈(k1) ⊢ 𝑈(k1)

Ax
𝐵(k1) ⊢ 𝐵(k1)

∧R

𝑈(k1), 𝐵(k1) ⊢ (𝐵(k1) ∧ 𝑈(k1))
∃R

𝑈(k1), 𝐵(k1) ⊢ ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
A L

A 𝑦1𝑈(𝑦1), 𝐵(k1) ⊢ ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
∃L

A 𝑦1𝑈(𝑦1), ∃𝑥1𝐵(𝑥1) ⊢ ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
∨L

¬∃𝑥1𝐵(𝑥1)) ∨ A 𝑦1𝑈(𝑦), ∃𝑥1𝐵(𝑥1) ⊢ ¬∃𝑥1𝐵(𝑥1), ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
¬R

¬∃𝑥1𝐵(𝑥1)) ∨ A 𝑦1U(𝑦), ∃𝑥1𝐵(𝑥1) ⊢ ¬∃𝑥1𝐵(𝑥1),∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
⇒R

¬∃𝑥1𝐵(𝑥1)) ∨ A 𝑦1𝑈(𝑦) ⊢ ¬∃𝑥1𝐵(𝑥1),¬∃𝑥1𝐵(𝑥1), ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
CR

¬∃𝑥1𝐵(𝑥1)) ∨ A 𝑦1𝑈(𝑦) ⊢ ¬∃𝑥1𝐵(𝑥1), ∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2))
∨R

(¬∃𝑥1𝐵(𝑥1)) ∨ A 𝑦1𝑈(𝑦) ⊢ (¬∃𝑥1𝐵(𝑥1)) ∨ (∃𝑥2(𝐵(𝑥2) ∧ 𝑈(𝑥2)))

Donkey sentences Consider the sentence “If a monster fights Guts then he kills it”. Here the
pronoun “he” refers to Guts since Guts is an (imaginary) human being while the pronoun “it”
refer to “a monster”. Moreover, the pronoun “it” has a universal reading: what the sentence
means is “Any monster that fights Guts will be killed by Guts”. Thus we expect that 5 below
implies 6.

(5) [∃𝑥𝑛ℎ1 (Monster(𝑥1) ∧ Fight(g𝑚, 𝑥1))] ⇒ A 𝑦𝑚1 A 𝑦𝑛ℎ2 Kill(𝑦1, 𝑦2)

(6) ∀𝑥𝑛ℎ2 [Monster(𝑥2) ∧ Fight(g𝑚, 𝑥2) ⇒ Kill(g𝑚, 𝑥2)]

The proof below shows how we derive the entailment 5 ⊢ 6. The condition on the first
A L-rule (the one colored in red) is satisfied trivially, since 𝑔𝑚 is the only constant of sort 𝑚
(male human) which appears in the path from the conclusion to the root. The condition on the
other A L is also trivially satisfied: k1𝑛ℎ is the only constant of sort 𝑛ℎ (non-human) appearing
in the path proof.

Ax
𝑀(k1) ∧ 𝐹 (g𝑚, k1) ⊢ 𝑀(k1) ∧ 𝐹 (g𝑚, k1)

𝑀(k1) ∧ 𝐹 (g𝑚, k1) ⊢ ∃𝑥1
𝑛ℎ(𝑀(𝑥1) ∧ 𝐹 (g𝑚, 𝑥1))

Ax
𝐾(g𝑚, k1) ⊢ 𝐾(g𝑚, k1)

A L

A 𝑦𝑛ℎ2 𝐾(g𝑚, 𝑦2) ⊢ 𝐾(g𝑚, k1)
A L

A 𝑦1
𝑚A 𝑦𝑛ℎ2 𝐾(𝑦1, 𝑦2) ⊢ 𝐾(g𝑚, k1)

⇒L

[∃𝑥𝑛ℎ
1 (𝑀(𝑥1) ∧ 𝐹 (g𝑚, 𝑥1))] ⇒ A 𝑦1A 𝑦2𝐾(𝑦1, 𝑦2),𝑀(k1) ∧ 𝐹 (g𝑚, k1) ⊢ 𝐾(g𝑚, k1)

⇒R

[∃𝑥𝑛ℎ
1 (𝑀(𝑥1) ∧ 𝐹 (g𝑚, 𝑥1))] ⇒ A 𝑦1A 𝑦2𝐾(𝑦1, 𝑦2) ⊢ 𝑀(k1) ∧ 𝐹 (g𝑚, k1) ⇒ 𝐾(g𝑚, k1)

∀R
[∃𝑥𝑛ℎ

1 (𝑀(𝑥1) ∧ 𝐹 (g𝑚, 𝑥1))] ⇒ A 𝑦1A 𝑦2𝐾(𝑦1, 𝑦2) ⊢ ∀𝑥2[𝑀(𝑥2) ∧ 𝐹 (g𝑚, 𝑥2) ⇒ 𝐾(g𝑚, 𝑥2)]



The reader can check that the formula in 1 is derivable, while there is no derivation of the
formula in 2

5. Relation to LK and soundness

Let the expression A {𝑘𝑠1,...,𝑘𝑠𝑝}𝑥.𝐴[𝑥] (A is indexed by a finite set of constants) stand for the
classical formula 𝐴[𝑘𝑠1] ∨ · · · ∨𝐴[𝑘𝑠𝑝]. The A rules of SAC, adding the proper indices, become
derivable as particular cases of ∨ rules. Our calculus SAC consists of a proper subset of classical
proofs in LK sequent calculus (more precisely LK without the rules of weakening) with A 𝐾 .𝐴[𝑥]
instead of the disjunction ∨𝑘∈𝐾𝐴[𝑘] 2 in which all superscripts are thereafter masked: a proof
in SAC is the projection of a proof in LK. Because provable sequents in LK are true in all models,
so are ours with the meaning of A 𝑥.𝐴[𝑥]: there is a finite set of constants 𝐾 = {𝑘𝑠1, . . . , 𝑘𝑠𝑝}
such that the formula 𝐴[𝑘𝑠1] ∨ · · · ∨𝐴[𝑘𝑠𝑝] is true. This establishes the soundness of SAC.

6. Conclusions and future work

We have introduced SAC, a sequent calculus for anaphora resolution, which corresponds to
the resolution with argumentative dialogues of [3]. We illustrated how it can be use to solve
several standard puzzles concerning anaphoric dependencies in formal semantics. In the future,
as SAC enjoys soundness (cf. previous section), we intend to establish completeness by defining
a model as a family of relevant logic models in order to express the global conditions on proofs.
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