
Deriving Dependency Graphs from Abstract
Argumentation Frameworks: a Preliminary Report
Stefano Bistarelli1,*, Carlo Taticchi1

1Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy

Abstract
Abstract Argumentation Frameworks (AFs) are used, in the field of Artificial Intelligence, to evaluate
the justification state of conflicting information, thus allowing the development of automatic reasoning
techniques and systems. Complex argumentative processes, such as decision-making and negotiation,
which take place over time (usually marked by shifts in which two or more counterparts exchange
their opinions), can be modelled through the Concurrent Language for Argumentation, a formalism
for handling concurrent interactions between intelligent agents that use an AF as shared memory. In
this paper, we first show how AFs can be interpreted as dependency graphs by exploiting the causal
relation between arguments induced by the attacks. Then, we describe a methodology for obtaining a
procedure that generates the given AF. Such a procedure allows to dynamically represent dialogues and
other forms of interaction that brought to the instantiation of the specific AF. The dependency graph
also provides an explanation for the acceptance/rejection of a given argument: the path from a leaf to a
root of the underlying graph can be seen as a motivation for the assigned justification state.

Keywords
Computational Argumentation, Dependency Graphs, Explainable AI

1. Introduction

Argumentation Theory [1] deals with the problem of representing and reasoning with conflicting
information. In this context, Argumentation Frameworks constitute the basic tool for studying
complex phenomena like the cognitive processes through which humans draw conclusions
from a set of premises. The logic underlying the single arguments is neglected in Abstract
Argumentation Frameworks (AFs) [2], which can be represented as directed graphs where nodes
and edges are interpreted as arguments and attacks, respectively. On the one hand, abstracting
the internal structure of arguments entails the possibility of automating tasks such as the
selection of acceptable conclusions. On the other hand, AFs only provide information regarding
the relations between arguments, and not about the arguments themselves. This limits the
understanding we can have of the argumentative process which leads to the instantiation of a
given AF, an understanding that is crucial for achieving real-world results [3].

The purpose of this paper is twofold. First, we use the causal relation between the arguments

AI3 2022 - 6th Workshop on Advances in Argumentation in Artificial Intelligence, November 28, 2022, University of
Udine, Udine, Italy
*Corresponding author.
$ stefano.bistarelli@unipg.it (S. Bistarelli); carlo.taticch@unipg.it (C. Taticchi)
� 0000-0001-7411-9678 (S. Bistarelli); 0000-0003-1260-4672 (C. Taticchi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:stefano.bistarelli@unipg.it
mailto:carlo.taticch@unipg.it
https://orcid.org/0000-0001-7411-9678
https://orcid.org/0000-0003-1260-4672
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

of an AF induced by attacks (the attacking argument must have been brought forward in
the reasoning after the attacked argument) to interpret AFs as dependency graphs, namely
structures that describe the dependencies between their elements. In particular, attacking
arguments will depend on the attacked ones. Considering this type of dependency, we can
derive the order in which the arguments are presented, thus obtaining a potential description of
how the instantiation of the AF took place. Then, we show how AFs can be generated through the
Concurrent Language for Argumentation (cla), a language able to model interactions between
intelligent agents which communicate and reason through a shared AF. A cla program is given
as a series of actions to perform for building the target AF. In this short paper, we restrict the
study to acyclic graphs.

2. Preliminaries

We briefly recall the fundamental notions of AFs and argumentation semantics.

Definition 1 (AFs). An Abstract Argumentation Framework is a pair ⟨𝐴𝑟𝑔,𝑅⟩ where 𝐴𝑟𝑔 is a
finite set of arguments and 𝑅 is a binary relation on 𝐴𝑟𝑔.

For two arguments 𝑎, 𝑏 ∈ 𝐴𝑟𝑔, the notation (𝑎, 𝑏) ∈ 𝑅 represents an attack directed from 𝑎
against 𝑏. Moreover, we denote as 𝑎+ and 𝑎− the set of attacks respectively incoming into and
outgoing from 𝑎. A notion of defence can be used as a criterion for distinguishing acceptable
sets of arguments (extensions) in the framework [2, 4].

Definition 2 (Defended Argument). Given an AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩, an argument 𝑎 ∈ 𝐴𝑟𝑔 is
acceptable with respect to 𝐷 ⊆ 𝐴𝑟𝑔 if and only if ∀𝑏 ∈ 𝐴𝑟𝑔 such that (𝑏, 𝑎) ∈ 𝑅, ∃𝑐 ∈ 𝐷 such
that (𝑐, 𝑏) ∈ 𝑅, and we say that 𝑎 is defended from 𝐷.

The Concurrent Language for Argumentation (cla) [6, 7, 8] is a framework for modelling
concurrent interactions between agents that reason and take decisions through argumentation
processes. Agents communicating through cla constructs share a knowledge base, represented
by an AF, to perform reasoning tasks. This shared store can be accessed and updated by the
various agents via specifically designed operators that are also able to change the underlying
AF. Please refer to [6] for a complete overview of the language.

3. AFs as Dependency Graphs

In addition to modelling conflicts in AFs, attacks between arguments also establish a causal
relationship between the arguments themselves. Consider an AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩ with two
arguments 𝑎, 𝑏 ∈ 𝐴𝑟𝑔 and the attack relation (𝑏, 𝑎) ∈ 𝑅. We interpret this attack as a conflict
between the two arguments, with the further knowledge that 𝑏 is the argument from which
the attack against 𝑎 starts. This means that 𝑏 is specifically introduced into the framework
to contrast argument 𝑎 and undermine its validity. In the case 𝑎 was not present from the
beginning, 𝑏 would have no reason to be part of the AF and this fact allows us to identify a

causal relation between 𝑎 and 𝑏. In our example, the existence of 𝑎 is preliminary to that of 𝑏,
so we can say that 𝑏 depends on 𝑎.

Following these considerations, an AF can be interpreted as a dependency graph, i.e. a
directed graph representing the dependencies of various elements (in our case, arguments).
Formally, a dependency graph is a couple 𝐷 = (𝑆, 𝑇) where 𝑆 is a set of elements and 𝑇 the
transitive reduction of a relation 𝑅 ⊆ 𝑆 × 𝑆. In a dependency graph, one can look for an
evaluation order respecting the given dependencies. A correct evaluation order is a numbering
that orders two elements 𝑎 and 𝑏 in such a way that if 𝑎 is evaluated before 𝑏, then 𝑎 must
not depend on 𝑏. For example, the element corresponding to argument 𝑎 in Figure 1 should
come before 𝑏 and 𝑐 in a correct evaluation order of the represented graph, while 𝑏 should come
before 𝑑 and after both 𝑎 and 𝑐.

Figure 1: Example of a directed graph that can be interpreted both as an AF and a dependency graph.

Finding a correct evaluation order for a dependency graph amounts to reconstructing the
reasoning process that leads to the generation of an AF superseding the same graph. Indeed, AFs
represent conflicting information and they can be seen as the instantiation of an argumentative
process between intelligent agents. In the real world, such kinds of processes take place over time
and can be imagined as a succession of statements made by one or more counterparties, with
the various statement referring to (attacking) each other. The beginning of this argumentative
process is to be found, therefore, in the leaves of the AF, which, not attacking any other argument,
must be the first sentences that started the process.

4. A cla Program for Generating AFs

Using the constructs of cla, we can realise procedures able to generate AFs by modifying the
shared store, which will take the shape of a desired AF. In this preliminary study, we only
take into account acyclic AFs, (giving some hints on how to deal with cycles in the concluding
section). For example an AF like the one illustrated in Figure 1 can be obtained as a result of the
following cla procedure, which can also be executed through our web interface.1

checkw({},{}) -> add({a},{}) ->
checkw({a,c},{}) -> add({b},{(b,a),(b,c)}) ->

checkw({b},{}) -> add({d},{(d,b)}) -> success
|| checkw({a},{}) -> add({c},{(c,a)}) -> success

1Link to cla web interface: https://conarg.dmi.unipg.it/cla.

https://conarg.dmi.unipg.it/cla

The operation 𝑐ℎ𝑒𝑐𝑘𝑤(𝐴,𝑅) verifies if the given subsets of arguments 𝐴 and attacks 𝑅
belong to the shared store, while 𝑎𝑑𝑑(𝐴,𝑅) inserts 𝐴 and 𝑅 into the AF; the execution, then,
terminates with a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (for a detailed discussion of cla operations, the reader is referred
to [6]). We provide and algorithm for automatically generating AFs through cla procedures
which use check and add operations in accordance with a correct evaluation order for the nodes.

Algorithm 1: AFs generation through cla
Data: AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩, 𝐼 ⊆ 𝐴𝑟𝑔, string 𝑆
Result: cla program 𝑆

1 procedure AFtoProg(𝐹 ,𝐼 ,𝑆):
2 foreach 𝑎 in 𝐼 do
3 if 𝑎 is not discovered then
4 mark 𝑎 as discovered
5 if 𝑎 is the only discovered node in 𝐼 then
6 𝑆 = 𝑆+ “checkw(a+,{}) -> add({a},{(𝑎, 𝑏) | 𝑏 ∈ 𝑎+)}) -> ”
7 else
8 𝑆 = 𝑆+ “|| checkw(a+,{}) -> add({a},{(𝑎, 𝑏) | 𝑏 ∈ 𝑎+)}) -> ”
9 if 𝑎− is empty then

10 𝑆 = 𝑆+ “success”
11 else
12 AFtoProg(𝐹 ,𝑎−,𝑆)

The recursive procedure AFtoProg in Algorithm 1 takes in input an AF 𝐹 , a subset of
argument 𝐼 and a string 𝑆 which at the end of the execution will contain the desired cla
program. The set 𝐼 initially contains the leafs of the AF. All the elements in 𝐼 are processed
(line 2) and only if they have not been visited yet, the procedure continues (line 3). Nodes
are marked as discovered in line 4 and then are added into the cla program. If there are no
other discovered nodes in 𝐼 apart from the one being visited (let us call it 𝑎), we first check
that all the arguments attacked by 𝑎 have already been added, and then we also add 𝑎 with all
its outgoing attacks (lines 5− 6). If 𝑎 is not the only discovered nodes, we build the same cla
process, this time adding the parallel construct at the beginning (lines 7− 8). In lines 9− 10
we have the terminal case: whenever we reach a root in the AF, we make the (branch of the)
cla program terminate with success. If the visited node has incoming attacks, we recursively
call AFtoProg passing the attackers of 𝑎 as a parameter (lines 11− 12).

5. Discussion

We studied AFs from the perspective of dependency between arguments. We first showed
how causality can be derived from the attack relations, allowing us to interpret an AF as a
dependency graph in which arguments depend on those they attack. Second, we resorted to cla
constructs for obtaining a program which generates a desired AF. The advantage of producing
an AF in this way lies in the fact that, by reading the trace of the cla program, it is possible

both to reconstruct the process that generated the AF and to obtain an explanation for the
justification state assigned to the various arguments.

In this paper, we conducted a preliminary investigation of various aspects related to the
similarity between dependency graphs and AFs, and in the future, we plan to deepen this study
under several aspects. First of all, we want to remove the constraints on the AF structure that
we have imposed in the current work. To generalise our approach also to AFs with cycles,
we want to devise a methodology for selecting a set of initial arguments for the procedure of
Algorithm 1 even when there are no non-attacked arguments. In particular, we plan to use the
Kosaraju-Sharir’s algorithm [9] to detect the strongly connected components in the AF and
select in a non-deterministic fashion an argument in the cycle that can be reached by any other
arguments in the graph. Then, we also want to understand how to obtain optimised programs
(for instance, with shorter traces) representing the same argumentative process. In this sense,
we could exploit the monoid structure of dependency graphs to identify minimal traces of cla
programs. We also plan to investigate other models for concurrent execution (like Petri nets)
in order to study how argumentative processes can be represented and interpreted with the
ultimate goal of extracting meaningful information. Finally, it would be interesting to conduct a
comparative study with existing approaches for the computation of argumentation semantics
in order to understand the connections between the causal relationship we identify and the
notion of acceptability.

References

[1] C. Dutilh Novaes, Argument and Argumentation, in: E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy, Fall 2022 ed., Metaphysics Research Lab, Stanford University,
2022.

[2] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artif. Intell. 77 (1995) 321–358.

[3] H. Prakken, M. D. Winter, Abstraction in argumentation: Necessary but dangerous, in:
COMMA, volume 305 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2018,
pp. 85–96.

[4] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowl.
Eng. Rev. 26 (2011) 365–410.

[5] M. Caminada, On the issue of reinstatement in argumentation, in: JELIA, volume 4160 of
Lecture Notes in Computer Science, Springer, 2006, pp. 111–123.

[6] S. Bistarelli, C. Taticchi, A concurrent language for argumentation, in: AI3@AI*IA, volume
2777 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 75–89.

[7] S. Bistarelli, C. Taticchi, Introducing a tool for concurrent argumentation, in: JELIA, volume
12678 of Lecture Notes in Computer Science, Springer, 2021, pp. 18–24.

[8] S. Bistarelli, C. Taticchi, A concurrent language for modelling arguing agents, Submitted to
Argument & Computation (2022).

[9] M. Sharir, A strong-connectivity algorithm and its applications in data flow analysis,
Computers & Mathematics with Applications 7 (1981) 67–72.

	1 Introduction
	2 Preliminaries
	3 AFs as Dependency Graphs
	4 A cla Program for Generating AFs
	5 Discussion

