CEUR-WS.org/Vol-3356/paper—-06.pdf

Concept of Quality Digital Twin in Agile Development

Tsuyoshi Nakajima’, Alessandro Simonetta?

Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-848, Japan
Department of Enterprise Engineering University of Rome Tor Vergata, Rome, Ttaly

Abstract

Agile development is essential for effective digital transformation. However, since agile development tends to focus on
functional implementation, the realization of true user value (quality in a broad sense) is often neglected. To support realization
of true user value in agile, this paper proposes the concept of a quality digital twin, a quality representation of the target
system synchronized at each iteration. The agile development focuses on the quality of target product itself more than that of
processes and intermediate products, and therefore SQuaRE quality model can be much more applicable to the agile. It uses
the SQuaRE quality framework for defining quality requirements, and engineering and evaluating the system. This concept
enables the realization of a support system for user-driven, high-quality agile development. Its feasibility is demonstrated by
showing system / data structure and usage of the quality digital twin.

Keywords
Agile, digital twin, quality management, SQuaRE

1. Introduction

Digital Transformation is the transformation of prod-
ucts, services, and business models based on the needs
of customers and society by responding to changes in
the business environment and utilizing information tech-
nology [1]. Digital Transformation can perform high
value creation and development efficiency by repeating
the planning, prototyping, operation, and evaluation of
ideas quickly, with the user taking the initiative. Agile
development is one of the foundations required for this.

However, because agile development tends to focus on
the implementation of functional requirements, the real-
ization and evaluation of quality requirements are often
neglected. To solve such a problem, we propose a concept
of a support system for user-driven high-quality agile
development (hereinafter called “quality digital twin”) by
applying the digital twin concept to quality management
in agile development.

The Quality Digital Twin has the quality state model as
its core, which models the quality of products in the agile
development. The model is based on the quality models
of the ISO/IEC 25010, including product quality models
and quality-in-use model [2]. By considering user value
with the quality-in-use model, refining and implement-
ing quality requirements/functions/architecture, and it-
erating testing including non-functional testing, static
analysis, and quality evaluation based on user reviews in

4 th International Workshop on Experience with SQuaRE Series and its
Future Direction, December 06, 2022, Tokyo, Japan

& tsnaka@shibaura-it.ac.jp (T. Nakajima);
alessandro.simonetta@gmail.com (A. Simonetta)

@ 0000-0002-9721-4763 (T. Nakajima); 0000-0003-2002-9815

(A. Simonetta)

Commons Do Anbuton 30 ieraond CC Ty

=== CEUR Workshop Proceedings (CEUR-WS.org)

each sprint, it is possible to simultaneously progress the
quality estimation and evolve quality requirements.

This paper presents the issues of quality achievement
in agile development and concept and design of the qual-
ity digital twin.

2. AGILE DEVELOPMENT AND
ITS ISSUES

2.1. Agile development

Agile software development refers to a group of software
development methodologies based on iterative develop-
ment to deal with uncertainty and risk, as shown in 1.
Its important practical activities include short iterations
with a certain time window, continuous release (automa-
tion, providing and evaluating working products), user
participation, and test-first and refactoring. Agile de-
velopment is effective when the problem to be solved is
complex (i.e., its requirements are vague and/or changing,
and the solution is unknown), and is adjusted by repeat-
edly investigating, understanding, and dealing with the
problem [3]. This paper addresses Scrum, which is a
lightweight process framework for agile development,
and the most widely used one [4].

2.2. Issues to user-driven agile
development

Digital transformation can perform high value creation
and development efficiency through rapid repetition of
user-driven idea planning, prototyping, operation, and
evaluation [1]. Therefore, agile development is one of the
necessity foundations for this. However, user involve-
ment is often limited to input of requirements and eval-

mailto:tsnaka@shibaura-it.ac.jp
mailto:alessandro.simonetta@gmail.com
https://orcid.org/0000-0002-9721-4763
https://orcid.org/0000-0003-2002-9815
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Implement Implement Implement
{ ation { ation { ation

|Testing| \Design| |Testing | \Design| |Testing‘ \Design|
Reﬂe:l':;e Require V Require
n e"%nlﬂon e"f‘lmn d e?li?n‘lin
- Release

v ’Release > Release
Iteration 1 Iteration2 > s Iteration N

Figure 1: Agile development

uation and review of deliverables at each development
cycle, and users rarely are involved in decision-making
in managing the projects. As a result, agile development
tends to derail from creating the value that users expect
for the cost [5].

We believe that one of the reasons why users cannot
be involved in development decisions is that there is no
quantitative and intuitive way to determine whether the
current quality of the target product is sufficient for the
value they want to achieve, and what and how much is
missing,.

2.3. Quality management of agile
development

In the waterfall development, the quality of the target
product is defined, decomposing it into quality activities
and their goals for intermediate products in each develop-
ment phase. The project tries to achieve them to assure
the quality of the target product indirectly. In contrast,
in the agile development, the quality to be achieved is
mainly the value demanded by the user, and its resources
are concentrated on creating an executable product to
realize and confirm the value. The quality is achieved
through repeated product evaluations with user partici-
pation at each iteration [6]. From a quality management
perspective, agile development, compared to the water-
fall, has the advantage that its quality goals are business-
oriented and the way to check their achievement is direct.

Modeling languages such as use cases in UML may
mitigate the above weakness of waterfall development
to some extent because they are easy to understand even
for non-experts. However, the quality of these models
does not directly imply the quality of the system, since
they only can define the functionality of the system, not
its quality.

In the agile development, on the other hand, user val-
ues are defined by the functionality the product should
have. Therefore, the development team tends to focus on
realizing the functionality, not user values themselves.
To prevent this, the user review is conducted to evaluate
the product at the end of each iteration. However, be-
cause the user review tends to be subjective, some quality

aspects that the users are not directly benefited from is
often neglected to confirm. Agile development itself does
not have the support to overcome these problems and
achieve quality in a comprehensive and balanced manner.

3. QUALITY DIGITAL TWIN
CONCEPT

3.1. Digital twin

A digital twin (DT) is a living, intelligent and evolving
model, being the virtual counterpart of a physical entity
or process for practical purpose, such as monitoring and
control, future prediction and planning, and conceptual
design and development [7].

From the results of the literature review [7] [8] [9], we
found that DT consists of all or a partial combination of
the following five functions as shown in 2 (Generic form
of DT).

Real world Virtual world
Target entity — 1) ModelD T 2)_State gstimation and prediction
= synchronization 5) Information
— data display Nl
" > Model > \',"D
i s information .v
Physical A — ,an‘ —— |request
object/system/process i Talget related J COHUOl
3 pacanioling additional inf@ parameters [~ 4) Modelling and
E 3 simulation (M&S)
t entities Emulated
men environment

Figure 2: Generic form of Digital Twin

+ Model synchronization: Synchronization of the
real-world target and the virtual world model
from data sensed from the real world one

« State estimation and prediction: Estimation and
prediction of target internal states from the model
(for monitoring)

+ Controlling: Controlling the real-world target
based on 2)

+ Modelling and simulation: Future forecasting and
planning through simulation and optimization by
changing inputs and control parameters

+ Information display: Display of information
about the monitoring of the estimated internal
state of the target, the results of future predic-
tions, or the provision of additional information
tied to the model.

3.2. Application of DT concept to quality
management in agile development
and three hypotheses

In waterfall development, quality is estimated using the
results of quality assurance activities (often processes)

such as testing and reviews of intermediate deliverables.
In contrast, agile development does not produce inter-
mediate deliverables, but instead produces a workable
product in a short cycle, making it possible to measure
quality data directly on the product. Based on this, we
hypothesized that the ISO/IEC 25000 (SQuaRE) series of
product-focused quality models and quality estimation
using these models would be easily applicable to agile
development (Hypothesis 1).

The quality of the software in the real-world is not
directly visible, but is estimated through quality mea-
surement and evaluation. The SQuaRE quality models
and the results of quality measurement and evaluation
using the models (their data repository is called quality
state model) can be regarded as a virtual world model
for the invisible quality of real-world software products.
The iteration cycles of agile enables model synchroniza-
tion between them. From these considerations, we have
another hypothesis (Hypothesis 2) that the quality state
model can be applied to quality management in agile
development. Based on these hypotheses, we propose
Quality Digital Twin (Quality DT), a quality management
support system using the quality state model.

Comparing to the generic form of DT, the following
concept of Quality DT was drawn:

1. Model synchronization: Definition a of quality-in-
use requirements (at the start of the development),
story development for quality requirements (at
the start of each iteration), and then quality eval-
uation based on testing, static analysis and user
reviews (at the end of the iteration).

2. State estimation and prediction: Monitoring of
current quality and its deviation from the goal

3. Controlling: no counterpart

4. Modelling and simulation: What-of analysis for
Quality Management, including development (it-
erations and each sprint) planning

5. Information display: Visualization of estimation
and prediction of quality and risks

Furthermore, we believe that the quality digital twin
would allow users to not only provide input and feedback
to the agile development but also take the initiative in
decision making on it. This is because the quality digital
twin has the potential to provide users for intuitive and
quantitative quality estimation in a way that only quality
assurance professionals have been able to do (Hypothesis
3).

4. Considerations on application
to agile development

4.1. Plan it; Do + Evaluation

We take the approach of only rough support for decom-
position of quality requirements in sprint planning, and
evaluating the adequacy of the decomposition and cor-
recting it during sprint evaluation. This is because the
agile development does not fit with time-consuming long-
term and complete planning and requirements definition.

Increase efficiency of XX operations

| Initiative (Quality-in-use) |
Automate Increase
+ YY process learnability

|
B [i |
v v v v v 4
NFR NFR

Help Unified Usability business

Functional decomposition function operation testing Verification
testing

(J

L ——
Product
backlog

Figure 3: Quality decomposition using agile framework

In agile development, requirements continuously
evolve. In other words, the quality digital twin is evalu-
ated in every iteration to accumulate necessary quality
requirements for its completion in the product backlog.

Quality decomposition is performed using the frame-
work of Scrum: initiative, epic, and story, depending on
the scale of the project. 3 shows an example of quality
decomposition. First, user values are defined at the top
level as quality-in-use (QiU) requirements, and then de-
composed into product quality requirements, functions,
architectural design, or non-functional testing. Problems
in product quality discovered during development are
stored in the backlog as technical liabilities.

4.2. Quality requirements in agile
development

At the sprint planning, the decomposition of quality re-
quirements to be implemented into stories is performed
to put in the sprint backlog. During the execution of a
sprint, the results of testing and static analysis are col-
lected. Technical debt identified by the developer is also
collected into the product backlog.

The sprint review is based on the collected quality-
related data to determine the current quality. In this case,
based on the decomposition at the time of planning, the

results of testing and static analysis are automatically
calculated in terms of their “contribution” to the quality
characteristics/sub-characteristics.

During a sprint review, the quality dashboard displays
the quality evaluation results in a visual and easy-to-
understand manner for the users to intuitively monitor
the quality. The qualitydashboard shows the relationship
between quality requirements, quality realization, and
quality activities, provides the ability to edit it (8), and
monitors the status of product quality. 4 shows an image
of the quality status monitoring function. The achieve-
ment percentage of all the QiU requirements is displayed
in the left-hand side of 4, in which QiU requirements are
listed in order of their importance (three sizes of length:
most important, important, and normal). In the right pie
chart in 4, the angle of the arc represents the relative
importance of each quality characteristic to the product,
and the length of the radius represents the achievement
of product quality. For example, the figure shows usabil-
ity is the most important quality of the target product,
and its achievement level is about 70

QiU requirements

Most portability
ereceress2 [] | mporant =
of risk 1 /
Effectiveness4 -
Efficiency2 |:]

Freedom
of risk 2

Compatibility Functional

suitability

Performance
Maintain- efficiency
ability

Security V

reliability

Important

Usability
Normal

Achievement of product quality

Total percentage of achievement 45%

Figure 4: Image of quality status monitoring in quality dash-
board

During the sprint review, user reviews the correspon-
dence between the quality requirements and the quality-
related data collected and their contribution to the re-
quirements. For QiU requirements, the following points

will be checked:

+ Do the functions and PQ requirements decom-
posed from a QiU requirement truly contribute?
Is the defined contribution level appropriate for
it ?

« Isnon-functional testing necessary to support the
QiU requirement?

« Is this QiU requirement really necessary? Should
it be changed to express what we need more
clearly?

Almost the same comparative review can be performed
for product quality requirements. By conducting the
above sprint review for each QiU requirement, it is possi-
ble to evolve the quality requirements, making sure the

degree to which the targeted quality have been achieved.
Concerning product quality, we can see the balance of
its achievement.

5. QUALITY STATE MODEL AND
ITS APPLICATION

This section presents ideas for the organization and use of
the quality state model, which is a central part of Quality
DT.

5.1. SQuaRE quality models

The ISO/IEC 25000 (SQuaRE) series provides a frame-
work for quality related to systems and software products.
ISO/IEC 25010 [10] defines both the quality-in-use and
product quality model for systems and software products,
while ISO/IEC 25012 [11] defines the data quality model.
Quality-in-use represents the influence on stakehold-
ers when the target entity is used under a certain context
of use, while product quality and data quality are the
capability of the target product and data themselves, re-
spectively to satisfy both stated and implies needs.

5.2. Interpretation of the SQuaRE quality
models in the quality state model

In-use quality

The quality state model is built on the above three qual-
ity models of SQuaRE, but to capture the decomposition
relationships between quality requirements, the follow-
ing interpretations of the models and their properties are
added.

The Quality-in-Use (QiU) model targets use during
operation. In contrast, the ease of work during develop-
ment and maintenance is partly in the Product Quality
(PQ) model. In this paper, these are positioned as quality
models PQQIU that considers their influence on work
under a specific context of use.

+ Quality in Use [QiU]

— Effectiveness (magnitude of value created
for the user)

- Efficiency (efficiency of user tasks)

— Satisfaction (positive impact on user’s
mind & attitude)

— Freedom of risk (avoidance of negative im-
pacts)

— Usage Coverage (ability to perform appro-
priately to anticipated/future usage situa-
tions)

« Product quality characteristics for non-user use
(ease of development and maintenance work) [PQ

QiU]

Testability (ease of testing work)
Analyzability (ease of failure analysis)
Modifiability (ease of modification work)
Installability (ease of installation work)
— Reusability (ease of reuse)

5.3. True product quality

The product quality characteristics other than the above
represent product-specific qualities and are classified as
below.

+ Quality of the functions that the system has
[PQ(Function), PQ(Set of Functions)]
— Functional accuracy
— Function appropriateness
— Time behavior

+ Quality of a set of functions

— Functional completeness
— Usability (cognitive ease of use)
- Security

+ Quality of the source code of the system
[PQ(Code)]
— Modularity

« Characteristics of the system with respect to pos-
sible failures [PQ(Failure)]
— Maturity (no failures <— few defects)
— Fault tolerance (service continuity against
failures)
- Availability (service uptime against fail-
ures)
— Recoverability (low loss against possible
failures)
« Relationship with outside of system [PQ(Out-
side)]
— Capacity satisfiability
— Interoperability
— Coexistence
- Adaptability
— Accessibility
— Resource efficiency

5.4. Deployment of quality requirements
in the SQuaRE quality requirements
framework

ISO/IEC 25030 Quality Requirements Framework [12],
[13] guides the flow of deployment of quality require-
ments through decomposition of the system.

Quality Digital Twin supports various deployment
methods of quality requirements by using patterns. In

addition, there are three patterns for the realization of
quality requirements: assignment to components, func-
tions, and architecture (structure and design guideline)
[14]. When A, B, and C are quality nodes (in 6), the rule
A—B | C means that A can be deployed into either B or
C.

QiUFunction [with PQ(Function)]* | PQ(Set of Func-
tions)* | PQ(Outside)* | PQ(Failure)* K PQ QiU Func-
tion [with PQ(Function)]* | PQ(Code)* | Architecture X
PQ(Function) DQ* X PQ(Set of Functions), PQ(outside),
PQ(failure) Function [with PQ(Function)]* | DQ* |

Architecture

QiU requirements can be deployed into Function and
Product quality requirements. The product quality char-
acteristics for non-user use are developed into functions,
code quality, and architecture. Architecture is embodied
in the components, their relationships and principles of
behavior, and design guidelines.

When a system is decomposed into itscomponents,
the deployment of product qualityto them also occurs.
In this case, product quality can be inherited, not in-
herited, or assigned among the components. In case of
the assignment, a product quality requirement such as
time efficiency and reliability, is decomposed into a set
of new requirements with different goals, each of which
assigned to each component. In case of including data
components, data quality (DQ) requirements are defined
for them.

5.5. Quality evaluation of the SQuaRE
quality model

Quality evaluation in SQuaRE [15] selects important qual-
ity characteristics and sub-characteristics, and defines
information needs for the target to measure them using
quality measures, as shown in 5 . The quality measure
quantifies the results of testing, user reviews, or static
analysis of the target entity into one single value. The
value of the quality measure is mapped to a predefined
quality rating level to obtain a quality rating value.

Quality DT considers non-functional testing, static
analysis, and user reviews conducted in each iteration
of agile development as quality activities, and integrates
the results of these activities to evaluate the achievement
of the corresponding quality requirements.

5.6. Design of the quality state model

6 shows the meta-model of the quality state model. The
quality state model is realized as a directed acyclic graph
in which higher-level requirements are related to lower-
level realizations by the link "supports”. A support link
has an attribute of “contribution.” which indicates the
degree of support. The following node types are consid-
ered.

Quality property

Measurement

Quality (-> Information needs) . thod
Quality subcharacteristic +¢ssxsseeeny Quality measure metho
characteristic H H Gperating Continuous
vallalbliisy H Theasures ratio Uses Operation Testing
o I oredvey T
3 Tecovery) .
Lot PO —(R) eoetng Review,

% processing Static analysis

Dol
: . H throughput

Performance 1™ Resource™ 1
Efficiency 1 _utilization_I
Capacity

The importance of characteristics
and subcharacteristics depends on
the type of target entity

What you want to know
about the target entity

Target entity

Figure 5: Quality evaluation and measurement methods

+ Quality requirement: QiU, PQQIiU, PQ(Set of
Functions), PQ(Outside), PQ(Failure),DQ

« Quality implementation:
PQ(Function)], Architecture

+ Quality activity: Functional testing, Non-
functional testing, Static analysis, User review

Function [with

Quality state —
meta model r
<Node> Quality |4
Quality node requirement
o e 0..* SUPDOrtI
: Quality support
i implementation
Tk
support support
contribution QU?Uty
activity
Quality node
/\
_Q'ITF]
uafity Quality

Quality activity

requirement implementation

achievement() achievement() score

Qiv requirementl Function I
PQ requirementl Architecture |
Static analysis

Figure 6: Metamodel of quality state model

Functional
testing

On-functiona
testing

Quality requirements can be supported by not only
quality requirements themselves, but quality implemen-
tations and quality activities. Quality implementation
can be supported by Functional testing for Function, Non-
functional testing for Architecture, and Static analysis
for Architecture.

5.7. Quality evaluation of the SQuaRE
quality model

In the Quality DT, quality management of agile devel-
opment is considered as a process of correctly evolving
the quality state model. In other words, while iteratively
developing the product, quality requirements (and their
relationships) are gradually established, and at the same
time, the degree of achievement of quality requirements
is measured from the results of quality activities in the
agile development, and corrective activities are recom-
mended for achieving the quality goals. This prevents
the agile development from deviating from the quality
goals.

7 shows how the quality state model is used in a sprint.
At the sprint planning, the results of requirements de-
composition are input into it, the results of quality activ-
ities are collected during executing the sprint, and at the
sprint review, quality evaluation are conducted on the
model and then the model is reviewed and, if necessary,
reorganized. The detailed usage flow is shown below.

Sprint
planning
IV
Real world

Development

decomposition
Virtual world
Quality requirements
(SQuaRE models)

Review a

reorganization
Add / Change
Sprint
review

Quality at present
(Quality state model)
Figure 7: Relationship between sprint and quality state model

1. At sprint planning Supports relationships are ten-
tatively established at the time of quality require-
ment decomposition. In sprint planning, users,
product owners and developers cooperate to de-
compose a quality requirement into other quality
requirements, quality implementations and qual-
ity activities, guided by the rules in 4.2. In the case
of explicit decomposition, a new node is added to
the quality state model and automatically gener-
ates a supports link to the decomposed element.
The decomposition should be rough at this point
because supports links can be always reviewed
to reconnect later.

2. During sprint implementation The results of the
quality activities are recorded.

3. At sprint review The supports relationship is re-
viewed at the sprint review. In the sprint review,
users, product owners and developers cooperate
to evaluate the results of quality activities con-
ducted during the sprint. Prior to the review, the

results of User review, Non-functional testing and
Static analysis of QiU are evaluated.

4. Functional testing: success 1/ failure 0

5. Non-functional testing, Static analysis: achieve-
ment score [0,1]

6. User review: achievement/non-achievement of
specified quality requirements [0,1]

For all quality activities conducted up to this stage,
the quality evaluation value of quality node n i, achieve-
ment(n i), is calculated using the following formula.

where support(ni) = nil,ni2,..,nim is the total
set of nodes supporting node n i, and contribution ij is
the contribution of node n ij to n i . In the evaluation
review of n i, the contents and quality evaluation values
ofni, all nodes supporting n i support(n i) (including the
quality implementations and quality activities conducted
in this sprint), and the contribution ij of each node are
shown on the links, as shown in 8.

p T i 1 F ot | i g)
e, [Sty ¥ Testing
‘ hitucd CTL | i et e i)

T, Sweusr Usabily testing

bt | g

Figure 8: Review of a quality node and its supporting nodes

In addition, the user can also check the degree to which
quality requirements have been met and the progress
made since the last time. By checking the correspondence
and contribution of the supporting nodes, it is possible to
review whether the implementation and activities truly
support the goal quality requirements and whether their
contribution is appropriate.

5.8. Challenges in realizing Quality DT

The system that realizes the quality digital twin consists
of three functions: a quality requirement decomposition
support function, a quality evaluation function, and a
quality dashboard function, as shown in 9.

The followings need to be addressed for each function.

+ Quality requirement decomposition function:
The description and decomposition of quality re-
quirements must be user-driven. It is necessary
to support appropriate decomposition without
difficulty for users.

+ Quality evaluation function: It is necessary to
establish a method to link the results of non-
functional testing and static analysis to quality
evaluation. For static analysis, we plan to refer
to ISO/IEC 5055 [16].

+ Quality dashboard function: what information
and how needed to displayed to help users take
the lead in quality management.

Quality requirement
decomposition support function

O S

l Sprint

planning

Quality state model

QM method with
quality DT
Quality

dashboard [€eenmnene
function

development

Quality evaluation function User review

Users

Sprint
— Review Results 1 review

Evaluation
assess-

Evaluation of static [+f————— static analysis
ment analysis results
function)
Test Result | Functional/
Evaluation Non-functional
testing

Quality

Figure 9: Relationship between sprint and quality state model

6. Conclusion

We proposed the concept of Quality Digital Twin, which
visualizes the quality of products in the agile develop-
ment, using the quality models of the ISO/IEC 25010.
This concept enables the realization of a system that sup-
ports user-driven, high-quality agile development. The
feasibility of the concept is demonstrated by showing an
example of the structure and usage of the quality state
model, which is the core of the concept, as well as three
issues for the realization of the concept. We plan to con-
duct prototyping and experiments to demonstrate the
effectiveness of the system.

References

[1] G. Vial, Understanding digital transformation:
A review and a research agenda, The Journal
of Strategic Information Systems 28 (2019)
118-144. URL: https://www.sciencedirect.com/
science/article/pii/S0963868717302196. doi:https:
//doi.org/10.1016/j.jsis.2019.01.003, sk
Review issue.

T. Komiyama, A. Motoei, Establishing international
standards for systems and software quality require-
ments and evaluation, IWESQ@APSEC (2020).

S. McConnell, More effective Agile: A roadmap for
software leaders., Construx Press, 2019.

B. Meyer, The Ugly, the Hype and the Good: an
assessment of the agile approach; Agile, Springer,
Cham, 2014.

C. Ebert, H. C. Duarte, Digital transformation, IEEE
Software 35 (2018) 16 21.

K. Kautz, Participatory design activities and agile
software development, IFIP WG 8.2/8.6 Interna-
tional Working Conference (2010) 303-316.

B. R. Barricelli, E. Casiraghi, D. Fogli, A survey
on digital twin: definitions, characteristics, applica-

https://www.sciencedirect.com/science/article/pii/S0963868717302196
https://www.sciencedirect.com/science/article/pii/S0963868717302196
http://dx.doi.org/https://doi.org/10.1016/j.jsis.2019.01.003
http://dx.doi.org/https://doi.org/10.1016/j.jsis.2019.01.003

(8]

tions, and design implications, IEEE access (????)
167653-167671.

K. Y. H. Lim, P. Zheng, C.-H. Chen, A state-of-the-
art survey of Digital Twin: techniques, engineering
product lifecycle management and business inno-
vation perspectives, Journal of Intelligent Manu-
facturing 31 (2020) 1313-1337.

F. Tao, et al. , Digital twin in industry: State-of-the-
art, IEEE Transactions on Industrial Informatics
15.4 (2018) 2405-2415.

ISO/IEC 25010:2011 "Systems and software engi-
neering — Systems and software Quality Require-
ments and Evaluation (SQuaRE) — System and soft-
ware quality models”, 2011.

ISO/IEC 25012:2008 Software engineering — Soft-
ware product Quality Requirements and Evaluation
(SQuaRE) — Data quality model, 2008.

ISO/IEC 25030:2019 Systems and software engineer-
ing — Systems and software quality requirements
and evaluation (SQuaRE) — Quality requirements
framework, 2019.

T. Nakajima, T. Komiyama, Applying Quality Re-
quirements Framework to an IoT System and its
Evaluation, International Journal on Advances in
Internet Technology 12 (2019).

P. Clements, et al., Documenting software architec-
tures: views and beyond (2nd edition), Addison-
Wesley Professional, 2010.

T. Nakajima, About the Framework of Quality Eval-
uation Using SQuaRE, APSEC (2020).

ISO/IEC 5055 Information technology—Software
measurement—Software quality measurement—
Automated source code quality measures, 2021.

	1 Introduction
	2 AGILE DEVELOPMENT AND ITS ISSUES
	2.1 Agile development
	2.2 Issues to user-driven agile development
	2.3 Quality management of agile development

	3 QUALITY DIGITAL TWIN CONCEPT
	3.1 Digital twin
	3.2 Application of DT concept to quality management in agile development and three hypotheses

	4 Considerations on application to agile development
	4.1 Plan it; Do + Evaluation
	4.2 Quality requirements in agile development

	5 QUALITY STATE MODEL AND ITS APPLICATION
	5.1 SQuaRE quality models
	5.2 Interpretation of the SQuaRE quality models in the quality state model
	5.3 True product quality
	5.4 Deployment of quality requirements in the SQuaRE quality requirements framework
	5.5 Quality evaluation of the SQuaRE quality model
	5.6 Design of the quality state model
	5.7 Quality evaluation of the SQuaRE quality model
	5.8 Challenges in realizing Quality DT

	6 Conclusion

