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Abstract

The rawly collected training data often comes with separate noisy labels collected from multiple imperfect
annotators (e.g., via crowdsourcing). A typically way of using these separate labels is to first aggregate
them into one and apply standard training methods. The literature has also studied extensively on effective
aggregation approaches. This paper revisits this choice and aims to provide an answer to the question of
whether one should aggregate separate noisy labels into single ones or use them separately as given.
We theoretically analyze the performance of both approaches under the empirical risk minimization
framework for a number of popular loss functions, including the ones designed specifically for the
problem of learning with noisy labels. Our theorems conclude that label separation is preferred over
label aggregation when the noise rates are high, or the number of labelers/annotations is insufficient.
Extensive empirical results validate our conclusions.
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1. Introduction

Training high-quality deep neural networks for classification tasks typically requires a large
quantity of annotated data. The raw training data often comes with separate noisy labels
collected from multiple imperfect annotators. For example, the popular data collection paradigm
crowdsourcing [1, 2, 3] offers the platform to collect such annotations from the unverified
crowd; medical records are often accompanied by diagnoses from multiple doctors [4, 5]; news
articles can receive multiple checkings (of the article being fake or not) from different experts

(6, 7]. This leads to the situation considered in this paper: learning with multiple separate noisy
labels.
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The most popular approach to learning from the multiple separate labels would be aggregating
the given labels for each instance [8, 9, 10, 11, 12], through an Expectation-Maximization (EM)
inference technique. Each instance will then be provided with one single label and applied with
the standard training procedure.

The primary goal of this paper is to revisit the choice of aggregating separate labels and hope
to provide practitioners with understandings for the following question:

Should the learner aggregate separate noisy labels for one instance into a single
label or not?

Our main contributions can be summarized as follows:

e We provide theoretical insights on how separation methods and aggregation ones result in
different biases (Theorem 3.4, 4.2, 4.6) and variances (Theorem 3.6, 4.3, 4.7) of the output
classifier from training. Our analysis considers both the standard loss functions in use, as
well as popular robust losses that are designed for the problem of learning with noisy labels.

e By comparing the analytical proxy of the worst-case performance bounds, our theoretical
results reveal that separating multiple noisy labels is preferred over label aggregation when
the noise rates are high, or the number of labelers/annotations is insufficient. The results are
consistent for both the basic loss function ¢ and robust designs, including loss correction and
peer loss.

e We carry out extensive experiments using both synthetic and real-world datasets to validate
our theoretical findings.

1.1. Related Works

Label separation vs label aggregation Existing works mainly compare the separation with
aggregation by empirical results. For example, it has been shown that label separation could
be effective in improving model performance and may be potentially more preferable than
aggregated labels through majority voting [13]. When training with the cross-entropy loss,
Sheng et.al [14] observe that label separation reduces the bias and roughness, and outperforms
majority-voting aggregated labels. However, it is unclear whether the results hold when
robust treatments are employed. Similar problems have also been studied in corrupted label
detection with a result leaning towards separation but not proved [15]. Another line of approach
concentrates on the end-to-end training scheme or ensemble methods which take all the separate
noisy labels as the input during the training process [16, 17, 18, 19, 20], and learning from
separate noisy labels directly.

Learning with noisy labels Popular approaches in learning with noisy labels could be
broadly divided into following categories, i.e., (i) Adjusting the loss on noisy labels by: using the
knowledge of noise label transition matrix [21, 22, 23, 24, 25, 26, 27, 28, 29]; re-weighting the
per-sample loss by down-weighting instances with potentially wrong labels [30, 31, 32, 33, 34];
or refurbishing the noisy labels [35, 36, 37]; (ii) Robust loss designs that do not require the
knowledge of noise transition matrix [38, 39, 40, 41, 42, 43, 44, 45]; (iii) Regularization techniques
to prevent deep neural networks from memorizing noisy labels [46, 47, 48, 49, 50, 51]; (iv)
Dynamical sample selection procedure which behaves in a semi-supervised manner and begins
with a clean sample selection procedure, then makes use of the wrongly-labeled samples



(52, 53, 54, 55, 56]. For example, several methods [57, 58, 59] adopt a mentor/peer network to
select small-loss samples as “clean” ones for the student/peer network. See [60, 61] for a more
detailed survey of existing noise-robust techniques.

2. Formulation

Consider an M-class classification task andlet X € X and Y € Y := {1,2,..., M} denote
the input examples and their corresponding labels, respectively. We assume that (X,Y) ~ D,
where D is the joint data distribution. Samples (z,y) are generated according to random
variables (X, Y’). In the clean and ideal scenario, the learner has access to NV training data
points D := {(Zn, Yn) fne|n]- Instead of having access to ground truth labels y,,s, we only have
access to a set of noisy labels {7, ; }ic[x) for n € [N]. For ease of presentation, we adopt the
decorator to denote separate labels and e for aggregated labels specified later. Noisy labels g,,s
are generated according to the random variable Y. We consider the class-dependent label noise
transition [30, 21] where Y is generated according to a transition matrix 7" with its entries
defined as follows:
Ty —]P( =Y =k).

Most of the existing results on learning with noisy labels have considered the setting where
each z,, is paired with only one noisy label 7,,. In practice, we often operate in a setting where
each data point z,, is associated with multiple separate labels drawn from the same noisy label
generation process [62, 63]. We consider this setting and assume that for each z,, there are K
independent noisy labels @, ;, ..., §,, x obtained from K annotators [64].
We are interested in two popular ways to leverage multiple separate noisy labels:
e Keep the separate labels as separate ones and apply standard learning with noisy labels
techniques to each of them.
e Aggregate noisy labels into one label, and then apply standard learning with noisy data

techniques.
We will look into each of the above two settings separately and then answer the question:

“Should the learner aggregate multiple separate noisy labels or not?”
2.1. Label Separation

Denote the column vector Py := [P(Y =1),--- ,P(Y = M)]" as the marginal distribution
of Y. Accordingly, we can define IF’y for Y. Clearly, we have the relation: Py =T - Py, Py =
(T)~! - Py . Denote by p; := P(Y =0]Y = 1), Po = P(Y = 1]Y = 0). The noise transition
matrix T’ has the following form when M = 2:

T_|:1_p0 Po :|
P1 L—=py

For label separation, we define the per-sample loss function as:

e(f(xn)agn,lv : 7ynK Z E ynz



For simplicity, we shorthand ¢(f(xy),,) = £(f(zn),¥p15 - U ) for the loss of label
separation method when there is no confusion.

2.2. Label Aggregation

The other way to leverage multiple separate noisy labels is generating a single label via label
aggregation methods using K noisy ones:

Uy, = Aggregation(¥,, 1, U2 -+ Un K )

where the aggregated noisy labels ¢, s are generated according to the random variable Ye.
Denote the confusion matrix for this single & aggregated noisy label as 7'*. Popular aggregation
methods include majority vote and EM inference, which are covered by our theoretical insights
since our analyses in later sections would be built on the general label aggregation method. For
a better understanding, we introduce the majority vote as an example.

An Example of Majority Vote Given the majority voted label, we could compute the
transition matrix between Y'® and the true label Y using the knowledge of T'. The lemma below
gives the closed form for T® in terms of 7', when adopting majority vote.

Lemma 2.1. Assume K is odd and recall that in the binary classification task, T} ; = IP’(Y/ =
JIY = i), the noise transition matrix of the (majority voting) aggregated noisy labels T); , becomes:

K+1 4

o S K —i i

TP#] = Z (Z )(Tp,q>K (Tp,l—q) ) b, q € {0, 1}
1=0

When K = 3, then T, = P(Y* = 0]Y = 1) = (T10)> + (3)(T1,0)%(T},). Note it still

holds that 7)) , + T)7,_, = 1. For the aggregation method, as illustrated in Figure 1, the x-axis
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Figure 1: Noise rates of the aggregated labels in synthetic noisy CIFAR-10. MV: majority vote. EM:
expectation maximization. 0.2-0.8: Original noise rates before aggregation.

indicates the number of labelers K, and the y-axis denotes the aggregated noise rate given that



the overall noise rate is in [0.2, 0.4, 0.6, 0.8]. When the number of labelers is large (i.e., K < 10)
and the noise rate is small, both majority vote and EM label aggregation methods significantly
reduce the noise rate. Although the expectation-maximization method consumes much more
time when generating the aggregated label, it frequently results in a lower aggregated noise
rate than the majority vote.

3. Bias and Variance Analyses w.r.t. /-loss

In this section, we provide theoretical insights on how label separation and aggregation methods
result in different biases and variances of the classifier prediction when learning with the
standard loss function /.

Suppose the clean training samples {(zn,¥n)}ne[n] are given by variables (X,Y’) such
that (X,Y) ~ D. Recall that instead of having access to a set of clean training samples
D = {(%n,Yn)}ne|n), the learner only observes K noisy labels ,, 1, ..., 9,, x for each zy,
denoted by D := {(@n, U 15> Up 1) fne[n)- For separation methods, the noisy training

samples are obtained through variables (X,Y,), ..., (X, Y, ) where (X, Y;) ~ D fori € [K].
For aggregatlon methods such as majority vote, we assume the data points and aggregated noisy
labels D*® := {(x, yn)}n6 ) are drawn from (X,Y®) ~ D* where Y* is produced through

the majority voting of Yl, ceey Y When we mention "noise rate", we usually refer to the average
noise: P(Y" #Y).

(-risk under the distribution Given the loss ¢, note that ¢(f(x,),¥,,) is denoted as
Cf(@n), Un1sooos U i) = + > ieii] U(f(#n), Uy, ), we define the empirical (-risk for learn-
ing with separated/aggregated labels under noisy labels as Ré 5u(f) =% Zf\il C(f(zi), 9%,

u € {, o} unifies the treatment which is either separation or aggregation e.
By increasing the sample size [NV, we would expect RZ 5u(f) to be close to the following

(-risk under the noisy distribution D*: R, 5u (f) = E x 7u)pe [0(f(X),Y")].

3.1. Bias of a Given Classifier w.r.t. /-Loss

We denote by f* € F the optimal classifier obtained through the clean data distribution
(X,Y) ~ D within the hypothesis space F. We formally define the bias of a given classifier f
as:

Definition 3.1 (Classifier Prediction Bias of {-Loss). Denote by Rep(f) == Eple(f(X),Y)],
Rep(f*) == Epl(f*(X),Y)]. The bias of classifier f writes as: Bias(f) = Ry.p(f) — Rep(f*).

The Bias term quantifies the prediction bias (excess risk) of a given classifier f on the clean
data distribution D w.r.t. the optimal achievable classifier f*, which can be decomposed as [65]

Bias(f) = Rep(f) — wu(f) R, 5.(f) = Rep(f*). (1)

Distribution shift Estimation error

Now we bound the distribution shift and the estimation error in the following two lemmas.



Lemma 3.2 (Distribution shift). Denote by p; := P(Y = i), assume { is upper bounded by { and
lower bounded by {. The distribution shift in Eqn. (1) is upper bounded by

Rep(F) = Ry 5.(F) < A% = (ppo + pipn) - (= 1) . (@)

Lemma 3.3 (Estimation error). Suppose the loss function {( f(x),y) is L-Lipschitz for any feasible
y. Vf € F, with probability at least 1 — 9, the estimation error is upper bounded by

A AU, — 21 1 5 —u,
R, 5.(f) = Rep(f) < A%% = AL - R(F) + (1 —0) - ‘7)7‘51}]\[/) AL
K

K-log(%) [ J—
72(1%(%))2 andng, =1

indicate the richness factor, which characterizes the effect of the number of labelers, and R(F) is
the Rademacher complexity of F.

whereu € {, o} denotes either separation or aggregation methods, 1, =

6= le-1
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Figure 2: The visualization of estimated 7, given varied 4.

Noting that the number of unique instances x; is the same for both treatments, the duplicated
copies of x; are supposed to introduce at least no less effective samples, i.e., the richness factor
satisfies that n§. > 1. Thus, we update 7, := max{7, 1}, and Figure 2 visualizes the estimated
Ny given different number of labelers as well as ¢. It is clear that when the number of labelers is
larger, or 0 is smaller, ;, > 7},. Later we shall show how 7§ influences the bias and variance
of the classifier prediction.

To give a more intuitive comparison of the performance of both mechanisms, we adopt the
worst-case bias upper bound Zz = Zz’l + K]uf from Lemma 3.2 and Lemma 3.3 as a proxy
and derive Theorem 3.4.

Theorem 3.4. Denote by ax := (pypo + p1p1) — (Pgpo + pip1), ¥ = /1og(1/0)/2N. The
separation bias proxy A is smaller than the aggregation bias proxy A;;f if and only if

1

— < )
1- (77[()_

K

N[



Note that ar and 7, are non-decreasing w.r.t. the increase of K, in Section 4.3, we will
explore how the LHS of Eqn. (3) is influenced by K: a short answer is that the LHS of Eqn. (3) is
(generally) monotonically increasing w.r.t. K when K is small, indicating that Eqn. (3) is easier
to be achieved given fixed d, NV and a smaller K than a larger one.

3.2. Variance of a Given Classifier w.r.t. /-Loss

We now move on to explore the variance of a given classifier when learning with ¢-loss, prior
to the discussion, we define the variance of a given classifier as:

Definition 3.5 (Classifier Prediction Variance of /-Loss). The variance of a given classifier f
when learned with separation () or aggregation (e) is defined as:

Var(]) = By gy [0 ) — By gy [LCF(X), 7]

For g(z) = x — 22, we derive the closed form of Var and the corresponding upper bound as
below.

Theorem 3.6. When ny > 21%(1/6), given ¢ is 0-1 loss, we have:

Var(f") = g(R,5.(f")) < g ( W) . (4)

Variance proxy

The variance proxy of Var(f) in Eqn. (4) is smaller than that ofVar(f.).

Theorem 3.6 provides another view to decide on the choices of separation and aggregation
methods, i.e., the proxy of classifier prediction variance. To extend the theoretical conclusions
w.r.t. £ loss to the multi-class setting, we only need to modify the upper bound of the distribution
shift in Eqn. (2), as specified in the following corollary.

Corollary 3.7 (Multi-Class Extension (¢-Loss)). In the M -class classification case, the upper
bound of the distribution shift in Eqn. (2) becomes:

Ré,D(f)—Rg,ﬁu(} <AR = ij (1- J?fj)'(z_g)' (5)

JEM]

4. Bias and Variance Analyses with Robust Treatments

Intuitively, the learning of noisy labels problem could benefit from more robust loss functions
built upon the generic £ loss, i.e., backward correction (surrogate loss) [21, 22], and peer loss
functions [42]. We move on to explore the best way to learn with multiple copies of noisy labels,
when combined with existing robust approaches.



4.1. Backward Loss Correction

When combined with the backward loss correction approach (¢ — ¢._), the empirical ¢ risks

become: Réﬁ,f)u f)=+ Zfil L (f(zi),7;), where the corrected loss in the binary case is
defined as

(A~ prg) - 6(f(2), ") — pye - L(f(2), 1 — 5")

&_(f(l‘), @u> =

L= pg —py
Bias of given classifier w.r.t. . Suppose the loss function ¢(f(x),y) is L-Lipschitz for
any feasible y. Define L := L% - L, where LY := w Denote by Ry D(f) the (-risk

of the classifier f under the clean data distribution D, with f f ~ =argmingcr R[ Bulf)-
Lemma 4.1 gives the upper bound of classifier prediction bias when learning with l, via
separation or aggregation methods.

Lemma 4.1. With probability at least 1 — §, we have:

21log(1/9)

Rep(fe) = Rep(f*) <Ap, :=4L" -R(F)+ LYy (0 —10)- &
77KN

Lemma 4.1 offers the upper bound of the performance gap for the given classifier f w.r.t the
clean distribution D, comparing to the minimum achievable risk. We consider the bound K; -
as a proxy of the bias, and we are interested in the case where training the classifier separately
yields a smaller bias proxy compared to that of the aggregation method, formally A, < Z;% -
For any finite hypothesis class 7 C {f : X — {0, 1}}, and the sample set S = {z1,...,zn},
denote by d the VC-dimension of F, we give conditions when training separately yields a
smaller bias proxy.

Theorem 4.2. Denote by ag :=1— L /L_,v =1/ (1 + % ?Olg(gl(/]g), where d is the

VC-dimension of F. For backward loss correction, the separation bias proxy Ap,  is smaller than
the aggregation bias proxy A;%H if and only if

1
’ _1
1- (77[() 2

We defer our empirical analysis of the monotonicity of the LHS in Eqn. (6) to Section 4.3 as
well, which shares similar monotonicity behavior to learning w.r.t. £.

(677 <. (6)

Variance of given classifiers with Backward Loss Correction Similar to the previous
subsection, we now move on to check how separation and aggregation methods result in
different variance when training with loss correction.

\/m Var( f<_ (w.r.t. the 0-1 loss) satisfies:

Var(}?—) = g(Rg Du <g (L 0" 21(:7%;((]1\[/5)> . (7)

IO‘H

Theorem 4.3. When L? (1))

Variance proxy



L{—

The variance proxy of Var(f. ) in Eqn. (7) is smaller than that of Var(};_) if, /Mg > 1

Moving a bit further, when the noise transition matrix is symmetric for both methods, the
requirement /n} > é“ could be further simplified as: |/n}j > é‘_ = l_poi_zl. For a fixed

a e
K, a more efficient aggregation method decreases pj, which makes it hargizr to satisfy this
condition.
Recall LY := LY - L, the theoretical insights of /. between binary case and the multi-class
setting could be bridged by replacing L with the multi-class constant specified in the following

corollary.

Corollary 4.4 (Multi-Class Extension (¢._-Loss)). Given a diagonal-dominant transition matrix
T", we have

. i

+~—0 — )\min (Tu)’

where Amin (T") denotes the minimal eigenvalue of the matrix T". Particularly, if T} < 0.5,Vi €
[M], we further have

1 2vM
‘o= min{ } ,  where €' := max(1 —Tj).

1 — 2ev’ )\mm(TU) 1€[M)

4.2. Peer Loss Functions

Peer Loss function [42] is a family of loss functions that are shown to be robust to la-
bel noise, without requiring the knowledge of noise rates. Formally, (o (f(z;),y;) =
0(f(x:),7;) — €(f(x}),7?), where the second term checks on mismatched data samples
with (24, 7;), (z},91), (#2,72), which are randomly drawn from the same data distribu-
tion. When combined with the peer loss approach, i.e., { — /4., the two risks become:

Ry 5u(f) =% 20 b (F (i), 5),u € {, o}

Bias of given classifier w.r.t. /¢, Suppose the loss function ¢( f(x), y) is L-Lipschitz for any
L A
feasible y. Let L&, := 1/(1 — pf — p}), L4, == Ly.o - Land fq, = argmingcr R, 5.(f).

Lemma 4.5. With probability at least 1 — §, we have:

21log(4/9)

Rip(fe) — Rep(f*) < Ao, :=8LY -R(F) + L&y - w
Nk

(1420 -0).

To evaluate the performance of a given classifier yielded by the optimization w.r.t. ¢, Lemma
4.5 provides the bias proxy quz% for both treatments. Similarly, we adopt such a proxy to analyze
which treatment is more preferable.

Theorem 4.6. Denote by agg := 1 — L3, /Lo,y = 1+22(?@ 412%2(1(?)’ where d denotes the

VC-dimension of F. For peer loss, the separation bias proxy Ape. is smaller than the aggregation
bias proxy A;%CH if and only if
1

L2/ Le. — ()"

(077¢ < Y- (8)
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Figure 3: The monotonicity of the LHS in Eqn. (3, 6, 8) w.r.t. the increase of K.

Note that the condition in Eqn. (8) shares a similar pattern to that which appeared in the
basic loss £ and /., we will empirically illustrate the monotonicity of its LHS in Section 4.3.

Variance of given classifiers with Peer Loss We now move on to check how separation
and aggregation methods result in different variances when training with peer loss. Similarly,
we can obtain:

Theorem 4.7. When \/nj; > /2849 . (1 4 2(7 — ¢)), Var(}‘i) (w.r.t. the 0-1 loss) satisfies:

Var(FL) = g(R, 5.(F2) < g ( ‘o 12%7%” (1420 _@)) . ©

Variance proxy

The variance proxy of Var(f..) in Eqn. (9) is smaller than that ofVar(]A‘“:H) if /e 2 E‘P .
CS
Theoretical insights of /4, also have the multi-class extensions, we only need to generate
LY, to the multi-class setting along with additional conditions specified as below:

Corollary 4.8 (Multi-Class Extension ({4.-Loss)). Assume {+, is classification-calibrated in
the multi-class setting, and the clean label Y has equal prior P(Y = j) = :,Vj € [M].
For the uniform noise transition matrix [44] such that T}, = p;’,Vj € [M], we have: LY, =

1/(1 - Zie[M] py')-

4.3. Analysis of the Theoretical Conditions

Recall that the established conditions in Theorems 3.4, 4.2, 4.6 are implicitly relevant to the
number of labelers K, and the RHS of Eqns. (3, 6, 8) are constants. We proceed to analyze the

monotonicity of the corresponding LHS (in the form of o - 3 (1 = ) w.r.t. the increase
K—Mg 2
of K, where S = 1 for ¢ and ¢, fx = Lg,/Lq, for {,. Thus, we have: O(LHS) =

O(ak - (Bx — O(%))_l). We visualize this order under different symmetric 7" in Figure 3.
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Figure 4: The performances of Cross-Entropy, Backward Loss Correction, and Peer Loss trained on
synthetic noisy Statlog-6/Optical-10 aggregated labels (we report the better results between majority
vote and EM inference for each K, and noise rate €), and separated labels. X-axis: the value of the
number of labelers v/ K; Y -axis: the best test accuracy achieved.
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Figure 5: The performances of Cross-Entropy, Backward Loss Correction, and Peer Loss trained on
synthetic noisy CIFAR-10 aggregated labels (we report the better results between majority vote, EM
inference for each K, and noise rate ), and separated labels. X -axis: the value of VK where K denotes
the number of labels per training example; Y -axis: the best achieved test accuracy.

It can be observed that when K is small (e.g., K < 5), the LHS parts of these conditions increase
with K, while they may decrease with K if K is sufficiently large. Recall that separation is better
if LHS is less than the constant value 7. Therefore, Figure 3 shows the trends that aggregation
is generally better than separation when K is sufficiently large.

Tightness of the bias proxies In Theorems 3.4, 4.2, 4.6, we view the error bounds
A Ay, K;% as proxies of the worst-case performance of the trained classifier. For the
standard loss function /, it has been proven that [66, 67] under mild conditions of £ and F, the
lower bound of the performance gap between a trained classifier () and the optimal achievable
one (i.e., f*) Ryp(f) — Rep(f*) is of the order O(1/1/N), which is of the same order as that
in Theorem 3.4. Noting the behavior concluded from the worst-case bounds may not always
hold for each individual case, we further use experiments to validate our analyses in the next
section.



Table 1

The performances of CE/BW/PeerLoss trained on 2 UCI datasets (Breast, and German datasets), with
aggregated labels (majority vote, EM inference), and separated labels. We highlight the results with
Green (for the separation method) and Red (for aggregation methods) if the performance gap is larger
than 0.05. (K is the number of labels per training image)

UCI-Breast (symmetric) CE UCI-German (symmetric) CE
€=02 K=3 K=5 K=9 K=15 K=25 K=49[e=02 K=3 K=5 K=9 K=15 K=2 K=49
MV 96.05 96.05 96.49 96.93 97.37 97.37 MV 69.00 71.50 71.50 73.50 73.00 73.00
EM 96.93 96.05 96.49 96.93 97.37 97.37 EM 58.75 63.50 65.75 66.50 65.50 65.50
Sep 96.49 95.18 96.49 96.93 97.81 98.25 Sep 70.00 70.75 66.00 69.75 70.75 69.25
e=04 K=3 K=5 K=9 K=15 K=25 K=49[e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 96.05 96.49 95.18 95.18 96.49 96.93 MV 65.75 62.25 62.75 68.50 71.75 70.50
EM 96.05 92.98 89.47 94.30 96.05 96.93 EM 61.00 60.00 61.50 54.00 62.00 63.25
Sep 92.11 94.30 95.61 96.49 96.93 96.93 Sep 68.25 65.50 65.00 64.50 64.75 69.50
UCI-Breast (symmetric) BW UCI-German (symmetric) BW
e=02 K=3 K=5 K=9 K=15 K=25 K=49[]e=02 K=3 K=5 K=9 K=15 K=25 K=49
MV 95.61 96.49 96.05 96.93 96.93 96.93 MV 72.75 71.50 74.00 75.50 76.50 76.50
EM 95.61 96.49 96.05 96.93 96.93 96.93 EM 62.75 61.50 59.25 64.50 62.50 62.50
Sep 95.18 93.42 96.49 96.05 97.37 98.25 Sep 70.50 70.50 73.75 68.25 70.00 72.75
e=04 K=3 K=5 K=9 K=15 K=25 K=49[]e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 89.91 96.05 94.74 94.30 96.05 96.49 MV 65.25 69.50 67.50 69.50 70.50 71.75
EM 81.14 94.30 92.11 94.74 92.54 96.49 EM 57.75 60.25 55.25 53.50 54.00 62.25
Sep 91.67 93.42 94.30 89.47 92.54 97.37 Sep 60.25 63.50 63.00 64.25 69.00 64.75
UCI-Breast (symmetric) PeerLoss UCI-German (symmetric) PeerLoss

e=02 K=3 K=5 K=9 K=15 K=25 K=49 He=0.2 K=3 K=5 K=9 K=15 K=20 K=49

MV 96.05 96.49 96.49 96.93 96.93 96.93 MV 72.75 71.75 73.00 73.00 72.50 72.50
EM 9605 9649 9649 9693 9693 9693 EM 6225 6450 6375 6425 6275 6275
Sep 94.74 94.30 96.93 96.93 96.93 97.81 Sep 70.25 68.00 70.50 70.00 67.00 73.50
e=04 K=3 K=5 K=9 K=15 K=25 K=49[e=04 K=3 K=5 K=9 K=15 K=2 K=49
MV 92.11 95.61 95.18 92.54 96.49 96.05 MV 69.50 66.25 69.50 68.75 69.00 70.00
EM 92.11 92.11 86.40 93.86 95.61 96.93 EM 62.50 61.25 64.25 57.75 59.75 65.00
Sep 92.11 94.30 95.18 95.18 95.61 96.05 Sep 64.00 61.25 66.50 68.00 69.25 69.00

5. Experimental Results

In this section, we empirically compare the performance of different treatments on the multiple
noisy labels when learning with robust loss functions (CE loss, forward loss correction, and
peer loss). We consider several treatments including label aggregation methods (majority vote
and EM inference) and the label separation method. Assuming that multiple noisy labels have
different weights, EM inference can be used to solve the problem under this assumption by
treating the aggregated labels as hidden variables [68, 69, 8, 70]. In the E-step, the probabilities
of the aggregated labels are estimated using the weighted aggregation approach based on the
fixed weights of multiple noisy labels. In the M-step, EM inference method re-estimates the
weights of multiple noisy labels based on the current aggregated labels. This iteration continues
until all aggregated labels remain unchanged. As for label separation, we adopted the mini-batch

separation method, i.e., each training sample x,, is assigned with K noisy labels in each batch.

5.1. Experiment on Synthetic Noisy Datasets

Experimental results on synthetic noisy UCI datasets [71] We adopt six UCI datasets
to empirically compare the performances of label separation and aggregation methods when



Table 2
Empirical verification of Theorem 3.4 on Breast & German UCI datasets.

Dataset | pS Do N (1-9,SK)
Breast | 0.2 | 0.3726 | 569 | (0.62,{K > 49})
Breast | 0.4 | 0.3726 | 569 | (0.62,{K > 49})

German | 0.2 0.3 1000 | (0.98,{K > 15})

German | 04 0.3 1000 | (0.98,{K > 23})

learning with CE loss, backward correction [21, 22], and Peer Loss [42]. The noisy annotations
given by multiple annotators are simulated by symmetric label noise, which assumes T; ; = ;=
for j # i for each annotator, where € quantifies the overall noise rate of the generated noisy
labels. In Figure 4, we adopt two UCI datasets (StatLog: (M = 6); Optical: (M = 10)) for
illustration. From the results in Figure 4, it is quite clear that: the label separation method
outperforms both aggregation methods (majority-vote and EM inference) consistently, and is
considered to be more beneficial on such small scale datasets. Results on additional datasets and
more details are deferred to the Appendix.

Experimental results on synthetic noisy CIFAR-10 dataset [72] On CIFAR-10 dataset,
we consider two types of simulation for the separate noisy labels: symmetric label noise model
and instance-dependent label noise [53, 24], where ¢ is the average noise rate and different
labelers follow different instance-dependent noise transition matrices. For a fair comparison, we
adopt the ResNet-34 model [73], the same training procedure and batch-size for all considered
treatments on the separate noisy labels.

Figure 5 shares the following insights regarding the preference of the treatments: in the low
noise regime or when K is large, aggregating separate noisy labels significantly reduces the
noise rates and aggregation methods tend out to have a better performance; while in the high
noise regime or when K is small, the performances of separation methods tend out to be more
promising. With the increasing of K or €, we can observe a preference transition from label
separation to label aggregation methods.

5.2. Empirical Verification of the Theoretical Bounds

To verify the comparisons of bias proxies (i.e., Theorem 3.4) through an empirical perspective,
we adopt two binary classification UCI datasets for demonstration: Breast and German datasets,
as shown in Table 1. Clearly, on these two binary classification tasks, label aggregation methods
tend to outperform label separation, and we attribute this phenomenon to the fact that the
“denoising effect of label aggregation is more significant in the binary case”.

For Theorem 3.4 (CE loss), the condition requires o/ (1 — (77%)_%) , where a = (pgpo +

pip1) — (pdpo + pip1), v = \/1og(1/0)/2N. For two binary UCI datasets (Breast & German),
the information could be summarized in Table 2, where the column (1 — J, Sk ) means: when
the number of annotators belongs to the set S, the label separation method is likely to under-
perform label aggregation (i.e., majority vote) with probability at least 1 — §. For example, in
the last row of Table 2, when training on UCI German dataset with CE loss under noise rate



Table 3
Experimental results on CIFAR-10N and CIFAR-10H dataset with K = 3. We highlight the results with

Green (for separation method) and Red (for aggregation methods) if the performance gap is large than
0.05.

CIFAR-10N (e~ 0.18) | CE BW  PL

Majority-Vote 89.52 89.23 89.84
EM-Inference 89.19 88.88 88.92
Separation 89.77 89.20 89.97
CIFAR-10H (e~ 0.09) | CE BW PL
Majority-Vote 80.86 82.72 82.11
EM-Inference 80.81 8243 81.73
Separation 76.75 79.07 78.08

0.4 (the noise rate of separate noisy labels), Theorem 3.4 reveals that with probability at least
0.98, label aggregation (with majority vote) is better than label separation when K > 23, which
aligns well with our empirical observations (label separation is better only when K < 15).

5.3. Experiments on Realistic Noisy Datasets

Note that in real-world scenarios, the label-noise pattern may differ due to the expertise of each
human annotator. We further compare the different treatments on two realistic noisy datasets:
CIFAR-10N [74], and CIFAR-10H [75]. CIFAR-10N provides each CIFAR-10 train image with 3
independent human annotations, while CIFAR-10H gives ~ 50 annotations for each CIFAR-10
test image.

In Table 3, we repeat the reproduction of three robust loss functions with three different
treatments on the separate noisy labels. We report the best-achieved test accuracy for Cross-
Entropy/Backward Correction/Peer Loss methods when learning with label aggregation methods
(majority-vote and EM inference) and the separation method (soft-label). We observe that the
separation method tends to have a better performance than aggregation ones. This may be
attributed to the relatively high noise rate (¢ ~ 0.18) in CIFAR-N and the insufficient amount
of labelers (K = 3). Note that since the noise level in CIFAR-10H is low (¢ &~ 0.07 wrong
labels), label aggregation methods can infer higher quality labels, and thus, result in a better
performance than separation methods (Red colored cells in Table 3 and 4).

5.4. Hypothesis Testing

We adopt the paired t-test to show which treatment on the separate noisy labels is better, under
certain conditions. In Table 5, we report the statistic and p-value given by the hypothesis testing
results. The column “Methods” indicate the two methods we want to compare (A & B). Positive
statistics means that A is better than B in the metric of test accuracy. Given a specific setting,
denote by Accpethod as the list of test accuracy that belongs to this setting (i.e., CIFAR-10N,
K = 3), including CE, BW, PL loss functions, the basic hypothesis could be summarized as
below:



Table 4
Experimental results on CIFAR10-H with K > 5. We highlight the results with Green (for separation
method) and Red (for aggregation methods) if the performance gap is large than 0.05.

CE | K=5[K=9]K=1 | K=25 | K=49
Majority-Vote | 80.69 80.73 81.37 81.79 81.66
EM-Inference | 80.97 80.96 81.24 81.01 81.68

Separation 79.65 80.91 81.07 80.78 80.81

BW K=5|K=9|K=15 | K=25 | K=49
Majority-Vote | 82.51 82.75 83.27 83.59 83.68
EM-Inference | 82.30 82.68 82.74 82.89 83.08

Separation 82.14 82.48 81.92 81.72 81.69

PL K=5|K=9 | K=15| K=25| K=49
Majority-Vote | 81.84 81.85 82.39 82.98 82.83
EM-Inference | 81.89 82.30 82.53 82.86 82.73

Separation 80.25 81.89 81.00 80.71 80.89

« Null hypothesis: there exists zero mean difference between (1) Accyy and Accgy; or (2)
Accpmy and Accsep; or (3) Accgy and Accsep;

+ Alternative hypothesis: there exists non-zero mean difference between (1) Accyy and
Accgy; or (2) Aceyry and Accsep; or (3) Accey and Accsep.

To clarify, the three cases in the above hypothesis are tested independently. For test accuracy
comparisons of CIFAR-10N in Table 3, the setting of the hypothesis test is K = 3 and the label
noise rate is relatively high (18%). All p-values are larger than 0.05, indicating that we should
reject the null hypothesis, and we can conclude that the performance of these three methods on
CIFAR-10N (high noise, small K) satisfies: EM<MV<Sep.

For CIFAR-10H in Table 3 and 4, all the label noise rate is relatively low. We consider two
scenarios (K < 15: the number of annotators is small; K > 15: the number of annotators is
large). p-values among MV and EM are always large, which means that the denoising effect of
the advanced label aggregation method (EM) is negligible under CIFAR-10H dataset. However,
p-values of remaining settings are larger than 0.05, indicating that we should reject the null
hypothesis, and we can conclude that the performance of these 3 methods on CIFAR-10H (low
noise, small/large K) satisfies: EM/MV > Sep.

6. Conclusions

When learning with separate noisy labels, we explore the answer to the question “whether one
should aggregate separate noisy labels into single ones or use them separately as given”. In the
empirical risk minimization framework, we theoretically show that label separation could be
more beneficial than label aggregation when the noise rates are high or the number of labelers is
insufficient. These insights hold for a number of popular loss functions including several robust
treatments. Empirical results on synthetic and real-world datasets validate our conclusion.



Table 5
Hypothesis testing results of the comparisons between label aggregation methods and the label separa-
tion method on realistic noisy datasets.

Setting Methods | Statistic p-value
CIFAR-10N (K = 3, high noise) | MV & EM 2.650 0.057
CIFAR-10N (K = 3, high noise) | MV & Sep | -0.401 0.708
CIFAR-10N (K = 3, high noise) | EM & Sep | -2.596 0.060
CIFAR-10H (K < 15, low noise) | MV & EM -0.003 0.998
CIFAR-10H (K < 15, low noise) | MV & Sep 2.336 0.033
CIFAR-10H (K < 15, low noise) | EM & Sep 2.390 0.030
CIFAR-10H (K > 15, low noise) | MV & EM 0.805 0.433
CIFAR-10H (K > 15, low noise) | MV & Sep 4.426 0.000
CIFAR-10H (K > 15, low noise) | EM & Sep 3.727 0.002
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Appendices

A. Full Proofs

In this section, we briefly introduce all omitted proofs in the main paper.
We firstly give the proof of Lemma 4.1 because it is beneficial for the proofs in Section 3.

A.1. Proof of Lemma 4.1

Proof. To apply Hoeffding’s inequality on the dataset of the separation method, we divide the
noisy train samples { (25, 9,, 1) tne[n] into K groups, for k € [K], ie., {(n, Up1) nenps s
{(Zn, Uy, 1) fne ). Note within each group, e.g., group {(zn, ¥, 1) }ne[ny, all the N training
samples are i.i.d. Additionally, training samples between any two different groups are also i.i.d.
given feature set {z,, },,c[n]. Thus, with one group { (=, ¥, 1) fne[n], W-p- 1 — do, we have

A log(1/4
R o (1) — Ra_(1)] < (T2 = 1) - /2800 g
2N
Note that:
e R N (Ll R F Y
() L—pg—pi\ —p1 L1—=pp bel
we have:
— (L+lpo — p1l)
I_-1_:=L_,=-—o— Al
— T 0 1— Po — P

Applying the above technique on the other groups and by the union bound, we know that
w.p. at least 1 — K dy, Vk € [K],

RIH|Group—k(f) € f) + L(—O ’

o () — Ly 1 /1080/%) 10g(1/50)]‘

Each RL_ lGroup-k (), k € [K] can be seen as a random variable within range:

log(1/do)

R1H<f)_L f)‘i‘LHo'

10%(1/50)] |

The randomness is from noisy labels g, ;.. Recall that the samples between different groups
are ii.d. given {Zp },c[n]. Then the above K random variables are i.i.d. when the feature set is
fixed. By Hoeffding’s inequality, w.p. at least 1 — Ky — d1, Vf, we have

Ra (- R (D] <202 \/10%(50) ' \/bg;éal) I, \/logu/ax Log(1/%)




For 6g = 61 = KLH, with the Rademacher bound on the maximal deviation between risks
and empirical ones, for f* € F and the separation method, with probability at least 1 — ¢, we
have:

) . K+1 1
max R, 5(f) = By 5(f)| <2000 F) 4 Ly “‘”“g( 5 > NE'
. . e log(1/4)
o[ Bypu(f) = By u()] S 200 (0 )+ (B — £ ) [ 250
_ log(1/6
IR (0 F) Ly (T 1)) 2E0L)

where we define ¢, £ as the upper and lower bound of loss function / respectively, and:

Bai g, ooy o6 | SUP KE § il (f(7:), 95 )

%(g(_of) =
fe}—N =1 j=1

K
1
< E ;Exi,@@j, Sup — N ZQ&— 371 )] >

fE]-"

L] 1 ~0®
m (EF o ]:) = ]Exq;,@',ei Sup Nezg%(f(xl)a y )] .
feFr
Note that we assume the noisy labels given by the K labelers follow the same noise transition
matrix, if £ is L—Lipshitz, then for separation and aggregation methods, ¢, is L} Lipshitz

for u € {, o} respectively, where L (l—f'p;) —p/; DL <1 p2L . By the Lipshitz composition
1

property of Rademacher averages, we have R"({,_ o F) < LY - R(F). Thus, we have:

- _ _ (1+’P0_01|)‘@—@_ K+1 \/T
r}le%%(‘RL,D(f) R, ()] <2L R(F) + 1= py— 1y log(—5—) "\ vx~
(10)

(L+1p5 —p3) - (€—£)  [log(1/9)
L= pp— N

max |, pu(f) = Ry pa(/)] < 2L RK(F) +

Assume f* < mingc 7 Ry p(f), for separation methods, we further have:

Rip(fo) = Ren(f*) =R, 5(fo)— R, (/")
=R, 5(fo)- Rgﬁf)(fe) +R, 5(f)—R,_ 5(f)+ Rgﬁf)(ﬂ_) - R, (/)
<0+ 2max|R, 5(f) = Ry 5()]

K—I—l) 1
) NK’

<AL, R(F)+2L,_ - (€ —0) -log(



Similarly, for aggregation methods, we have:
Rip(JL) = Ren(f*) = By 5.(F) = By 5.(f")

= Ry 5 0) = Ry 5o P+ By el = R e (F) + B 5ul(FO) = Ry (1)
<0+ 2maxlR,_ ()~ R (1)

<AL R(F) 2 - (-0 [,

1
K'log(5) > and N}, = 1, we then have:

Note that 77K = W

au y u LY - (0—Y) 21og(1/6)
Rep(f) — Rep(f*) <ALLR(F) + i : N

[ ]
Defined as: ZI}LN—

A.2. Proof of Theorem 4.2

Proof. The proof is straightforward if we proceed with the proof of Lemma 4.1 with the below

discussions. With the knowledge of noise rates for both methods, remember that L} =
(A+lpg—pt DL .
T—pi—pr > We have:

ZR<— < Z;ﬁ—

L. - K+1 1 . L log(1/3)
= 2L, R(F)+ A (¢ —2) - log( 5 ) NE < 2L R(F) + 7 (-1 ON
L_—-L% . log( /9) K + 1 1
— 2 7£_€ L-R(F) < L log( )

~L_
J P 1) [log(l

= 2. =5 L RF)<|LL- — Og /5
-1 Nk

ON L. — L
L-R(F)< Ly —L_
log(1/5) 7—¢ ) \/

For any finite concept class F C {f : X — {0, 1}}, and the sample set S = {z1,...,xn}, the

Rademacher complexity is upper bounded by 4/ %g(]\/) where d is the VC dimension of F.

To achieve Ay, < Z;% ., we simply need to find the condition of K (or 7;) that satisfies the
below in-equation:

o ON L. — L 2dlog(N) 1
A A 2 < S Ly —2 L} — L, - \]|—
e fne = A ¢ CVTN T ( TR nx>




Lo-ry  fagvy (. [1
= Y e < (L% b nK>
. 4 dlog(N) .
= (L_—-1L%) Z—g L log(l/é) < <L<_
denoted as a,which is a function ofN 4,d,L
L1t ac< ( R )
SRS ( o )
1 1 1
— o t+1< — e L<_ L:_
1 L
— —<(1-m?) 5
g 199¢ ! 1 §7>
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where we denote by g :==1—- L% /L_,v=1/(1+ 7 ﬂ%l(/a)))
A.3. Proof of Theorem 4.3
Proof.
Var(F) = By e[0T, T) = B gy g [T (X), )]
g | [0 0.7+ (Bl 0. 7] — 2607 (), V9. [ ()
=B [0, 7]+ B L), 7]~ B 20 (X), 7B, (T

A special case is the 0-1 loss, i.e., £(-) =

Var(f )

=E
RZ

5 [(TL00 7] = [Bau T x0, 7]
B[00 7]~ (R, 5.7

’Du

2

1(-), we then have:

~u ~ 12 At
B [(FEXLYY] = (R, 5 (FD))?

(P07 = (R, 5 (FO)?
(F2) = (B, 5 (FON2,




where Reﬁu(j”i) € [0,1] and g(a) = a — a* is monotonically increasing when a < 3. Note
LU v log(1/0
that: R, 5, (fL) < Lty ([ 1) - % when

VI

)
@, log(1/6) < % — L o(ni) 2 < \/Q(g_é)i\iog(l/fs)’

2nE N

we have: Var(f, ) < g (L?—'g*@ : 21(;}?{(%5))_

To achieve: ¢ (L“(LZ_@ 3/ 21?5{(]1\{6)) <y (L.“g_@ . 21?78;;((11\{6)>, we simply need:

- 2log(1/0 . - 21og(1/0)
L o, -(0—20)- %SI«—O'M—@' gi/ /7>L°'
nK K

A.4. Proof for Corollary 4.4

For a general matrix U = (T%)~!, we firstly note

1% —1% = max U% — min U}
T == e Y igepn Y
<| max Uj|+| min Uil
i,J€[M] i,jE[M)]
<| max Z Uis| + | min Z Uisl-
ML e, >0 e .
Ui JE[M],U;;<0

Recall T%1 = 1 = 1 = (T%)~'1. We know the above maximum and minimum take the same

i. Then
TW-l<imax >, Ujl+imn >, U
JE[M],Us;>0 JE[M],U;;<0

=[1U"[loo
(a) 1
< — m m

e M) (irzz Z];éz CTZ])

1

<— U= l—Tu * < 0.5.

ST oa © fél[%( i), e

Now we prove the inequality (a) [76]. Let v satisfy

IT™) oo = T ™ Wlloo/ Il llso

and let o = (T*%)~'v. Then
IT*) ™ oo = Nlelloo/ ¥ llo



, we choose i such that p; = ||4]|co. Then

u:u'l - Z ],u]a

J#i

which further gives

T itlloo < fvil + > 1T8s] < il + llelloo > 1T
i i#i
Therefore,
vl

litlloo < g~

and

1
T —1 — -
T e uuuoo/uuuoo_Tu_Z# ;

On the other hand, denoting by ||U||max := max

Z]E ija

VM

1 — 1L <[[U"loo £ VM Anax(U) = N (T9)”

where Apin (T") denotes the minimal eigenvalue of the matrix 7. Therefore,

1 VM )
1—2¢" " Apin(T%)

Tmax

TE — 1 = L% g = min

where " := max;cp (1 — T3), €" < 0.5, and Ayin(T") denotes the minimal eigenvalue of
the matrix 7.

A.5. Proof of Lemma 3.2

Proof. Note that for f = }u, we have:

Rep(f") - 5}2}1 Rep(f) = Rep(f') — Rep(f7)

=Rop(f") = Ry (F)+ Ry (') — min R, 5. (f) +min B, 5. (F) = Rep(F)- (1)

1 1
Estimation error

Distribution shift

The term of distribution shift can be upper bounded by:

u

Rep(J") = Ry pu (")
—E(xy)~D [af”(X), V)] =By gy [0 (X), 7))

< max [Eox o [0 V)] = By gy |00, 7]

= max ]E<X,yzl)w [0(F(X), 1)) + Egx,y—opp [(f(X), 0)



~ B gyt [LFOO T =By gy (50, 7] |

=1max ’E()@Y:UN’D w(f(X); 1 ] + IE(X,Y:U)ND [g(f(X)v 0)]

fer
—E

- E(X,?iuzl)Nﬁuyzo [E(f(X ) 1)] - E(X,f/iu:o)wﬁuyzo [f(f(X), O)] ‘

= max |[E(xy—1y [ (X), 1] + Egxy—opp [((/(X), 0)]

feF

)

(X’Zuzl)mﬁu7Y:1 [g(f(X)v 1)] - E(X,f/i’u:o)Nﬁu,Y:I [K(f(X), O)]
)
)

— By y—iyen [P = 1Y = 1) - 6(F(X),1)] = B ymiyep [P = 0Y = 1) £((X),0)]

— Ex,y=0~p [P(fﬁu = 1Y =0) - £(f(X), 1)} —Ex,y=0~p [P(?@u =0lY =0)- é(f(X),O)} ‘

Combine similar terms, we then have:

=max
fer

E(xy=tn [PV = 0)Y = 1)+ £(f(X), )| + E(xy—oop [P = 1Y = 0) - £(f(X),0)]

~E(xy—nep [P = 0]Y = 1) 6(f(X),0)] = Egxy—gpop [P = 11V = 0) - €(£(X),1)] |

=max
fer

<max
feF

=(p1p}

Ex,y=1)~p [p1 - (L(f(X),1) = L(f(X),0))] + E(x,y=0)~p [p6 - (L(f(X),0) — £(f(X),1))] ‘
Ex,y=n~p [p1 (0 = 0)] +Exy=o)p [05 - (£ —1)] ‘

+popg) - (€= 1)

Thus, we have:

A6. P

Rip(F) — Ry (F) < B3 = (phipo + pipr) - (1 1) .

roof of Lemma 3.3

Proof. For the term Estimation error, we have:

R, 5.(f) = Rep(f7)

gpu(} ) — ?g%Rg pu(f) + ?g}le pu(f) - RE,D(f*)

L 1
Estimation error

< Rypulf) —min Ry 5.(f ) D)+ Imin R, 5.(f) = Reo(f°)]
! Error 1 I Error 2 I

The upper bound of Error 1 could be derived directly from the proof of Lemma 4.1: since
the loss function makes no use of loss correction, the L-Lipschitz constant does not have to
multiply with the constant and LY — L. Besides, the constant for the variance term (square



term) reduces to (¢ — £). Thus, we have:

21log(1/9)

, VfeF.
ngN

Error 1 < 4LR(F) + (£ — ) -
For the term Error 2, the upper bound could be derived with the same procedure as adopted in
the proof of Lemma 3.2. Thus, we obtain:

Ry 5. (1) = Rup(f*) < ALR(F) + (T — ) - 21?7%(]1\7/5) N
K

[ ]
Defined as: Z}%’Q

A.7. Proof of Theorem 3.4

Proof. To achieve a smaller upper bound for the separation method, mathematically, we want:

ALR(F) + (T — 1) - ﬂ‘i((;v/‘”JrQ(popﬁplpl)_@_g)
<ALF) + (T 1) [ZEEE 2t + i) - (T-0).

which is equivalent to proving:

log2(jlv/5) ()2 = 1) - (L= £) < [(ppo + 1) — (popo + prp1)] - (€ =€)
1og2(]1V/6) (1= (nx)"7) > [(popo + p1p1) = (popo + pip1)] . (12)

De-noising effect of aggregation >0

Eqn. (12) then requires: logz(jlv/(s) > (pop()+p1pl)_(p_5§0+pipl)
(I=(ng)™2)

< v, where ag := (pgpo + p1p1) — (popo + pIp1), v = /log(1/5)/2N.

, which is mentioned as o -

1
1
2

1=(ng)™
O
A.8. Proof of Theorem 3.6
Proof. For u € {, e}, we have:
Var(1") =B gy [0 (X, 7 = E x5 [f(f”“(X),f”“)]r
“Ep. | [0 (0. 7]+ [Bp e 00, 7] — 207 (X), VB [ (X), 7]
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A special case is the 0-1 loss, i.e., £(-) = 1(-), we then have:

~U ~U

A =~ 2
var(f") =Eg. [0} (X), V)] = (B, 5.(7"))?

~U

=B [0 (X), 7] = (B, 5.(]"))?

~U ~U

=Ry 5.(F") = (B, 5.(0")? = 9 (B, 5.(7"))

where R, 5, () € [0,1] and g(a) = a — a? is monotonically increasing when a < 1. Thus,
when

o _ | 5
Ryp.(f)< (£=0) - (;%7(;5\])

reduces to 1

1 2log(1/6)
< — — U o~ —-
=35 Nk = N )

we could derive Var(}u) < g( 212%{(11\{5) ).

A.9. Proof of Corollary 3.7

Proof. In the multi-class extension, the only difference is the upper bound of the Distribution
Shift term in Eqn. (11), which now becomes:

R@D(}u) - R&ﬁu (} )
=B mn [0 (). 1)] = By [6F(0). 7]

U

<max [Exy)~p [L(f(X), Y)] = E x 5u)upu [E(f(X),ff“)} |

((f(X),7)

] - {Z E(x fu)ey—s [af(X),?“)}} |

— e {Z By
Jje[M]

JEM]

= max Z Exy=j~p [((f(X),])]
Lje[M]

- lZ > Eixy—pep [PV = kY j)-e<f<x>,k>}] ‘

ke[M] je[M]

= o % Exy—en [PV # G1Y = j) - 0(£(X), )]
L Jj

- { > > Exy—jep [P(f’“ =klY =

ke[M]k#j je[M]



=max | > Epey—jp [P0 A GV = j) - ((f(X)) = > IP(W:k\Y:j)-e(f(X),k)”
JE[M] L ke[M],k#j

< max Z E(xy—jp |P" # |V = j) - (5—5)] ‘

]:
Je JEM] L

(Assumed uniform prior)

=Y PY=j)-(1-T4) (C-0).

JEM]

A.10. Proof of Lemma 4.5

Proof. The proof of Lemma 4.5 builds on Theorem 7 in [42]: The performance bound for
aggregation methods is the special case of Theorem 7 in [42] (adopting o = 1 defined in [42]).
As for that of separation methods, the incurred difference lies in the appearance of the weight
of sample complexity 7. Thus, we have:

~u 2log(4/9) -
Rep(Je) = Rip(f*) < ———— [ 8LR(F) + | L (14 2(0 — £
p(fq.) p(f7) [ (F) N (1+2(£-0)
= Rip(fs) = Rep(f) < B,
where A, := 8L R(F) + LY, 21f7g<4/ 0 (142 - 0)).
O
A.11. Proof of Theorem 4.6
4, /"B (142(1-0)) o -
Proof. Denote by K}f{% = ls_ng(_j:))% 2 f e , in order to achieve Ap,, < A;—i%,

we require Ap. < Z;%Qﬁ, which is equivalent to:

log(4/6 -
SLR(F) 4 AR (1420 - 5))< SLR(F) Jf\/%(lﬁ(ﬁ—@)

L= po—p 1= py—py 1—p§— ot 1—p§—nt ’

which is further equivalent to:
log(4/5 - log(4/3) -
SIRF)  sinr) W (e20-0) 4B (120 0)
L=—po—p 1=p5—nt 1—p§—nt 1= py—p '

Note that both 1 — py — p; and 1 — p§ — p{ are positive, the above requirement then reduces to:

(o + 1) — (48 + PDISIR(F) < [(1 — o= )= (1= = i)y [ o | 4y Y (1420 1)




e Mete) - GEHRSIRG) e \/g |

4/ BEL0) (1 1 97 - 0))

Note that for any finite concept class F C {f : X — {0,1}}, and the sample set S =

{z1, ...,z N}, the Rademacher complexity is upper bounded by %g(l\f) where d is the VC
dimension of F, a more strict condition to get becomes:

L _(=py=p) [(po + p1) — (p + p1)]8Ly ) 2200

M (== g g pp) /5D (1420 - p))

Denote by ag =1— L;_}/Lq_), ¥ = 1+22([Z/_£) ido%cggéif)) . The above condition is satisfied if

and only if
1

L2/ Le — ()

K <.

A.12. Proof of Theorem 4.7
Proof. Similar to the proof of Theorem 3.6, for u € {, o}, we have:
AU ~U Su 2 U
Var(f1.) = Ep. [0(J0.(0, 7] = (B, 5. (F1))2
A special case is the 0-1 loss, i.e., £(-) = 1(-), we then have:
T A~ S 2 A~
Var(FL) =Eg, (LX) 7" = (R, 5. (F1)?
—Eg. [(J(X), )] = (R, 5.(FL))?
=R, 5. (J2) = (B, 5.(F5)) = 9 (R, (1)

where Rﬂﬁu(ﬁ;) € [0,1] and g(a) = a — a? is monotonically increasing when a < 3. Note
that:
~u 1 log(4/9)

~ 14+2(6—¢
when
1 log(4/6) . 1 2log(4/0) 14 2(€ — ¢)
1+200-0)) < = <— N > ” o
L—pg =t 2#N( (t-0) 2 K N  1-—p¢—py

we have: Var(ff_) < g( l%i(}fzg) ijﬁgjﬁ). To achieve: Var(f,,) < Var(f;), we simply

need:

bgM®1+2@—@<i log(4/6) 1+ 2(¢ — £)

L
— . ° o<:'>\/77 Z TO'
2N 1=py—p g N 1 —p5—rt K= Le,



A.13. Proof of Corollary 4.8

Proof. Regarding the multi-class extension of Lemma 4.5, the only different thing lies in the
constant: L¢,,. The following Lemma A.1 helps us find out the multi-class form of Lg .

Lemma A.1. Assume the clean label Y has equal prior P(Y = j) = . ,Vj € [M]. For the
uniform noise transition matrix [44] such that T}, = pi',Vj € [M], the expected (s, in the
multi-class setting is invariant to label noise up to an affine transformation:

E x puyopulle (FX), Y] = (1= > ol | Eplte-(f(X),Y)). (13)

JjE[M]

Proof of Lemma A.1  Recall that D and D refer to the joint distribution over (X,Y)and
(X,Y™), respectively. We further denote the marginal distributions of X, Y, and Y by D,
Dy, and Dy, respectively. Let X}, ~ Dx, Y,* ~ Dy, be the random variables corresponding
to the peer samples. The peer loss function is defined as

o (f (@), Un) = L(f(@n), Un) — £(f (@pn); Up.n), (14)

where (7, J;,) is a normal training sample pair, z, , and 7, ,, are corresponding peer samples.
Taking expectation for (14) yields

Eg. [be- (f(X), Y*)] = B, [0(f(X),Y")] - Eg_, |Epy[((F(X,). V01 (1)
The first term in (15) is

Ex.[6(f(X), 37“)]
Z Z ]ED\Y z[é(f(X)7j)]

JE[M] ic[M)]
= Z 75 -P(Y = j) - Epjy—;[(f(X), )] + Z : =1) ']ED|Y—i[€(f(X)aj)}]
JjE€[M] i€[M],i#]

JE[M] i#j,i€[M] i€[M],i#j

Accordingly, noting X, and 171,“ are independent, the second term in (15) is

Es, . [EDX [af(Xp),?:)]}

jE[M]
jE[M]ie[M]

= > |1 B =0) En QO+ D T B(Y, =) - Eny [((£(X), )]
e ie[M],i#j

=> l(l > Tﬁ:)'P(Yj)'EDY—j[E(f(X),j)]JF > T;;~IP<Yz‘)~ED|y_iw(f(X)7j)]]-



-y [(1 3 T;;).Pmj>~EDXw<f<X>,j>1+ 3 T;;-'MYPz‘)ﬂpxwf(X),j)]].

JEIM] i#£j,1€[M] i€[M),i#]

In this case, we have p}' = Ti,Vj € [M], j # i. The first term becomes

g [6(f(X),Y")]

i#j,1€[M] i€[M],i#j

BN p?)'P(Y—')-]Epy—j[ﬁ(f(X)J)H > p?-P(Y—i)'ED|Y—i[€(f(X),J')}]

The second term becomes

Eo, [L0£(X), )]

i#j,i€[M] i€[M],i#j

-y (1 ) p?)~P(Yp—j)-1EDX[€(f(X),j)]+ ) pm(Yp—z‘)-EDX[aﬂX)JM]

= (1— > p?) P(Y, = ) - Epy [L(f(X), )]+ > pf - P(Y, =) -EDX[E(f(X),j)]]
] €[ M)

= (1— > p?) ‘Ep, [Epy [0(f(X,). o)1+ D pf - Eny [6(f(X).5)].
]

JjE[M

Comparing the above two terms we have:

Bl (f(X), V)] = | 1= 3 ol | Eplte (F(X), V). (16)
i€[M]
1
1=pg—rt
the corresponding proof of the binary task.

Thus, substituting L, := by =y 1[ T the proof of Corollary 4.8 is finished if we repeat
i€[M i

O

B. Additional Results and Details

B.1. Experiment Details on UCI Datasets

Datasets In this paper, we conducted experiments on two binary (Breast and German) and
two multi-class (StatLog and Optical) UCI classification datasets. As for the splitting of training
and testing, the original settings are used when training and testing files are provided. The
remaining datasets only give one data file. We adopt 50/50 splitting for the testing results’



statistical significance as more data is distributed to testing dataset. More specifically, the
numbers of (training, testing) samples in Breast, German, StatLog, and Optical datasets are (285,
284), (500, 500), (4435, 2000), and (3823, 1797).

Generating the noisy labels on UCI datasets For each UCI dataset adopted in this paper, the
label of each sample in the training dataset will be flipped to the other classes with the probability
€ (noise rate). For the multi-class classification datasets, the specific label which will be flipped
is randomly selected with equal probabilities. For binary and multi-class classification datasets,
(0.1, 0.2, 0.3, 0.4) and (0.2, 0.4, 0.6, 0.8) are used as different lists of noise rates respectively.

Implementation details We implemented a simple two-layer ReLU Multi-Layer Perceptron
(MLP) for the classification task on these four UCI datasets. The Adam optimizer is used with a
learning rate of 0.001 and the batch size is 128.

B.2. Detailed Results on UCI Datasets

In Table 6, we highlight the results with Green (for separation method) and Red (for aggregation
methods) if the performance gap is large than 0.05. Clearly, the label separation method
outperforms both aggregation methods (majority-vote and EM inference) consistently on
StatLog and Optical datasets. For the two binary tasks (Breast and German), aggregation
methods tend to outperform label separation, and we attribute this phenomenon to the fact that
the “denoising effect of label aggregation is more significant in the binary case”.

B.3. Experiment Details on CIFAR-10 Datasets

The generation of the symmetric noisy dataset is adopted from [44]. As for the instance-
dependent label noise, the generating algorithm follows the state-of-the-art method [77]. Both
cases adopt noise rates: [0.2,0.4, 0.6, 0.8]. The basic hyper-parameters settings for all methods
are listed as follows: mini-batch size (128), optimizer (SGD), initial learning rate (0.1), momentum
(0.9), weight decay (0.0005), number of epochs (120) and learning rate decay (0.1 at 50 epochs).
Standard data augmentation is applied to each dataset. All experiments run on 8 Nvidia RTX
A5000 GPUs.

B.4. Details Results on CIFAR-10 Dataset

Table 7 includes all the detailed accuracy values that appeared in Figure 5. The results on
the synthetic noisy CIFAR-10 dataset align well with the theoretical observations: label sep-
aration is preferred over label aggregation when the noise rates are high, or the number of
labelers/annotations is insufficient.



UCI-StatLog (symmetric) CE

UCI-Optical (symmetric) CE

e=02 K=3 K=5 K=9 K=15 K=25 K=49]€e=02 K=3 K=5 K=9 K=15 K=25 K =49
MV 8794 8888 8869 8369 8869  88.69 MV 9527 9673 9541 9673 9673  96.66
EM 8763 8794 8863 8369 8869  88.69 EM 9534 9569 9604 9673 9673 9673
Sep 8925 9056 9119 9113 9150  91.25 Sep 9708 9757 9798 9833 9826 986l
c=04 K=3 K=5 K=9 K=15 K=2 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K =49
MV 8700 8750 8825 8863 8875  88.69 MV 9235 9604 9611 9618 9673  96.73
EM 8750 87.38 87.75 8894 8881 88.69 EM 9325 9478 9568 9603 9673  96.73
Sep 8775 8931  90.38 9119 9119  91.00 Sep 9659 9680 9744  97.64 9826  98.05
€=06 K=3 K=5 K=9 K=15 K=25 K=49]e=06 K=3 K=5 K=9 K=15 K=25 K =49
MV 8075 8500 8675  87.25 8775  88.62 MV 8331 9151 9534 9541 93.11 97.14
EM 8506 8437 8668  87.00  87.81 88.93 EM 8831 9235 9381 9513  96.31 95.96
Sep 8718 8731 8812  89.8I 90.81 9093 Sep 9443 9554 9652  97.35  97.63  97.98
UCI-StatLog (symmetric) BW UCI-Optical (symmetric) BW
e=02 K=3 K=5 K=9 K=15 K=25 K=49]e=02 K=3 K=5 K=9 K=15 K=25 K =49
MV 8975 9006  89.87  89.87  89.87  89.87 MV 9443 9541 9561 9694 9694 9694
EM 8968 8987 89.75 8987  89.87  89.87 EM 9443 9582 9568 9694 9694 9694
Sep  89.87 9118 9200 9143 9137  91.06 Sep 9687 9721 9763  97.77 9805  97.63
€=04 K=3 K=5 K=9 K=15 K=25 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 8762 8825 8975  89.62  89.87  89.87 MV 9019 9429 9464 9680 9694  96.94
EM 8793 8831 8956  89.81 89.75  89.87 EM 9353 9541 9638 9589 9694  96.94
Sep  89.62 8987 9018 9100  91.06 9137 Sep 9554 9659 9666  97.28 97771  97.77
e=06 K=3 K=5 K=9 K=15 K=2 K=49]e=06 K=3 K=5 K=9 K=15 K=25 K =49
MV 8212 8731 8700 8850 8950  89.81 MV 8254 8810 9297 9575 9367 96,52
EM | 8668 8650 87.31 8825  89.12  89.81 EM 8052 9054 9311 9506 9610  95.82
Sep 8618  87.62 8831  89.62 9093  90.75 Sep 9172 9339 9346 9638 9666 9721
UCI-StatLog (symmetric) PeerLoss UCI-Optical (symmetric) PeerLoss
€=02 K=3 K=5 K=9 K=15 K=2 K=49]¢=02 K=3 K=5 K=9 K=15 K=25 K=49
MV 9025 9006 9056  90.56 9056 9056 MV 9471 9603 9638 9652 9652  96.38
EM 8987 9006 9056  90.56 9056  90.56 EM 9443 9617 9652 9652 9652  96.52
Sep 9036 9112 9168 9143  91.68 91.43 Sep 9707 9735 9770  98.12 98.05  98.12
e=04 K=3 K=5 K=9 K=15 K=25 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 8793  89.06  90.18 9043  90.68  90.56 MV 91.86 9457 9554 9687 9652 96,52
EM 8800 893 9012 9037 9056  90.56 EM 9186 9394 9596 9687 9652  96.52
Sep  89.18 9025 9037 9143  91.68 91.87 Sep 9666 9673 9694  97.63 9805  98.19
e=06 K=3 K=5 K=9 K=15 K=25 K=49]e=06 K=3 K=5 K=9 K=15 K=25 K=49
MV 7868 8668  87.31 8381 89.75  90.56 MV 7677 8734 9471 9561 9388 9638
EM 8625 86.68 8800 8875  89.12 9031 EM 8692 8998 9311 9610 9582  96.10
Sep 8750 8825 8893  90.18 9131 91.31 Sep 9332 9554 9610  96.73 97.77 9791
UCl-pop failuers (symmetric) CE UCl-forest fire (symmetric) CE
€=02 K=3 K=5 K=9 K=15 K=25 K=49]e=02 K=3 K=5 K=9 K=15 K=25 K =49
MV 9306 9306 9306 9306 9306  93.06 MV 9286 9286 91.84 9184 9184 9184
EM 9306 9306 9306 9306 9306  93.06 EM 928 9286 91.84  91.84 9184  91.84
Sep 9306 9352 9398 9491 9583 9630 Sep 9388 9388 9592 9490  91.84  93.88
c=04 K=3 K=5 K=9 K=15 K=25 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K=149
MV 9306 9306 9306 9306 9306  93.06 MV 8163 8163 9082  91.84 9184  91.84
EM 9306 9306 9306 9352 9306  93.52 EM 5816 7755 9082 8878  91.84  91.84
Sep 9306 9352 9398 9491 9537 9537 Sep 7959 7959 8776  87.76  90.82  92.86
UClI-pop failuers (symmetric) BW UCl-forest fire (symmetric) BW
€=02 K=3 K=5 K=9 K=15 K=25 K=49]e=02 K=3 K=5 K=9 K=15 K=25 K=49
MV 9306 9306 9306 9306 9306  93.06 MV 9184 928 9184  91.84 9184 9286
EM 9306 9306 9306 9306 9306  93.06 EM 9184 9286 91.84 9184 9184 9286
Sep 9306 9352 9398 9537 9583 95383 Sep 8878  90.82 9286 9388  91.84 9490
e=04 K=3 K=5 K=9 K=15 K=25 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K =49
MV 9213 9059 9059 9059 9291 93.06 MV 8469 8673 8980  91.84 9184 92386
EM | 9306 8935 9306 9120 9306  93.06 EM 7347 7551 8878 9184 9184  91.84
Sep 9306 9306 9306 9120 9398 9491 Sep 8469 8469 8673 8776 8673  90.82
UCl-pop failuers (symmetric) Peer Loss UCl-forest fire (symmetric) Peer Loss
e=02 K=3 K=5 K=9 K=15 K=25 K=49]€e=02 K=3 K=5 K=9 K=15 K=25 K =49
MV 9306 9352 9491 9444 9444 9444 MV 9286 9286 9286 9286 9286 9490
EM 9306 9306 9444 9444 9444 9444 EM 928 9286 9286 928 9286  94.90
Sep 9306 9259 9398 9444 9583  97.22 Sep 8878  89.80  93.88 9388 9286 9490
c=04 K=3 K=5 K=9 K=15 K=2 K=49]e¢=04 K=3 K=5 K=9 K=15 K=25 K =49
MV 9306 9352 9352 9398 = 9491 93.52 MV 7857 7857 | 89.80  91.84 8980  91.84
EM 9306 9306 9306 9398 9306  93.52 EM 5918 7347 8878  89.80  89.80  91.84
Sep 8889 9259 9259 9398 9583  95.37 Sep 8367 8061 8571 8878  91.84  92.86
Table 6

The performances of CE/BW/PeerLoss trained on 4 UCI datasets (StatLog, Optical, Pop-Failures, and
Forest Fair datasets), with aggregated labels (majority vote, EM inference), and separated labels. (K is
the number of labels per training image)



CIFAR-10, Symmetric CE

CIFAR-10, Instance CE

€=02 K=3 K=5 K=9 K=15 K=25 K=49[e=02 K=3 K=5 K=9 K=15 K=25 K=49
MV 9221 9298 9354 9343 | 9373 9340 MV 9199 9329 9357 9347 9368  93.60
EM 9208 9293 9354 9364 9335 9337 EM 9192 9321 9355 = 9361 9344 93.44
Sep 9252 928 9335 9315 9342 9340 Sep 9236 9297 9343 9324 9333 9335
e=04 K=3 K=5 K=9 K=15 K=25 K=49]e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 89.09 9159 9318 9343 9326 9344 MV 8714 9115 9310 9315 9323 9348
EM 8883 9102 9254 | 9345 9369  93.68 EM 8807 = 9240 9370 9358 9374 9353
Sep  90.61 9195 9270 9292 9332 9313 Sep 9083 9190 9263 9246  93.08 9326
e=06 K=3 K=5 K=9 K=15 K=25 K=49]e=06 K=3 K=5 K=9 K=15 K=25 K=49
MV 8185 8733 89.88  91.88 9296 9340 MV 4922 8395 8945  91.60 9288  93.65
EM 8104 8591 8976 9157 9255 9310 EM 7834 8879 9195 9297 9346  93.5
Sep  87.00 8919 9070 9197 9240 9317 Sep 8379 8755 9015 9158  91.86 9274
e=08 K=3 K=5 K=9 K=15 K=25 K=49]e=08 K=3 K=5 K=9 K=15 K=25 K=49
MV 2094 4462 7091 7961 8483 89.09 MV 1459 2525 3447 5799 5751 87.08
EM 3791 5078 6719 7526 8297 8797 EM 2003 2654 6516 8010 8859 9214
Sep 6147 7010  79.61 8393 8682  90.04 Sep 2616 2889  50.35 7415 7139 8754
CIFAR-10, Symmetric BW CIFAR-10, Instance BW
€=02 K=3 K=5 K=9 K=15 K=25 K=49[e=02 K=3 K=5 K=9 K=15 K=25 K=49
MV 9208 9409 9492 9490 9479 9490 MV 9203 9387 9512  95.11 9497 9475
EM 9213 9308 9490 = 9491 9490 9486 EM 9193 9439 9490 9484 9505 9454
Sep 9174 9261 9275 9259 9444 9297 Sep 9193 9207 9270 9175  93.02 9247
e=04 K=3 K=5 K=9 K=15 K=25 K=49[e=04 K=3 K=5 K=9 K=15 K=25 K=49
MV 8828 9111 9273 9460 9462 9481 MV 8661  90.64 9300 9473 9472 9472
EM 8741 9023 9283 9477 9480  95.18 EM 8983 9204 9474 9500 9494 94380
Sep 8914  89.68  91.07 9246 9226  94.24 Sep 8886 8789 9209 8992  91.05 9196
e=06 K=3 K=5 K=9 K=15 K=25 K=49]e=06 K=3 K=5 K=9 K=15 K=25 K=49
MV 8121 8629 8951 9133 9352 9481 MV 4378 8259 8856 9147 9327 9506
EM 7813 8433 8944 9117 9245  94.60 EM 4492 | 87.33 9139 9358 9472 9499
Sep 8384 8705 8810  89.80 9095 9211 Sep  80.88 8622 8845 9069 9116 9261
e=08 K=3 K=5 K=9 K=15 K=25 K=49]e=08 K=3 K=5 K=9 K=15 K=2 K=49
MV 1643 6097 7111 7786 8272 8841 MV 1600 2503 3380 6791 6852 8649
EM 1000 4597 6602 7437  80.08  87.42 EM 1606 2273 | 5396 7624 8674 9202
Sep 5848  69.86 7603 7979 8260 8631 Sep  27.84 2668 3272 3727 5441 83.37
CIFAR-10, Symmetric PeerLoss CIFAR-10, Instance PeerLoss
e=02 K=3 K=5 K=9 K=15 K=25 K=49[[e=02 K=3 K=5 K=9 K=15 K=2 K=49
MV 9269 9335 9390 9412 9415 9381 MV 9213 9353 9400 9378 9413  94.08
EM 9239 9325 9376 9393 9352 9377 EM 9193 9351 9378 | 9385 = 9403 9382
Sep 9315 9351 9377 9351 9356 9373 Sep 9286 9323 9356 9372 9363 9395
e=04 K=3 K=5 K=9 K=15 K=25 K=49[e=04 K=3 K=5 K=9 K=15 K=2 K=49
MV 8940 9188 9342 9384 9383  94.04 MV 8815 9161 9321 9364 9384 9369
EM 8923 9141 9306 9383 9385 9411 EM 9059 9260 | 9395 9402 9406 9368
Sep  91.08 9238 9317 9340 9356 9337 Sep  91.06 9270 9322 9292 9365 9367
€=06 K=3 K=5 K=9 K=15 K=25 K=49[e=06 K=3 K=5 K=9 K=15 K=25 K=49
MV 82838 8795 9042 9231 93.61 93.79 MV 6066 8499 9030 9193 9316 9381
EM 8164 8645 90.09 9198 9323 9358 EM 7853 | 8911 9244 9317 9396 9385
Sep 8728  89.80 9119 9242 9318 9365 Sep 8576  89.07 91.05 9222 9245 9339
e=08 K=3 K=5 K=9 K=15 K=25 K=49]e=08 K=3 K=5 K=9 K=15 K=25 K=49
MV 2182 4871 7281 8032 8527  89.38 MV 1435 2483 4049 6547  69.28  88.05
EM 3829 5263 6870 7742 8394 8845 EM 2652 2843 6672  80.71 89.40 9241
Sep 6432 7252  80.31 8465 87.40 9056 Sep 3387 3749  57.36 7743 8051 89.15
Table 7

The performances of CE/BW/PeerLoss trained on (Left half: symmetric noise; right half: instance noise)
CIFAR-10 aggregated labels (majority vote, EM inference), and separated labels. (Different number of
labels per training image)
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