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Abstract
The rawly collected training data often comes with separate noisy labels collected from multiple imperfect
annotators (e.g., via crowdsourcing). A typically way of using these separate labels is to first aggregate
them into one and apply standard training methods. The literature has also studied extensively on effective
aggregation approaches. This paper revisits this choice and aims to provide an answer to the question of
whether one should aggregate separate noisy labels into single ones or use them separately as given.
We theoretically analyze the performance of both approaches under the empirical risk minimization
framework for a number of popular loss functions, including the ones designed specifically for the
problem of learning with noisy labels. Our theorems conclude that label separation is preferred over
label aggregation when the noise rates are high, or the number of labelers/annotations is insufficient.
Extensive empirical results validate our conclusions.
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1. Introduction

Training high-quality deep neural networks for classification tasks typically requires a large
quantity of annotated data. The raw training data often comes with separate noisy labels
collected from multiple imperfect annotators. For example, the popular data collection paradigm
crowdsourcing [1, 2, 3] offers the platform to collect such annotations from the unverified
crowd; medical records are often accompanied by diagnoses from multiple doctors [4, 5]; news
articles can receive multiple checkings (of the article being fake or not) from different experts
[6, 7]. This leads to the situation considered in this paper: learning with multiple separate noisy
labels.
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The most popular approach to learning from the multiple separate labels would be aggregating
the given labels for each instance [8, 9, 10, 11, 12], through an Expectation-Maximization (EM)
inference technique. Each instance will then be provided with one single label and applied with
the standard training procedure.

The primary goal of this paper is to revisit the choice of aggregating separate labels and hope
to provide practitioners with understandings for the following question:

Should the learner aggregate separate noisy labels for one instance into a single
label or not?

Our main contributions can be summarized as follows:
∙ We provide theoretical insights on how separation methods and aggregation ones result in

different biases (Theorem 3.4, 4.2, 4.6) and variances (Theorem 3.6, 4.3, 4.7) of the output
classifier from training. Our analysis considers both the standard loss functions in use, as
well as popular robust losses that are designed for the problem of learning with noisy labels.

∙ By comparing the analytical proxy of the worst-case performance bounds, our theoretical
results reveal that separating multiple noisy labels is preferred over label aggregation when
the noise rates are high, or the number of labelers/annotations is insufficient. The results are
consistent for both the basic loss function ℓ and robust designs, including loss correction and
peer loss.

∙ We carry out extensive experiments using both synthetic and real-world datasets to validate
our theoretical findings.

1.1. Related Works

Label separation vs label aggregation Existing works mainly compare the separation with
aggregation by empirical results. For example, it has been shown that label separation could
be effective in improving model performance and may be potentially more preferable than
aggregated labels through majority voting [13]. When training with the cross-entropy loss,
Sheng et.al [14] observe that label separation reduces the bias and roughness, and outperforms
majority-voting aggregated labels. However, it is unclear whether the results hold when
robust treatments are employed. Similar problems have also been studied in corrupted label
detection with a result leaning towards separation but not proved [15]. Another line of approach
concentrates on the end-to-end training scheme or ensemble methods which take all the separate
noisy labels as the input during the training process [16, 17, 18, 19, 20], and learning from
separate noisy labels directly.

Learning with noisy labels Popular approaches in learning with noisy labels could be
broadly divided into following categories, i.e., (i) Adjusting the loss on noisy labels by: using the
knowledge of noise label transition matrix [21, 22, 23, 24, 25, 26, 27, 28, 29]; re-weighting the
per-sample loss by down-weighting instances with potentially wrong labels [30, 31, 32, 33, 34];
or refurbishing the noisy labels [35, 36, 37]; (ii) Robust loss designs that do not require the
knowledge of noise transition matrix [38, 39, 40, 41, 42, 43, 44, 45]; (iii) Regularization techniques
to prevent deep neural networks from memorizing noisy labels [46, 47, 48, 49, 50, 51]; (iv)
Dynamical sample selection procedure which behaves in a semi-supervised manner and begins
with a clean sample selection procedure, then makes use of the wrongly-labeled samples



[52, 53, 54, 55, 56]. For example, several methods [57, 58, 59] adopt a mentor/peer network to
select small-loss samples as “clean” ones for the student/peer network. See [60, 61] for a more
detailed survey of existing noise-robust techniques.

2. Formulation

Consider an 𝑀 -class classification task and let 𝑋 ∈ 𝒳 and 𝑌 ∈ 𝒴 := {1, 2, ...,𝑀} denote
the input examples and their corresponding labels, respectively. We assume that (𝑋,𝑌 ) ∼ 𝒟,
where 𝒟 is the joint data distribution. Samples (𝑥, 𝑦) are generated according to random
variables (𝑋,𝑌 ). In the clean and ideal scenario, the learner has access to 𝑁 training data
points 𝐷 := {(𝑥𝑛, 𝑦𝑛)}𝑛∈[𝑁 ]. Instead of having access to ground truth labels 𝑦𝑛s, we only have
access to a set of noisy labels {𝑦𝑛,𝑖}𝑖∈[𝐾] for 𝑛 ∈ [𝑁 ]. For ease of presentation, we adopt the
decorator to denote separate labels and ∙ for aggregated labels specified later. Noisy labels 𝑦𝑛s
are generated according to the random variable ̃︀𝑌 . We consider the class-dependent label noise
transition [30, 21] where ̃︀𝑌 is generated according to a transition matrix 𝑇 with its entries
defined as follows:

𝑇𝑘,𝑙 := P(̃︀𝑌 = 𝑙|𝑌 = 𝑘).

Most of the existing results on learning with noisy labels have considered the setting where
each 𝑥𝑛 is paired with only one noisy label 𝑦𝑛. In practice, we often operate in a setting where
each data point 𝑥𝑛 is associated with multiple separate labels drawn from the same noisy label
generation process [62, 63]. We consider this setting and assume that for each 𝑥𝑛, there are 𝐾
independent noisy labels 𝑦𝑛,1, ..., 𝑦𝑛,𝐾 obtained from 𝐾 annotators [64].

We are interested in two popular ways to leverage multiple separate noisy labels:
∙ Keep the separate labels as separate ones and apply standard learning with noisy labels

techniques to each of them.
∙ Aggregate noisy labels into one label, and then apply standard learning with noisy data

techniques.
We will look into each of the above two settings separately and then answer the question:
“Should the learner aggregate multiple separate noisy labels or not?”

2.1. Label Separation

Denote the column vector P̃︀𝑌 := [P(̃︀𝑌 = 1), · · · ,P(̃︀𝑌 = 𝑀)]⊤ as the marginal distribution
of ̃︀𝑌 . Accordingly, we can define P𝑌 for 𝑌 . Clearly, we have the relation: P̃︀𝑌 = 𝑇 · P𝑌 ,P𝑌 =

(𝑇 )−1 · P̃︀𝑌 . Denote by 𝜌1 := P(̃︀𝑌 = 0|𝑌 = 1), 𝜌0 := P(̃︀𝑌 = 1|𝑌 = 0). The noise transition
matrix 𝑇 has the following form when 𝑀 = 2:

𝑇 =

[︂
1− 𝜌0 𝜌0
𝜌1 1− 𝜌1

]︂
.

For label separation, we define the per-sample loss function as:

ℓ(𝑓(𝑥𝑛), 𝑦𝑛,1, ..., 𝑦𝑛,𝐾) =
1

𝐾

∑︁
𝑖∈[𝐾]

ℓ(𝑓(𝑥𝑛), 𝑦𝑛,𝑖).



For simplicity, we shorthand ℓ(𝑓(𝑥𝑛), 𝑦𝑛) := ℓ(𝑓(𝑥𝑛), 𝑦𝑛,1, ..., 𝑦𝑛,𝐾) for the loss of label
separation method when there is no confusion.

2.2. Label Aggregation

The other way to leverage multiple separate noisy labels is generating a single label via label
aggregation methods using 𝐾 noisy ones:

𝑦∙𝑛 := Aggregation(𝑦𝑛,1, 𝑦𝑛,2, ..., 𝑦𝑛,𝐾),

where the aggregated noisy labels 𝑦∙𝑛s are generated according to the random variable ̃︀𝑌 ∙.
Denote the confusion matrix for this single & aggregated noisy label as 𝑇 ∙. Popular aggregation
methods include majority vote and EM inference, which are covered by our theoretical insights
since our analyses in later sections would be built on the general label aggregation method. For
a better understanding, we introduce the majority vote as an example.

An Example of Majority Vote Given the majority voted label, we could compute the
transition matrix between ̃︀𝑌 ∙ and the true label 𝑌 using the knowledge of 𝑇 . The lemma below
gives the closed form for 𝑇 ∙ in terms of 𝑇 , when adopting majority vote.

Lemma 2.1. Assume 𝐾 is odd and recall that in the binary classification task, 𝑇𝑖,𝑗 = P(̃︀𝑌 =
𝑗|𝑌 = 𝑖), the noise transition matrix of the (majority voting) aggregated noisy labels 𝑇 ∙𝑝,𝑞 becomes:

𝑇 ∙𝑝,𝑞 =

𝐾+1
2
−1∑︁

𝑖=0

(︂
𝐾

𝑖

)︂
(𝑇𝑝,𝑞)

𝐾−𝑖(𝑇𝑝,1−𝑞)
𝑖, 𝑝, 𝑞 ∈ {0, 1}.

When 𝐾 = 3, then 𝑇 ∙1,0 = P(̃︀𝑌 ∙ = 0|𝑌 = 1) = (𝑇1,0)
3 +

(︀
3
1

)︀
(𝑇1,0)

2(𝑇1,1). Note it still
holds that 𝑇 ∙𝑝,𝑞 + 𝑇 ∙𝑝,1−𝑞 = 1. For the aggregation method, as illustrated in Figure 1, the x-axis
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Figure 1: Noise rates of the aggregated labels in synthetic noisy CIFAR-10. MV: majority vote. EM:
expectation maximization. 0.2–0.8: Original noise rates before aggregation.

indicates the number of labelers 𝐾 , and the y-axis denotes the aggregated noise rate given that



the overall noise rate is in [0.2, 0.4, 0.6, 0.8]. When the number of labelers is large (i.e., 𝐾 < 10)
and the noise rate is small, both majority vote and EM label aggregation methods significantly
reduce the noise rate. Although the expectation-maximization method consumes much more
time when generating the aggregated label, it frequently results in a lower aggregated noise
rate than the majority vote.

3. Bias and Variance Analyses w.r.t. ℓ-loss

In this section, we provide theoretical insights on how label separation and aggregation methods
result in different biases and variances of the classifier prediction when learning with the
standard loss function ℓ.

Suppose the clean training samples {(𝑥𝑛, 𝑦𝑛)}𝑛∈[𝑁 ] are given by variables (𝑋,𝑌 ) such
that (𝑋,𝑌 ) ∼ 𝒟. Recall that instead of having access to a set of clean training samples
𝐷 = {(𝑥𝑛, 𝑦𝑛)}𝑛∈[𝑁 ], the learner only observes 𝐾 noisy labels 𝑦𝑛,1, ..., 𝑦𝑛,𝐾 for each 𝑥𝑛,

denoted by ̃︀𝐷 := {(𝑥𝑛, 𝑦𝑛,1, ..., 𝑦𝑛,𝐾)}𝑛∈[𝑁 ]. For separation methods, the noisy training

samples are obtained through variables (𝑋, ̃︀𝑌1), ..., (𝑋, ̃︀𝑌𝐾) where (𝑋, ̃︀𝑌𝑖) ∼ ̃︀𝒟 for 𝑖 ∈ [𝐾].
For aggregation methods such as majority vote, we assume the data points and aggregated noisy
labels ̃︀𝐷∙ := {(𝑥𝑛, 𝑦∙𝑛)}𝑛∈[𝑁 ] are drawn from (𝑋, ̃︀𝑌 ∙) ∼ ̃︀𝒟∙ where ̃︀𝑌 ∙ is produced through
the majority voting of ̃︀𝑌1, ..., ̃︀𝑌𝐾 . When we mention "noise rate", we usually refer to the average
noise: P(̃︀𝑌 u ̸= 𝑌 ).

ℓ-risk under the distribution Given the loss ℓ, note that ℓ(𝑓(𝑥𝑛), 𝑦𝑛) is denoted as
ℓ(𝑓(𝑥𝑛), 𝑦𝑛,1, ..., 𝑦𝑛,𝐾) = 1

𝐾

∑︀
𝑖∈[𝐾] ℓ(𝑓(𝑥𝑛), 𝑦𝑛,𝑖), we define the empirical ℓ-risk for learn-

ing with separated/aggregated labels under noisy labels as 𝑅̂
ℓ, ̃︀𝐷𝑢(𝑓) =

1
𝑁

∑︀𝑁
𝑖=1 ℓ (𝑓(𝑥𝑖), 𝑦

𝑢
𝑖 ),

𝑢 ∈ {, ∙} unifies the treatment which is either separation or aggregation ∙.
By increasing the sample size 𝑁 , we would expect 𝑅̂

ℓ, ̃︀𝐷𝑢(𝑓) to be close to the following

ℓ-risk under the noisy distribution ̃︀𝒟𝑢: 𝑅
ℓ, ̃︀𝒟𝑢(𝑓) = E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢 [ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)].

3.1. Bias of a Given Classifier w.r.t. ℓ-Loss

We denote by 𝑓* ∈ ℱ the optimal classifier obtained through the clean data distribution
(𝑋,𝑌 ) ∼ 𝒟 within the hypothesis space ℱ . We formally define the bias of a given classifier 𝑓
as:

Definition 3.1 (Classifier Prediction Bias of ℓ-Loss). Denote by 𝑅ℓ,𝒟(𝑓) := E𝒟[ℓ(𝑓(𝑋), 𝑌 )],
𝑅ℓ,𝒟(𝑓

*) := E𝒟[ℓ(𝑓*(𝑋), 𝑌 )]. The bias of classifier 𝑓 writes as: Bias(𝑓) = 𝑅ℓ,𝒟(𝑓)−𝑅ℓ,𝒟(𝑓
*).

The Bias term quantifies the prediction bias (excess risk) of a given classifier 𝑓 on the clean
data distribution 𝒟 w.r.t. the optimal achievable classifier 𝑓*, which can be decomposed as [65]

Bias(𝑓) =𝑅ℓ,𝒟(𝑓)−𝑅
ℓ, ̃︀𝒟𝑢(𝑓)

Distribution shift

+𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*)

Estimation error

. (1)

Now we bound the distribution shift and the estimation error in the following two lemmas.



Lemma 3.2 (Distribution shift). Denote by 𝑝𝑖 := P(𝑌 = 𝑖), assume ℓ is upper bounded by ℓ̄ and
lower bounded by ℓ. The distribution shift in Eqn. (1) is upper bounded by

𝑅ℓ,𝒟(𝑓)−𝑅
ℓ, ̃︀𝒟𝑢(𝑓) ≤ Δ

𝑢,1
𝑅 := (𝜌𝑢0𝑝0 + 𝜌𝑢1𝑝1) ·

(︀
ℓ− ℓ

)︀
. (2)

Lemma 3.3 (Estimation error). Suppose the loss function ℓ(𝑓(𝑥), 𝑦) is 𝐿-Lipschitz for any feasible
𝑦. ∀𝑓 ∈ ℱ , with probability at least 1− 𝛿, the estimation error is upper bounded by

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*) ≤ Δ
𝑢,2
𝑅 := 4𝐿 ·R(ℱ) + (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁
+Δ

𝑢,1
𝑅 ,

where 𝑢 ∈ {, ∙} denotes either separation or aggregation methods, 𝜂𝐾 =
𝐾·log( 1

𝛿
)

2(log(𝐾+1
𝛿

))
2 and 𝜂∙𝐾 ≡ 1

indicate the richness factor, which characterizes the effect of the number of labelers, and R(ℱ) is
the Rademacher complexity of ℱ .
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Figure 2: The visualization of estimated 𝜂𝐾 given varied 𝛿.

Noting that the number of unique instances 𝑥𝑖 is the same for both treatments, the duplicated
copies of 𝑥𝑖 are supposed to introduce at least no less effective samples, i.e., the richness factor
satisfies that 𝜂𝑢𝐾 ≥ 1. Thus, we update 𝜂𝐾 := max{𝜂𝐾 , 1}, and Figure 2 visualizes the estimated
𝜂𝐾 given different number of labelers as well as 𝛿. It is clear that when the number of labelers is
larger, or 𝛿 is smaller, 𝜂𝐾 > 𝜂∙𝐾 . Later we shall show how 𝜂𝑢𝐾 influences the bias and variance
of the classifier prediction.

To give a more intuitive comparison of the performance of both mechanisms, we adopt the
worst-case bias upper bound Δ

𝑢
𝑅 := Δ

𝑢,1
𝑅 +Δ

𝑢,2
𝑅 from Lemma 3.2 and Lemma 3.3 as a proxy

and derive Theorem 3.4.

Theorem 3.4. Denote by 𝛼𝐾 := (𝜌0𝑝0 + 𝜌1𝑝1) − (𝜌∙0𝑝0 + 𝜌∙1𝑝1), 𝛾 =
√︀
log(1/𝛿)/2𝑁 . The

separation bias proxy Δ𝑅 is smaller than the aggregation bias proxy Δ
∙
𝑅 if and only if

𝛼𝐾 ·
1

1− (𝜂𝐾)−
1
2

≤ 𝛾. (3)



Note that 𝛼𝐾 and 𝜂𝐾 are non-decreasing w.r.t. the increase of 𝐾 , in Section 4.3, we will
explore how the LHS of Eqn. (3) is influenced by 𝐾 : a short answer is that the LHS of Eqn. (3) is
(generally) monotonically increasing w.r.t. 𝐾 when 𝐾 is small, indicating that Eqn. (3) is easier
to be achieved given fixed 𝛿,𝑁 and a smaller 𝐾 than a larger one.

3.2. Variance of a Given Classifier w.r.t. ℓ-Loss

We now move on to explore the variance of a given classifier when learning with ℓ-loss, prior
to the discussion, we define the variance of a given classifier as:

Definition 3.5 (Classifier Prediction Variance of ℓ-Loss). The variance of a given classifier 𝑓
when learned with separation () or aggregation (∙) is defined as:

Var(𝑓) = E
(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)− E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢 [ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)]
]︁2

.

For 𝑔(𝑥) = 𝑥− 𝑥2, we derive the closed form of Var and the corresponding upper bound as
below.

Theorem 3.6. When 𝜂𝑢𝐾 ≥
2 log(1/𝛿)

𝑁 , given ℓ is 0-1 loss, we have:

Var(𝑓
𝑢
) = 𝑔(𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
)) ≤ 𝑔

(︃√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁

)︃
Variance proxy

. (4)

The variance proxy of Var(𝑓 ) in Eqn. (4) is smaller than that of Var(𝑓
∙
).

Theorem 3.6 provides another view to decide on the choices of separation and aggregation
methods, i.e., the proxy of classifier prediction variance. To extend the theoretical conclusions
w.r.t. ℓ loss to the multi-class setting, we only need to modify the upper bound of the distribution
shift in Eqn. (2), as specified in the following corollary.

Corollary 3.7 (Multi-Class Extension (ℓ-Loss)). In the 𝑀 -class classification case, the upper
bound of the distribution shift in Eqn. (2) becomes:

𝑅ℓ,𝒟(𝑓)−𝑅
ℓ, ̃︀𝒟𝑢(𝑓) ≤ Δ

𝑢,1
𝑅 :=

∑︁
𝑗∈[𝑀 ]

𝑝𝑗 · (1− 𝑇 𝑢
𝑗,𝑗) ·

(︀
ℓ− ℓ

)︀
. (5)

4. Bias and Variance Analyses with Robust Treatments

Intuitively, the learning of noisy labels problem could benefit from more robust loss functions
built upon the generic ℓ loss, i.e., backward correction (surrogate loss) [21, 22], and peer loss
functions [42]. We move on to explore the best way to learn with multiple copies of noisy labels,
when combined with existing robust approaches.



4.1. Backward Loss Correction

When combined with the backward loss correction approach (ℓ→ ℓ←), the empirical ℓ risks
become: 𝑅̂

ℓ←, ̃︀𝐷𝑢(𝑓) =
1
𝑁

∑︀𝑁
𝑖=1 ℓ←(𝑓(𝑥𝑖), 𝑦

𝑢
𝑖 ), where the corrected loss in the binary case is

defined as

ℓ←(𝑓(𝑥), 𝑦𝑢) =
(1− 𝜌1−𝑦𝑢) · ℓ(𝑓(𝑥), 𝑦𝑢)− 𝜌𝑦𝑢 · ℓ(𝑓(𝑥), 1− 𝑦𝑢)

1− 𝜌𝑢0 − 𝜌𝑢1
.

Bias of given classifier w.r.t. ℓ← Suppose the loss function ℓ(𝑓(𝑥), 𝑦) is 𝐿-Lipschitz for
any feasible 𝑦. Define 𝐿𝑢

← := 𝐿𝑢
←0 · 𝐿, where 𝐿𝑢

←0 :=
(1+|𝜌𝑢

0−𝜌
𝑢
1 |)

1−𝜌𝑢
0−𝜌𝑢

1
. Denote by 𝑅ℓ,𝒟(𝑓) the ℓ-risk

of the classifier 𝑓 under the clean data distribution 𝒟, with 𝑓 = 𝑓
𝑢

← = argmin𝑓∈ℱ 𝑅̂
ℓ←, ̃︀𝐷𝑢(𝑓).

Lemma 4.1 gives the upper bound of classifier prediction bias when learning with ℓ← via
separation or aggregation methods.

Lemma 4.1. With probability at least 1− 𝛿, we have:

𝑅ℓ,𝒟(𝑓
𝑢

←)−𝑅ℓ,𝒟(𝑓
*) ≤ Δ

𝑢
𝑅← := 4𝐿𝑢

← ·R(ℱ) + 𝐿𝑢
←0 · (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁
.

Lemma 4.1 offers the upper bound of the performance gap for the given classifier 𝑓 w.r.t the
clean distribution 𝒟, comparing to the minimum achievable risk. We consider the bound Δ

𝑢
𝑅←

as a proxy of the bias, and we are interested in the case where training the classifier separately
yields a smaller bias proxy compared to that of the aggregation method, formally Δ𝑅← < Δ

∙
𝑅←.

For any finite hypothesis class ℱ ⊂ {𝑓 : 𝑋 → {0, 1}}, and the sample set 𝑆 = {𝑥1, ..., 𝑥𝑁},
denote by 𝑑 the VC-dimension of ℱ , we give conditions when training separately yields a
smaller bias proxy.

Theorem 4.2. Denote by 𝛼𝐾 := 1 − 𝐿∙←/𝐿←, 𝛾 = 1/
(︁
1 + 4𝐿

ℓ−ℓ

√︁
𝑑 log(𝑁)
log(1/𝛿)

)︁
, where 𝑑 is the

VC-dimension of ℱ . For backward loss correction, the separation bias proxy Δ𝑅← is smaller than
the aggregation bias proxy Δ

∙
𝑅← if and only if

𝛼𝐾 ·
1

1− (𝜂𝐾)−
1
2

≤ 𝛾. (6)

We defer our empirical analysis of the monotonicity of the LHS in Eqn. (6) to Section 4.3 as
well, which shares similar monotonicity behavior to learning w.r.t. ℓ.

Variance of given classifiers with Backward Loss Correction Similar to the previous
subsection, we now move on to check how separation and aggregation methods result in
different variance when training with loss correction.

Theorem 4.3. When 𝐿𝑢
←0(𝜂

𝑢
𝐾)−

1
2 <

√︁
𝑁

2(ℓ−ℓ)2 log(1/𝛿) , Var(𝑓
𝑢

←) (w.r.t. the 0-1 loss) satisfies:

Var(𝑓
𝑢

←) = 𝑔(𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←)) ≤ 𝑔

(︃
𝐿𝑢
←0 · (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁

)︃
Variance proxy

. (7)



The variance proxy of Var(𝑓←) in Eqn. (7) is smaller than that of Var(𝑓
∙
←) if √𝜂𝐾 >

𝐿←
𝐿∙←

.

Moving a bit further, when the noise transition matrix is symmetric for both methods, the
requirement

√︀
𝜂𝑢𝐾 >

𝐿←
𝐿∙←

could be further simplified as:
√︀
𝜂𝑢𝐾 > 𝐿←

𝐿∙←
=

1−𝜌∙0−𝜌∙1
1−𝜌0−𝜌1

. For a fixed
𝐾 , a more efficient aggregation method decreases 𝜌∙𝑖 , which makes it harder to satisfy this
condition.

Recall 𝐿𝑢
← := 𝐿𝑢

←0 ·𝐿, the theoretical insights of ℓ← between binary case and the multi-class
setting could be bridged by replacing 𝐿𝑢

0 with the multi-class constant specified in the following
corollary.

Corollary 4.4 (Multi-Class Extension (ℓ←-Loss)). Given a diagonal-dominant transition matrix
𝑇 𝑢, we have

𝐿𝑢
←0 =

2
√
𝑀

𝜆min(𝑇 𝑢)
,

where 𝜆min(𝑇
𝑢) denotes the minimal eigenvalue of the matrix 𝑇 𝑢. Particularly, if 𝑇 𝑢

𝑖𝑖 < 0.5,∀𝑖 ∈
[𝑀 ], we further have

𝐿𝑢
←0 = min

{︃
1

1− 2𝑒𝑢
,

2
√
𝑀

𝜆min(𝑇 𝑢)

}︃
, where 𝑒𝑢 := max

𝑖∈[𝑀 ]
(1− 𝑇 𝑢

𝑖𝑖).

4.2. Peer Loss Functions

Peer Loss function [42] is a family of loss functions that are shown to be robust to la-
bel noise, without requiring the knowledge of noise rates. Formally, ℓ↬(𝑓(𝑥𝑖), 𝑦𝑖) :=
ℓ(𝑓(𝑥𝑖), 𝑦𝑖) − ℓ(𝑓(𝑥1𝑖 ), 𝑦

2
𝑖 ), where the second term checks on mismatched data samples

with (𝑥𝑖, 𝑦𝑖), (𝑥
1
𝑖 , 𝑦

1
𝑖 ), (𝑥

2
𝑖 , 𝑦

2
𝑖 ), which are randomly drawn from the same data distribu-

tion. When combined with the peer loss approach, i.e., ℓ → ℓ↬, the two risks become:
𝑅̂

ℓ↬, ̃︀𝐷𝑢(𝑓) =
1
𝑁

∑︀𝑁
𝑖=1 ℓ↬(𝑓(𝑥𝑖), 𝑦

𝑢
𝑖 ), 𝑢 ∈ {, ∙}.

Bias of given classifier w.r.t. ℓ↬ Suppose the loss function ℓ(𝑓(𝑥), 𝑦) is 𝐿-Lipschitz for any
feasible 𝑦. Let 𝐿𝑢

↬0 := 1/(1− 𝜌𝑢0 − 𝜌𝑢1 ), 𝐿
𝑢
↬ := 𝐿𝑢

↬0 · 𝐿 and 𝑓
𝑢

↬ = argmin𝑓∈ℱ 𝑅̂
ℓ↬, ̃︀𝐷𝑢(𝑓).

Lemma 4.5. With probability at least 1− 𝛿, we have:

𝑅ℓ,𝒟(𝑓
𝑢

↬)−𝑅ℓ,𝒟(𝑓
*) ≤ Δ

𝑢
𝑅↬ := 8𝐿𝑢

↬ ·R(ℱ) + 𝐿𝑢
↬0 ·

√︃
2 log(4/𝛿)

𝜂𝑢𝐾𝑁
·
(︀
1 + 2(ℓ̄− ℓ)

)︀
.

To evaluate the performance of a given classifier yielded by the optimization w.r.t. ℓ↬, Lemma
4.5 provides the bias proxyΔ

𝑢
𝑅↬ for both treatments. Similarly, we adopt such a proxy to analyze

which treatment is more preferable.

Theorem 4.6. Denote by 𝛼𝐾 := 1 − 𝐿∙↬/𝐿↬, 𝛾 = 1+2(ℓ̄−ℓ)
2𝐿

√︁
log(4/𝛿)
4𝑑 log(𝑁) , where 𝑑 denotes the

VC-dimension of ℱ . For peer loss, the separation bias proxy Δ𝑅↬ is smaller than the aggregation
bias proxy Δ

∙
𝑅↬ if and only if

𝛼𝐾 ·
1

𝐿∙↬/𝐿↬ − (𝜂𝐾)−
1
2

≤ 𝛾. (8)
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Figure 3: The monotonicity of the LHS in Eqn. (3, 6, 8) w.r.t. the increase of 𝐾 .

Note that the condition in Eqn. (8) shares a similar pattern to that which appeared in the
basic loss ℓ and ℓ←, we will empirically illustrate the monotonicity of its LHS in Section 4.3.

Variance of given classifiers with Peer Loss We now move on to check how separation
and aggregation methods result in different variances when training with peer loss. Similarly,
we can obtain:

Theorem 4.7. When
√︀

𝜂𝑢𝐾 ≥
√︁

2 log(4/𝛿)
𝑁 ·

(︀
1 + 2(ℓ̄− ℓ)

)︀
, Var(𝑓

𝑢

↬) (w.r.t. the 0-1 loss) satisfies:

Var(𝑓
𝑢

↬) = 𝑔(𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

↬)) ≤ 𝑔

(︃
𝐿𝑢
↬0 ·

√︃
log(4/𝛿)

2𝜂𝑢𝐾𝑁
·
(︀
1 + 2(ℓ̄− ℓ)

)︀)︃
Variance proxy

. (9)

The variance proxy of Var(𝑓↬) in Eqn. (9) is smaller than that of Var(𝑓
∙
↬) if √𝜂𝐾 ≥

𝐿↬
𝐿∙↬

.

Theoretical insights of ℓ↬ also have the multi-class extensions, we only need to generate
𝐿𝑢
↬0 to the multi-class setting along with additional conditions specified as below:

Corollary 4.8 (Multi-Class Extension (ℓ↬-Loss)). Assume ℓ↬ is classification-calibrated in
the multi-class setting, and the clean label 𝑌 has equal prior 𝑃 (𝑌 = 𝑗) = 1

𝑀 , ∀𝑗 ∈ [𝑀 ].
For the uniform noise transition matrix [44] such that 𝑇 𝑢

𝑗,𝑖 = 𝜌𝑢𝑖 ,∀𝑗 ∈ [𝑀 ], we have: 𝐿𝑢
↬0 =

1/(1−
∑︀

𝑖∈[𝑀 ] 𝜌
𝑢
𝑖 ).

4.3. Analysis of the Theoretical Conditions

Recall that the established conditions in Theorems 3.4, 4.2, 4.6 are implicitly relevant to the
number of labelers 𝐾 , and the RHS of Eqns. (3, 6, 8) are constants. We proceed to analyze the
monotonicity of the corresponding LHS (in the form of 𝛼𝐾 · 1

𝛽𝐾−(𝜂𝐾)−
1
2

) w.r.t. the increase

of 𝐾 , where 𝛽𝐾 = 1 for ℓ and ℓ←, 𝛽𝐾 = 𝐿∙↬/𝐿↬ for ℓ↬. Thus, we have: 𝑂(LHS) =

𝑂(𝛼𝐾 · (𝛽𝐾 −𝑂( log(𝐾)√
𝐾

))−1). We visualize this order under different symmetric 𝑇 in Figure 3.
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Figure 4: The performances of Cross-Entropy, Backward Loss Correction, and Peer Loss trained on
synthetic noisy Statlog-6/Optical-10 aggregated labels (we report the better results between majority
vote and EM inference for each 𝐾 , and noise rate 𝜖), and separated labels. 𝑋-axis: the value of the
number of labelers

√
𝐾 ; 𝑌 -axis: the best test accuracy achieved.
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Figure 5: The performances of Cross-Entropy, Backward Loss Correction, and Peer Loss trained on
synthetic noisy CIFAR-10 aggregated labels (we report the better results between majority vote, EM
inference for each 𝐾 , and noise rate 𝜖), and separated labels. 𝑋-axis: the value of

√
𝐾 where 𝐾 denotes

the number of labels per training example; 𝑌 -axis: the best achieved test accuracy.

It can be observed that when 𝐾 is small (e.g., 𝐾 ≤ 5), the LHS parts of these conditions increase
with 𝐾 , while they may decrease with 𝐾 if 𝐾 is sufficiently large. Recall that separation is better
if LHS is less than the constant value 𝛾. Therefore, Figure 3 shows the trends that aggregation
is generally better than separation when 𝐾 is sufficiently large.

Tightness of the bias proxies In Theorems 3.4, 4.2, 4.6, we view the error bounds
Δ

𝑢
𝑅,Δ

𝑢
𝑅←,Δ

𝑢
𝑅↬ as proxies of the worst-case performance of the trained classifier. For the

standard loss function ℓ, it has been proven that [66, 67] under mild conditions of ℓ and ℱ , the
lower bound of the performance gap between a trained classifier (𝑓 ) and the optimal achievable
one (i.e., 𝑓*) 𝑅ℓ,𝒟(𝑓)−𝑅ℓ,𝒟(𝑓

*) is of the order 𝑂(
√︀
1/𝑁), which is of the same order as that

in Theorem 3.4. Noting the behavior concluded from the worst-case bounds may not always
hold for each individual case, we further use experiments to validate our analyses in the next
section.



Table 1
The performances of CE/BW/PeerLoss trained on 2 UCI datasets (Breast, and German datasets), with
aggregated labels (majority vote, EM inference), and separated labels. We highlight the results with
Green (for the separation method) and Red (for aggregation methods) if the performance gap is larger
than 0.05. (𝐾 is the number of labels per training image)

UCI-Breast (symmetric) CE UCI-German (symmetric) CE
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 96.05 96.05 96.49 96.93 97.37 97.37 MV 69.00 71.50 71.50 73.50 73.00 73.00
EM 96.93 96.05 96.49 96.93 97.37 97.37 EM 58.75 63.50 65.75 66.50 65.50 65.50
Sep 96.49 95.18 96.49 96.93 97.81 98.25 Sep 70.00 70.75 66.00 69.75 70.75 69.25

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 96.05 96.49 95.18 95.18 96.49 96.93 MV 65.75 62.25 62.75 68.50 71.75 70.50
EM 96.05 92.98 89.47 94.30 96.05 96.93 EM 61.00 60.00 61.50 54.00 62.00 63.25
Sep 92.11 94.30 95.61 96.49 96.93 96.93 Sep 68.25 65.50 65.00 64.50 64.75 69.50

UCI-Breast (symmetric) BW UCI-German (symmetric) BW
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 95.61 96.49 96.05 96.93 96.93 96.93 MV 72.75 71.50 74.00 75.50 76.50 76.50
EM 95.61 96.49 96.05 96.93 96.93 96.93 EM 62.75 61.50 59.25 64.50 62.50 62.50
Sep 95.18 93.42 96.49 96.05 97.37 98.25 Sep 70.50 70.50 73.75 68.25 70.00 72.75

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 89.91 96.05 94.74 94.30 96.05 96.49 MV 65.25 69.50 67.50 69.50 70.50 71.75
EM 81.14 94.30 92.11 94.74 92.54 96.49 EM 57.75 60.25 55.25 53.50 54.00 62.25
Sep 91.67 93.42 94.30 89.47 92.54 97.37 Sep 60.25 63.50 63.00 64.25 69.00 64.75

UCI-Breast (symmetric) PeerLoss UCI-German (symmetric) PeerLoss

𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 96.05 96.49 96.49 96.93 96.93 96.93 MV 72.75 71.75 73.00 73.00 72.50 72.50
EM 96.05 96.49 96.49 96.93 96.93 96.93 EM 62.25 64.50 63.75 64.25 62.75 62.75
Sep 94.74 94.30 96.93 96.93 96.93 97.81 Sep 70.25 68.00 70.50 70.00 67.00 73.50

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 92.11 95.61 95.18 92.54 96.49 96.05 MV 69.50 66.25 69.50 68.75 69.00 70.00
EM 92.11 92.11 86.40 93.86 95.61 96.93 EM 62.50 61.25 64.25 57.75 59.75 65.00
Sep 92.11 94.30 95.18 95.18 95.61 96.05 Sep 64.00 61.25 66.50 68.00 69.25 69.00

5. Experimental Results

In this section, we empirically compare the performance of different treatments on the multiple
noisy labels when learning with robust loss functions (CE loss, forward loss correction, and
peer loss). We consider several treatments including label aggregation methods (majority vote
and EM inference) and the label separation method. Assuming that multiple noisy labels have
different weights, EM inference can be used to solve the problem under this assumption by
treating the aggregated labels as hidden variables [68, 69, 8, 70]. In the E-step, the probabilities
of the aggregated labels are estimated using the weighted aggregation approach based on the
fixed weights of multiple noisy labels. In the M-step, EM inference method re-estimates the
weights of multiple noisy labels based on the current aggregated labels. This iteration continues
until all aggregated labels remain unchanged. As for label separation, we adopted the mini-batch
separation method, i.e., each training sample 𝑥𝑛 is assigned with 𝐾 noisy labels in each batch.

5.1. Experiment on Synthetic Noisy Datasets

Experimental results on synthetic noisy UCI datasets [71] We adopt six UCI datasets
to empirically compare the performances of label separation and aggregation methods when



Table 2
Empirical verification of Theorem 3.4 on Breast & German UCI datasets.

Dataset 𝜌∘𝑖 𝑝0 𝑁 (1− 𝛿, 𝑆𝐾)
Breast 0.2 0.3726 569 (0.62, {𝐾 > 49})
Breast 0.4 0.3726 569 (0.62, {𝐾 > 49})

German 0.2 0.3 1000 (0.98, {𝐾 > 15})
German 0.4 0.3 1000 (0.98, {𝐾 > 23})

learning with CE loss, backward correction [21, 22], and Peer Loss [42]. The noisy annotations
given by multiple annotators are simulated by symmetric label noise, which assumes 𝑇𝑖,𝑗 =

𝜖
𝑀−1

for 𝑗 ̸= 𝑖 for each annotator, where 𝜖 quantifies the overall noise rate of the generated noisy
labels. In Figure 4, we adopt two UCI datasets (StatLog: (𝑀 = 6); Optical: (𝑀 = 10)) for
illustration. From the results in Figure 4, it is quite clear that: the label separation method
outperforms both aggregation methods (majority-vote and EM inference) consistently, and is
considered to be more beneficial on such small scale datasets. Results on additional datasets and
more details are deferred to the Appendix.

Experimental results on synthetic noisy CIFAR-10 dataset [72] On CIFAR-10 dataset,
we consider two types of simulation for the separate noisy labels: symmetric label noise model
and instance-dependent label noise [53, 24], where 𝜖 is the average noise rate and different
labelers follow different instance-dependent noise transition matrices. For a fair comparison, we
adopt the ResNet-34 model [73], the same training procedure and batch-size for all considered
treatments on the separate noisy labels.

Figure 5 shares the following insights regarding the preference of the treatments: in the low
noise regime or when 𝐾 is large, aggregating separate noisy labels significantly reduces the
noise rates and aggregation methods tend out to have a better performance; while in the high
noise regime or when 𝐾 is small, the performances of separation methods tend out to be more
promising. With the increasing of 𝐾 or 𝜖, we can observe a preference transition from label
separation to label aggregation methods.

5.2. Empirical Verification of the Theoretical Bounds

To verify the comparisons of bias proxies (i.e., Theorem 3.4) through an empirical perspective,
we adopt two binary classification UCI datasets for demonstration: Breast and German datasets,
as shown in Table 1. Clearly, on these two binary classification tasks, label aggregation methods
tend to outperform label separation, and we attribute this phenomenon to the fact that the
”denoising effect of label aggregation is more significant in the binary case”.

For Theorem 3.4 (CE loss), the condition requires 𝛼𝐾/
(︁
1− (𝜂∘𝐾)−

1
2

)︁
, where 𝛼 = (𝜌∘0𝑝0 +

𝜌∘1𝑝1)− (𝜌∙0𝑝0 + 𝜌∙1𝑝1), 𝛾 =
√︀

log(1/𝛿)/2𝑁 . For two binary UCI datasets (Breast & German),
the information could be summarized in Table 2, where the column (1− 𝛿, 𝑆𝐾) means: when
the number of annotators belongs to the set 𝑆𝐾 , the label separation method is likely to under-
perform label aggregation (i.e., majority vote) with probability at least 1− 𝛿. For example, in
the last row of Table 2, when training on UCI German dataset with CE loss under noise rate



Table 3
Experimental results on CIFAR-10N and CIFAR-10H dataset with 𝐾 = 3. We highlight the results with
Green (for separation method) and Red (for aggregation methods) if the performance gap is large than
0.05.

CIFAR-10N (𝜖 ≈ 0.18) CE BW PL
Majority-Vote 89.52 89.23 89.84
EM-Inference 89.19 88.88 88.92

Separation 89.77 89.20 89.97

CIFAR-10H (𝜖 ≈ 0.09) CE BW PL
Majority-Vote 80.86 82.72 82.11
EM-Inference 80.81 82.43 81.73

Separation 76.75 79.07 78.08

0.4 (the noise rate of separate noisy labels), Theorem 3.4 reveals that with probability at least
0.98, label aggregation (with majority vote) is better than label separation when 𝐾 > 23, which
aligns well with our empirical observations (label separation is better only when 𝐾 < 15).

5.3. Experiments on Realistic Noisy Datasets

Note that in real-world scenarios, the label-noise pattern may differ due to the expertise of each
human annotator. We further compare the different treatments on two realistic noisy datasets:
CIFAR-10N [74], and CIFAR-10H [75]. CIFAR-10N provides each CIFAR-10 train image with 3
independent human annotations, while CIFAR-10H gives ≈ 50 annotations for each CIFAR-10
test image.

In Table 3, we repeat the reproduction of three robust loss functions with three different
treatments on the separate noisy labels. We report the best-achieved test accuracy for Cross-
Entropy/Backward Correction/Peer Loss methods when learning with label aggregation methods
(majority-vote and EM inference) and the separation method (soft-label). We observe that the
separation method tends to have a better performance than aggregation ones. This may be
attributed to the relatively high noise rate (𝜖 ≈ 0.18) in CIFAR-N and the insufficient amount
of labelers (𝐾 = 3). Note that since the noise level in CIFAR-10H is low (𝜖 ≈ 0.07 wrong
labels), label aggregation methods can infer higher quality labels, and thus, result in a better
performance than separation methods (Red colored cells in Table 3 and 4).

5.4. Hypothesis Testing

We adopt the paired t-test to show which treatment on the separate noisy labels is better, under
certain conditions. In Table 5, we report the statistic and 𝑝-value given by the hypothesis testing
results. The column “Methods” indicate the two methods we want to compare (A & B). Positive
statistics means that A is better than B in the metric of test accuracy. Given a specific setting,
denote by Accmethod as the list of test accuracy that belongs to this setting (i.e., CIFAR-10N,
𝐾 = 3), including CE, BW, PL loss functions, the basic hypothesis could be summarized as
below:



Table 4
Experimental results on CIFAR10-H with 𝐾 ≥ 5. We highlight the results with Green (for separation
method) and Red (for aggregation methods) if the performance gap is large than 0.05.

CE 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

Majority-Vote 80.69 80.73 81.37 81.79 81.66
EM-Inference 80.97 80.96 81.24 81.01 81.68

Separation 79.65 80.91 81.07 80.78 80.81
BW 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

Majority-Vote 82.51 82.75 83.27 83.59 83.68
EM-Inference 82.30 82.68 82.74 82.89 83.08

Separation 82.14 82.48 81.92 81.72 81.69
PL 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

Majority-Vote 81.84 81.85 82.39 82.98 82.83
EM-Inference 81.89 82.30 82.53 82.86 82.73

Separation 80.25 81.89 81.00 80.71 80.89

• Null hypothesis: there exists zero mean difference between (1) AccMV and AccEM; or (2)
AccMV and AccSep; or (3) AccEM and AccSep;

• Alternative hypothesis: there exists non-zero mean difference between (1) AccMV and
AccEM; or (2) AccMV and AccSep; or (3) AccEM and AccSep.

To clarify, the three cases in the above hypothesis are tested independently. For test accuracy
comparisons of CIFAR-10N in Table 3, the setting of the hypothesis test is 𝐾 = 3 and the label
noise rate is relatively high (18%). All 𝑝-values are larger than 0.05, indicating that we should
reject the null hypothesis, and we can conclude that the performance of these three methods on
CIFAR-10N (high noise, small 𝐾) satisfies: EM<MV<Sep.

For CIFAR-10H in Table 3 and 4, all the label noise rate is relatively low. We consider two
scenarios (𝐾 < 15: the number of annotators is small; 𝐾 ≥ 15: the number of annotators is
large). 𝑝-values among MV and EM are always large, which means that the denoising effect of
the advanced label aggregation method (EM) is negligible under CIFAR-10H dataset. However,
𝑝-values of remaining settings are larger than 0.05, indicating that we should reject the null
hypothesis, and we can conclude that the performance of these 3 methods on CIFAR-10H (low
noise, small/large 𝐾) satisfies: EM/MV > Sep.

6. Conclusions

When learning with separate noisy labels, we explore the answer to the question “whether one
should aggregate separate noisy labels into single ones or use them separately as given”. In the
empirical risk minimization framework, we theoretically show that label separation could be
more beneficial than label aggregation when the noise rates are high or the number of labelers is
insufficient. These insights hold for a number of popular loss functions including several robust
treatments. Empirical results on synthetic and real-world datasets validate our conclusion.



Table 5
Hypothesis testing results of the comparisons between label aggregation methods and the label separa-
tion method on realistic noisy datasets.

Setting Methods Statistic 𝑝-value
CIFAR-10N (𝐾 = 3, high noise) MV & EM 2.650 0.057
CIFAR-10N (𝐾 = 3, high noise) MV & Sep -0.401 0.708
CIFAR-10N (𝐾 = 3, high noise) EM & Sep -2.596 0.060
CIFAR-10H (𝐾 < 15, low noise) MV & EM -0.003 0.998
CIFAR-10H (𝐾 < 15, low noise) MV & Sep 2.336 0.033
CIFAR-10H (𝐾 < 15, low noise) EM & Sep 2.390 0.030
CIFAR-10H (𝐾 ≥ 15, low noise) MV & EM 0.805 0.433
CIFAR-10H (𝐾 ≥ 15, low noise) MV & Sep 4.426 0.000
CIFAR-10H (𝐾 ≥ 15, low noise) EM & Sep 3.727 0.002
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Appendices

A. Full Proofs

In this section, we briefly introduce all omitted proofs in the main paper.
We firstly give the proof of Lemma 4.1 because it is beneficial for the proofs in Section 3.

A.1. Proof of Lemma 4.1

Proof. To apply Hoeffding’s inequality on the dataset of the separation method, we divide the
noisy train samples {(𝑥𝑛, 𝑦𝑛,𝑘)}𝑛∈[𝑁 ] into 𝐾 groups, for 𝑘 ∈ [𝐾], i.e., {(𝑥𝑛, 𝑦𝑛,1)}𝑛∈[𝑁 ], · · · ,
{(𝑥𝑛, 𝑦𝑛,𝐾)}𝑛∈[𝑁 ]. Note within each group, e.g., group {(𝑥𝑛, 𝑦𝑛,1)}𝑛∈[𝑁 ], all the 𝑁 training
samples are i.i.d. Additionally, training samples between any two different groups are also i.i.d.
given feature set {𝑥𝑛}𝑛∈[𝑁 ]. Thus, with one group {(𝑥𝑛, 𝑦𝑛,1)}𝑛∈[𝑁 ], w.p. 1− 𝛿0, we have

⃒⃒⃒
𝑅̂1←|Group-1(𝑓)−𝑅1←(𝑓)

⃒⃒⃒
≤
(︁
1← − 1←

)︁
·
√︂

log(1/𝛿0)

2𝑁
,∀𝑓.

Note that:

(𝑇 𝑢)−1 =
1

1− 𝜌𝑢0 − 𝜌𝑢1

(︁1− 𝜌𝑢1 −𝜌𝑢0
−𝜌𝑢1 1− 𝜌𝑢0

)︁
, for 𝑢 ∈ {, ∙},

we have:

1← − 1← := 𝐿←0 =
(1 + |𝜌0 − 𝜌1|)
1− 𝜌0 − 𝜌1

.

Applying the above technique on the other groups and by the union bound, we know that
w.p. at least 1−𝐾𝛿0, ∀𝑘 ∈ [𝐾],

𝑅̂1←|Group-k(𝑓) ∈

[︃
𝑅1←(𝑓)− 𝐿←0 ·

√︂
log(1/𝛿0)

2𝑁
,𝑅1←(𝑓) + 𝐿←0 ·

√︂
log(1/𝛿0)

2𝑁

]︃
.

Each 𝑅̂1←|Group-k(𝑓), 𝑘 ∈ [𝐾] can be seen as a random variable within range:[︃
𝑅1←(𝑓)− 𝐿←0 ·

√︂
log(1/𝛿0)

2𝑁
,𝑅1←(𝑓) + 𝐿←0 ·

√︂
log(1/𝛿0)

2𝑁

]︃
.

The randomness is from noisy labels 𝑦𝑛,𝑘. Recall that the samples between different groups
are i.i.d. given {𝑥𝑛}𝑛∈[𝑁 ]. Then the above 𝐾 random variables are i.i.d. when the feature set is
fixed. By Hoeffding’s inequality, w.p. at least 1−𝐾𝛿0 − 𝛿1, ∀𝑓 , we have

⃒⃒⃒
𝑅̂1←(𝑓)−𝑅1←(𝑓)

⃒⃒⃒
≤ 2 · 𝐿←0 ·

√︂
log(1/𝛿0)

2𝑁
·
√︂

log(1/𝛿1)

2𝐾
= 𝐿←0 ·

√︂
log(1/𝛿1) log(1/𝛿0)

𝑁𝐾
.



For 𝛿0 = 𝛿1 = 𝛿
𝐾+1 , with the Rademacher bound on the maximal deviation between risks

and empirical ones, for 𝑓* ∈ ℱ and the separation method, with probability at least 1− 𝛿, we
have:

max
𝑓∈ℱ

⃒⃒⃒
𝑅̂

ℓ←, ̃︀𝐷(𝑓)−𝑅
ℓ←, ̃︀𝒟(𝑓)

⃒⃒⃒
≤ 2R∘(ℓ← ∘ ℱ) + 𝐿←0 · (ℓ− ℓ) · log

(︂
𝐾 + 1

𝛿

)︂
·
√︂

1

𝑁𝐾
,

max
𝑓∈ℱ

⃒⃒⃒
𝑅̂

ℓ←, ̃︀𝐷∙(𝑓)−𝑅
ℓ←, ̃︀𝒟∙(𝑓)

⃒⃒⃒
≤ 2R∙(ℓ← ∘ ℱ) +

(︁
ℓ∙← − ℓ∙←

)︁
·
√︂

log(1/𝛿)

2𝑁

=2R∙(ℓ← ∘ ℱ) + 𝐿∙←0 · (ℓ− ℓ) ·
√︂

log(1/𝛿)

2𝑁
,

where we define ℓ, ℓ as the upper and lower bound of loss function ℓ respectively, and:

R(ℓ← ∘ ℱ) := E𝑥𝑖,𝑦𝑖,1,...,𝑦𝑖,𝐾 ,𝜖𝑖

⎡⎣sup
𝑓∈ℱ

1

𝑁𝐾

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝜖𝑖ℓ←(𝑓(𝑥𝑖), 𝑦𝑖,𝑗)

⎤⎦
≤ 1

𝐾

𝐾∑︁
𝑗=1

E𝑥𝑖,𝑦𝑖,𝑗 ,𝜖𝑖

[︃
sup
𝑓∈ℱ

1

𝑁

𝑁∑︁
𝑖=1

𝜖𝑖ℓ←(𝑓(𝑥𝑖), 𝑦𝑖,𝑗)

]︃
,

R∙(ℓ← ∘ ℱ) := E𝑥𝑖,𝑦
∙,𝜖𝑖

[︃
sup
𝑓∈ℱ

1

𝑁
𝜖𝑖ℓ←(𝑓(𝑥𝑖), 𝑦

∙)

]︃
.

Note that we assume the noisy labels given by the 𝐾 labelers follow the same noise transition
matrix, if ℓ is 𝐿−Lipshitz, then for separation and aggregation methods, ℓ← is 𝐿𝑢

← Lipshitz
for 𝑢 ∈ {, ∙} respectively, where 𝐿𝑢

← =
(1+|𝜌𝑢0−𝜌𝑢1 |)𝐿

1−𝜌𝑢0−𝜌𝑢1
≤ 2𝐿

1−𝜌𝑢0−𝜌𝑢1
. By the Lipshitz composition

property of Rademacher averages, we have R𝑢(ℓ← ∘ ℱ) ≤ 𝐿𝑢
← ·R(ℱ). Thus, we have:

max
𝑓∈ℱ
|𝑅̂

ℓ←, ̃︀𝐷(𝑓)−𝑅
ℓ←, ̃︀𝒟(𝑓)| ≤ 2𝐿←R(ℱ) + (1 + |𝜌0 − 𝜌1|) · (ℓ− ℓ)

1− 𝜌0 − 𝜌1
· log(𝐾 + 1

𝛿
) ·
√︂

1

𝑁𝐾
,

(10)

max
𝑓∈ℱ
|𝑅̂

ℓ←, ̃︀𝐷∙(𝑓)−𝑅
ℓ←, ̃︀𝒟∙(𝑓)| ≤ 2𝐿∙←R(ℱ) + (1 + |𝜌∙0 − 𝜌∙1|) · (ℓ− ℓ)

1− 𝜌∙0 − 𝜌∙1
·
√︂

log(1/𝛿)

2𝑁
.

Assume 𝑓* ← min𝑓∈ℱ 𝑅ℓ,𝒟(𝑓), for separation methods, we further have:

𝑅ℓ,𝒟(𝑓←)−𝑅ℓ,𝒟(𝑓
*) = 𝑅

ℓ←, ̃︀𝒟(𝑓←)−𝑅
ℓ←, ̃︀𝒟(𝑓*)

= 𝑅
ℓ←, ̃︀𝒟(𝑓←)− 𝑅̂

ℓ←, ̃︀𝐷(𝑓←) + 𝑅̂
ℓ←, ̃︀𝐷(𝑓*)−𝑅

ℓ←, ̃︀𝒟(𝑓*) + 𝑅̂
ℓ←, ̃︀𝐷(𝑓←)− 𝑅̂

ℓ←, ̃︀𝐷(𝑓*)

≤ 0 + 2max
𝑓∈ℱ
|𝑅̂

ℓ←, ̃︀𝐷(𝑓)−𝑅
ℓ←, ̃︀𝒟(𝑓)|

≤ 4𝐿←R(ℱ) + 2𝐿← · (ℓ− ℓ) · log(𝐾 + 1

𝛿
) ·
√︂

1

𝑁𝐾
.



Similarly, for aggregation methods, we have:

𝑅ℓ,𝒟(𝑓
∙
←)−𝑅ℓ,𝒟(𝑓

*) = 𝑅
ℓ←, ̃︀𝒟∙(𝑓∙←)−𝑅

ℓ←, ̃︀𝒟∙(𝑓*)
= 𝑅

ℓ←, ̃︀𝒟∙(𝑓∙←)− 𝑅̂
ℓ←, ̃︀𝐷∙(𝑓∙←) + 𝑅̂

ℓ←, ̃︀𝐷∙(𝑓*)−𝑅
ℓ←, ̃︀𝒟∙(𝑓*) + 𝑅̂

ℓ←, ̃︀𝐷∙(𝑓∙←)− 𝑅̂
ℓ←, ̃︀𝐷∙(𝑓*)

≤ 0 + 2max
𝑓∈ℱ
|𝑅̂

ℓ←, ̃︀𝐷∙(𝑓)−𝑅
ℓ←, ̃︀𝒟∙(𝑓)|

≤ 4𝐿∙←R(ℱ) + 2𝐿∙← · (ℓ− ℓ) ·
√︂

log(1/𝛿)

2𝑁
.

Note that 𝜂𝐾 =
𝐾·log( 1

𝛿
)

2(log(𝐾+1
𝛿

))
2 and 𝜂∙𝐾 ≡ 1, we then have:

𝑅ℓ,𝒟(𝑓
𝑢

←)−𝑅ℓ,𝒟(𝑓
*) ≤ 4𝐿𝑢

←R(ℱ) + 𝐿𝑢
← · (ℓ− ℓ)

𝐿
·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁

Defined as: Δ
𝑢
𝑅←

.

A.2. Proof of Theorem 4.2

Proof. The proof is straightforward if we proceed with the proof of Lemma 4.1 with the below
discussions. With the knowledge of noise rates for both methods, remember that 𝐿𝑢

← =
(1+|𝜌𝑢0−𝜌𝑢1 |)𝐿

1−𝜌𝑢0−𝜌𝑢1
, we have:

Δ𝑅← < Δ
∙
𝑅←

=⇒ 2𝐿←R(ℱ) + 𝐿←
𝐿
· (ℓ− ℓ) · log(𝐾 + 1

𝛿
) ·
√︂

1

𝑁𝐾
< 2𝐿∙←R(ℱ) + 𝐿∙←

𝐿
· (ℓ− ℓ) ·

√︂
log(1/𝛿)

2𝑁

=⇒ 2 · 𝐿← − 𝐿∙←
ℓ− ℓ

· 𝐿 ·R(ℱ) < 𝐿∙← ·
√︂

log(1/𝛿)

2𝑁
− 𝐿← · log(

𝐾 + 1

𝛿
) ·
√︂

1

𝑁𝐾

=⇒ 2 · 𝐿← − 𝐿∙←
ℓ− ℓ

· 𝐿 ·R(ℱ) <

(︃
𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾

)︃√︂
log(1/𝛿)

2𝑁

=⇒ 2

√︃
2𝑁

log(1/𝛿)

𝐿← − 𝐿∙←
ℓ− ℓ

· 𝐿 ·R(ℱ) < 𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾
.

For any finite concept class ℱ ⊂ {𝑓 : 𝑋 → {0, 1}}, and the sample set 𝑆 = {𝑥1, ..., 𝑥𝑁}, the

Rademacher complexity is upper bounded by
√︁

2𝑑 log(𝑁)
𝑁 where 𝑑 is the VC dimension of ℱ .

To achieve Δ𝑅← < Δ
∙
𝑅←, we simply need to find the condition of 𝐾 (or 𝜂𝐾 ) that satisfies the

below in-equation:

Δ𝑅← < Δ
∙
𝑅← =⇒ 2

√︃
2𝑁

log(1/𝛿)

𝐿← − 𝐿∙←
ℓ− ℓ

· 𝐿 ·
√︂

2𝑑 log(𝑁)

𝑁
<

(︃
𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾

)︃



=⇒ 4
𝐿← − 𝐿∙←

ℓ− ℓ
· 𝐿 ·

√︃
𝑑 log(𝑁)

log(1/𝛿)
<

(︃
𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾

)︃

=⇒ (𝐿← − 𝐿∙←) · 4

ℓ− ℓ
· 𝐿 ·

√︃
𝑑 log(𝑁)

log(1/𝛿)

denoted as 𝛼←,which is a function of 𝑁,𝛿,𝑑,𝐿

<

(︃
𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾

)︃

=⇒ (𝐿← − 𝐿∙←) · 𝛼← <

(︃
𝐿∙← − 𝐿← ·

√︃
1

𝜂𝐾

)︃

=⇒ (𝐿← − 𝐿∙←) · 𝛼← < (𝐿∙← − 𝐿←) +

(︃
1−

√︃
1

𝜂𝐾

)︃
· 𝐿←

=⇒ 𝛼← + 1 <

(︃
1−

√︃
1

𝜂𝐾

)︃
· 𝐿←
𝐿← − 𝐿∙←

=⇒ 1

𝛾
<
(︁
1− (𝜂𝐾)−

1
2

)︁
· 𝐿←
𝐿← − 𝐿∙←

=⇒ 𝛼𝐾 ·
1

1− (𝜂𝐾)−
1
2

≤ 𝛾,

where we denote by 𝛼𝐾 := 1− 𝐿∙←/𝐿←, 𝛾 = 1/(1 + 4𝐿
ℓ−ℓ

√︁
𝑑 log(𝑁)
log(1/𝛿) ).

A.3. Proof of Theorem 4.3
Proof.

Var(𝑓
𝑢

←) = E(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)− E(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢 [ℓ(𝑓
𝑢

←(𝑋), ̃︀𝑌 𝑢)]
]︁2

=E ̃︀𝒟𝑢

[︃ [︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁2

+
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)]
]︁2
− 2ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)E ̃︀𝒟𝑢 [ℓ(𝑓
𝑢

←(𝑋), ̃︀𝑌 𝑢)]

]︃

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁2

+
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)]
]︁2
− E ̃︀𝒟𝑢

[︁
2ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)E ̃︀𝒟𝑢 [ℓ(𝑓
𝑢

←(𝑋), ̃︀𝑌 𝑢)]
]︁

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁2
−
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)]
]︁2

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁2
− (𝑅ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←))2.

A special case is the 0-1 loss, i.e., ℓ(·) = 1(·), we then have:

Var(𝑓
𝑢

←) =E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁2
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

←))2

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

←(𝑋), ̃︀𝑌 𝑢)
]︁
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

←))2

=𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←)− (𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←))2,



where 𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←) ∈ [0, 1] and 𝑔(𝑎) = 𝑎− 𝑎2 is monotonically increasing when 𝑎 < 1
2 . Note

that: 𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

←) < 𝐿𝑢
←0 · (ℓ− ℓ) ·

√︁
log(1/𝛿)
2𝜂𝑢𝐾𝑁 , when

𝐿𝑢
←0 · (ℓ− ℓ) ·

√︃
log(1/𝛿)

2𝜂𝑢𝐾𝑁
≤ 1

2
⇐⇒ 𝐿𝑢

←0(𝜂
𝑢
𝐾)−

1
2 <

√︃
𝑁

2(ℓ− ℓ)2 log(1/𝛿)
,

we have: Var(𝑓
𝑢

←) ≤ 𝑔
(︁
𝐿𝑢
←·(ℓ−ℓ)

𝐿 ·
√︁

2 log(1/𝛿)
𝜂𝑢𝐾𝑁

)︁
.

To achieve: 𝑔
(︁
𝐿←·(ℓ−ℓ)

𝐿 ·
√︁

2 log(1/𝛿)
𝜂𝐾𝑁

)︁
≤ 𝑔

(︁
𝐿∙←·(ℓ−ℓ)

𝐿 ·
√︁

2 log(1/𝛿)
𝜂∙𝐾𝑁

)︁
, we simply need:

𝐿←0 · (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝐾𝑁
≤ 𝐿∙←0 · (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂∙𝐾𝑁
⇐⇒

√︀
𝜂𝑢𝐾 >

𝐿←
𝐿∙←

.

A.4. Proof for Corollary 4.4

For a general matrix 𝑈 = (𝑇 𝑢)−1, we firstly note

1𝑢← − 1𝑢← = max
𝑖,𝑗∈[𝑀 ]

𝑈𝑢
𝑖𝑗 − min

𝑖,𝑗∈[𝑀 ]
𝑈𝑢
𝑖𝑗

≤| max
𝑖,𝑗∈[𝑀 ]

𝑈𝑢
𝑖𝑗 |+ | min

𝑖,𝑗∈[𝑀 ]
𝑈𝑢
𝑖𝑗 |

≤| max
𝑖∈[𝑀 ]

∑︁
𝑗∈[𝑀 ],𝑈𝑖𝑗>0

𝑈𝑢
𝑖𝑗 |+ | min

𝑖∈[𝑀 ]

∑︁
𝑗∈[𝑀 ],𝑈𝑖𝑗<0

𝑈𝑢
𝑖𝑗 |.

Recall 𝑇 𝑢1 = 1⇒ 1 = (𝑇 𝑢)−11. We know the above maximum and minimum take the same
𝑖. Then

1𝑢← − 1𝑢← ≤| max
𝑖∈[𝑀 ]

∑︁
𝑗∈[𝑀 ],𝑈𝑖𝑗>0

𝑈𝑢
𝑖𝑗 |+ | min

𝑖∈[𝑀 ]

∑︁
𝑗∈[𝑀 ],𝑈𝑖𝑗<0

𝑈𝑢
𝑖𝑗 |

=‖𝑈𝑢‖∞
(𝑎)

≤ 1

min𝑖∈[𝑀 ] (𝑇
𝑢
𝑖𝑖 −

∑︀
𝑗 ̸=𝑖 𝑇

𝑢
𝑖𝑗)

≤ 1

1− 2𝑒𝑢
, 𝑒𝑢 := max

𝑖∈[𝑀 ]
(1− 𝑇 𝑢

𝑖𝑖), 𝑒𝑢 < 0.5.

Now we prove the inequality (𝑎) [76]. Let 𝜈 satisfy

‖(𝑇 𝑢)−1‖∞ = ‖(𝑇 𝑢)−1𝜈‖∞/‖𝜈‖∞

and let 𝜇 = (𝑇 𝑢)−1𝜈. Then
‖(𝑇 𝑢)−1‖∞ = ‖𝜇‖∞/‖𝜈‖∞



To bound ‖𝜇‖, we choose 𝑖 such that 𝜇𝑖 = ‖𝜇‖∞. Then

𝑇 𝑢
𝑖𝑖𝜇𝑖 = 𝜈𝑖 −

∑︁
𝑗 ̸=𝑖

𝑇 𝑢
𝑖𝑗𝜇𝑗 ,

which further gives

|𝑇 𝑢
𝑖𝑖 |‖𝜇‖∞ ≤ |𝜈𝑖|+

∑︁
𝑗 ̸=𝑖

|𝑇 𝑢
𝑖𝑗 ||𝜇𝑗 | ≤ |𝜈𝑖|+ ‖𝜇‖∞

∑︁
𝑗 ̸=𝑖

|𝑇 𝑢
𝑖𝑗 |.

Therefore,

‖𝜇‖∞ ≤
|𝜈𝑖|

𝑇 𝑢
𝑖𝑖 −

∑︀
𝑗 ̸=𝑖 𝑇

𝑢
𝑖𝑗

,

and
‖(𝑇 𝑢)−1‖∞ = ‖𝜇‖∞/‖𝜈‖∞ ≤

1

𝑇 𝑢
𝑖𝑖 −

∑︀
𝑗 ̸=𝑖 𝑇

𝑢
𝑖𝑗

.

On the other hand, denoting by ‖𝑈‖max := max𝑖,𝑗∈[𝑀 ] |𝑈𝑖𝑗 |, from eigenvalues, we know

1𝑢← − 1𝑢← ≤‖𝑈𝑢‖∞ ≤
√
𝑀𝜆max(𝑈) =

√
𝑀

𝜆min(𝑇 𝑢)
.

where 𝜆min(𝑇
𝑢) denotes the minimal eigenvalue of the matrix 𝑇 𝑢. Therefore,

1𝑢← − 1𝑢← = 𝐿∘←0 = min{ 1

1− 2𝑒𝑢𝑖max

,

√
𝑀

𝜆min(𝑇 𝑢)
},

where 𝑒𝑢 := max𝑖∈[𝑀 ](1− 𝑇 𝑢
𝑖𝑖), 𝑒𝑢 < 0.5, and 𝜆min(𝑇

𝑢) denotes the minimal eigenvalue of
the matrix 𝑇 𝑢.

A.5. Proof of Lemma 3.2

Proof. Note that for 𝑓 = 𝑓
𝑢
, we have:

𝑅ℓ,𝒟(𝑓
𝑢
)−min

𝑓∈ℱ
𝑅ℓ,𝒟(𝑓) = 𝑅ℓ,𝒟(𝑓

𝑢
)−𝑅ℓ,𝒟(𝑓

*)

=𝑅ℓ,𝒟(𝑓
𝑢
)−𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
)

Distribution shift

+𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
)−min

𝑓∈ℱ
𝑅

ℓ, ̃︀𝒟𝑢(𝑓) + min
𝑓∈ℱ

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*).

Estimation error

(11)

The term of distribution shift can be upper bounded by:

𝑅ℓ,𝒟(𝑓
𝑢
)−𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
)

=E(𝑋,𝑌 )∼𝒟

[︁
ℓ(𝑓

𝑢
(𝑋), 𝑌 )

]︁
− E

(𝑋,̃︀𝑌 𝑢
𝑖 )∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢

𝑖 )
]︁

≤max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌 )∼𝒟 [ℓ(𝑓(𝑋), 𝑌 )]− E

(𝑋,̃︀𝑌 𝑢
𝑖 )∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢

𝑖 )
]︁⃒⃒⃒

=max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟 [ℓ(𝑓(𝑋), 1)] + E(𝑋,𝑌=0)∼𝒟 [ℓ(𝑓(𝑋), 0)]



− E
(𝑋,̃︀𝑌 𝑢

𝑖 )∼ ̃︀𝒟𝑢,𝑌=1

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢

𝑖 )
]︁
− E

(𝑋,̃︀𝑌 𝑢
𝑖 )∼ ̃︀𝒟𝑢,𝑌=0

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢

𝑖 )
]︁ ⃒⃒⃒

=max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟 [ℓ(𝑓(𝑋), 1)] + E(𝑋,𝑌=0)∼𝒟 [ℓ(𝑓(𝑋), 0)]

− E
(𝑋,̃︀𝑌 𝑢

𝑖 =1)∼ ̃︀𝒟𝑢,𝑌=1
[ℓ(𝑓(𝑋), 1)]− E

(𝑋,̃︀𝑌 𝑢
𝑖 =0)∼ ̃︀𝒟𝑢,𝑌=1

[ℓ(𝑓(𝑋), 0)]

− E
(𝑋,̃︀𝑌 𝑢

𝑖 =1)∼ ̃︀𝒟𝑢,𝑌=0
[ℓ(𝑓(𝑋), 1)]− E

(𝑋,̃︀𝑌 𝑢
𝑖 =0)∼ ̃︀𝒟𝑢,𝑌=0

[ℓ(𝑓(𝑋), 0)]
⃒⃒⃒

=max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟 [ℓ(𝑓(𝑋), 1)] + E(𝑋,𝑌=0)∼𝒟 [ℓ(𝑓(𝑋), 0)]

− E(𝑋,𝑌=1)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 1|𝑌 = 1) · ℓ(𝑓(𝑋), 1)
]︁
− E(𝑋,𝑌=1)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 0|𝑌 = 1) · ℓ(𝑓(𝑋), 0)
]︁

− E(𝑋,𝑌=0)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 1|𝑌 = 0) · ℓ(𝑓(𝑋), 1)
]︁
− E(𝑋,𝑌=0)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 0|𝑌 = 0) · ℓ(𝑓(𝑋), 0)
]︁⃒⃒⃒
.

Combine similar terms, we then have:

=max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 0|𝑌 = 1) · ℓ(𝑓(𝑋), 1)
]︁
+ E(𝑋,𝑌=0)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 1|𝑌 = 0) · ℓ(𝑓(𝑋), 0)
]︁

− E(𝑋,𝑌=1)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 0|𝑌 = 1) · ℓ(𝑓(𝑋), 0)
]︁
− E(𝑋,𝑌=0)∼𝒟

[︁
P(̃︀𝑌 𝑢

𝑖 = 1|𝑌 = 0) · ℓ(𝑓(𝑋), 1)
]︁ ⃒⃒⃒

=max
𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟 [𝜌𝑢1 · (ℓ(𝑓(𝑋), 1)− ℓ(𝑓(𝑋), 0))] + E(𝑋,𝑌=0)∼𝒟 [𝜌𝑢0 · (ℓ(𝑓(𝑋), 0)− ℓ(𝑓(𝑋), 1))]

⃒⃒⃒
≤max

𝑓∈ℱ

⃒⃒⃒
E(𝑋,𝑌=1)∼𝒟

[︀
𝜌𝑢1 ·

(︀
ℓ− ℓ

)︀]︀
+ E(𝑋,𝑌=0)∼𝒟

[︀
𝜌𝑢0 ·

(︀
ℓ− ℓ

)︀]︀ ⃒⃒⃒
=(𝑝1𝜌

𝑢
1 + 𝑝0𝜌

𝑢
0) ·

(︀
ℓ− ℓ

)︀
.

Thus, we have:

𝑅ℓ,𝒟(𝑓)−𝑅
ℓ, ̃︀𝒟𝑢(𝑓) ≤ Δ

𝑢,1
𝑅 := (𝜌𝑢0𝑝0 + 𝜌𝑢1𝑝1) ·

(︀
ℓ− ℓ

)︀
.

A.6. Proof of Lemma 3.3

Proof. For the term Estimation error, we have:

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*)

=𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
)−min

𝑓∈ℱ
𝑅

ℓ, ̃︀𝒟𝑢(𝑓) + min
𝑓∈ℱ

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*)

Estimation error

≤𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
)−min

𝑓∈ℱ
𝑅

ℓ, ̃︀𝒟𝑢(𝑓)

Error 1

+ |min
𝑓∈ℱ

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*)|

Error 2

The upper bound of Error 1 could be derived directly from the proof of Lemma 4.1: since
the loss function makes no use of loss correction, the L-Lipschitz constant does not have to
multiply with the constant and 𝐿𝑢

← → 𝐿. Besides, the constant for the variance term (square



term) reduces to (ℓ− ℓ). Thus, we have:

Error 1 ≤ 4𝐿R(ℱ) + (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁
, ∀𝑓 ∈ ℱ .

For the term Error 2, the upper bound could be derived with the same procedure as adopted in
the proof of Lemma 3.2. Thus, we obtain:

𝑅
ℓ, ̃︀𝒟𝑢(𝑓)−𝑅ℓ,𝒟(𝑓

*) ≤ 4𝐿R(ℱ) + (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝑢𝐾𝑁
+Δ

𝑢,1
𝑅

Defined as: Δ
𝑢,2
𝑅

.

A.7. Proof of Theorem 3.4

Proof. To achieve a smaller upper bound for the separation method, mathematically, we want:

4𝐿R(ℱ) + (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂𝐾𝑁
+ 2(𝜌0𝑝0 + 𝜌1𝑝1) ·

(︀
ℓ− ℓ

)︀
≤4𝐿R(ℱ) + (ℓ− ℓ) ·

√︃
2 log(1/𝛿)

𝜂∙𝐾𝑁
+ 2(𝜌∙0𝑝0 + 𝜌∙1𝑝1) ·

(︀
ℓ− ℓ

)︀
,

which is equivalent to proving:√︂
log(1/𝛿)

2𝑁
((𝜂𝐾)−

1
2 − 1) · (ℓ− ℓ) ≤ [(𝜌∙0𝑝0 + 𝜌∙1𝑝1)− (𝜌0𝑝0 + 𝜌1𝑝1)] ·

(︀
ℓ− ℓ

)︀
⇐⇒

√︂
log(1/𝛿)

2𝑁
(1− (𝜂𝐾)−

1
2 ) ≥ [(𝜌0𝑝0 + 𝜌1𝑝1)− (𝜌∙0𝑝0 + 𝜌∙1𝑝1)] .

De-noising effect of aggregation ≥0

(12)

Eqn. (12) then requires:
√︁

log(1/𝛿)
2𝑁 ≥ (𝜌0𝑝0+𝜌1𝑝1)−(𝜌∙0𝑝0+𝜌∙1𝑝1)

(1−(𝜂𝐾)−
1
2 )

, which is mentioned as 𝛼𝐾 ·
1

1−(𝜂𝐾)−
1
2
≤ 𝛾, where 𝛼𝐾 := (𝜌0𝑝0 + 𝜌1𝑝1)− (𝜌∙0𝑝0 + 𝜌∙1𝑝1), 𝛾 =

√︀
log(1/𝛿)/2𝑁 .

A.8. Proof of Theorem 3.6

Proof. For 𝑢 ∈ {, ∙}, we have:

Var(𝑓
𝑢
) =E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)− E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢 [ℓ(𝑓
𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︁2
=E ̃︀𝒟𝑢

[︃ [︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁2
+
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︁2
− 2ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︃



=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁2
+
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︁2
− E ̃︀𝒟𝑢

[︁
2ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︁
=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁2
−
[︁
E ̃︀𝒟𝑢 [ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)]

]︁2
=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁2
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
))2.

A special case is the 0-1 loss, i.e., ℓ(·) = 1(·), we then have:

Var(𝑓
𝑢
) =E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁2
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
))2

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
))2

=𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
)− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
))2 = 𝑔

(︁
𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
)
)︁
.

where 𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
) ∈ [0, 1] and 𝑔(𝑎) = 𝑎− 𝑎2 is monotonically increasing when 𝑎 < 1

2 . Thus,
when

𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢
) ≤ (ℓ− ℓ)

reduces to 1

·

√︃
log(1/𝛿)

2𝜂𝑢𝐾𝑁
≤ 1

2
⇐⇒ 𝜂𝑢𝐾 ≥

2 log(1/𝛿)

𝑁
,

we could derive Var(𝑓
𝑢
) ≤ 𝑔(

√︁
2 log(1/𝛿)

𝜂𝑢𝐾𝑁 ).

A.9. Proof of Corollary 3.7

Proof. In the multi-class extension, the only difference is the upper bound of the Distribution
Shift term in Eqn. (11), which now becomes:

𝑅ℓ,𝒟(𝑓
𝑢
)−𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢
)

=E(𝑋,𝑌 )∼𝒟

[︁
ℓ(𝑓

𝑢
(𝑋), 𝑌 )

]︁
− E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢
(𝑋), ̃︀𝑌 𝑢)

]︁
≤max

𝑓∈ℱ

⃒⃒⃒⃒
⃒E(𝑋,𝑌 )∼𝒟 [ℓ(𝑓(𝑋), 𝑌 )]− E

(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)

]︁ ⃒⃒⃒⃒⃒
=max

𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒
⎡⎣ ∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︃
ℓ(𝑓(𝑋), 𝑗)

⎤⎦⎤⎦−
⎡⎣ ∑︁
𝑗∈[𝑀 ]

E
(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢,𝑌=𝑗

[︁
ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)

]︁⎤⎦ ⃒⃒⃒⃒⃒
=max

𝑓∈ℱ

⃒⃒⃒⃒
⃒
⎡⎣ ∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟 [ℓ(𝑓(𝑋), 𝑗)]

⎤⎦−
⎡⎣ ∑︁
𝑘∈[𝑀 ]

∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︁
P(̃︀𝑌 𝑢 = 𝑘|𝑌 = 𝑗) · ℓ(𝑓(𝑋), 𝑘)

]︁⎤⎦ ⃒⃒⃒⃒⃒
=max

𝑓∈ℱ

⃒⃒⃒⃒
⃒
⎡⎣ ∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︁
P(̃︀𝑌 𝑢 ̸= 𝑗|𝑌 = 𝑗) · ℓ(𝑓(𝑋), 𝑗)

]︁⎤⎦−
⎡⎣ ∑︁
𝑘∈[𝑀 ],𝑘 ̸=𝑗

∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︁
P(̃︀𝑌 𝑢 = 𝑘|𝑌 = 𝑗) · ℓ(𝑓(𝑋), 𝑘)

]︁⎤⎦ ⃒⃒⃒⃒⃒



=max
𝑓∈ℱ

⃒⃒⃒⃒
⃒ ∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︃
P(̃︀𝑌 𝑢 ̸= 𝑗|𝑌 = 𝑗) · ℓ(𝑓(𝑋), 𝑗)−

∑︁
𝑘∈[𝑀 ],𝑘 ̸=𝑗

P(̃︀𝑌 𝑢 = 𝑘|𝑌 = 𝑗) · ℓ(𝑓(𝑋), 𝑘)

]︃⃒⃒⃒⃒
⃒

≤max
𝑓∈ℱ

⃒⃒⃒⃒
⃒ ∑︁
𝑗∈[𝑀 ]

E(𝑋,𝑌=𝑗)∼𝒟

[︃
P(̃︀𝑌 𝑢 ̸= 𝑗|𝑌 = 𝑗) ·

(︀
ℓ− ℓ

)︀ ]︃⃒⃒⃒⃒⃒
(Assumed uniform prior)

=
∑︁
𝑗∈[𝑀 ]

P(𝑌 = 𝑗) · (1− 𝑇 𝑢
𝑗,𝑗)
(︀
ℓ− ℓ

)︀
.

A.10. Proof of Lemma 4.5

Proof. The proof of Lemma 4.5 builds on Theorem 7 in [42]: The performance bound for
aggregation methods is the special case of Theorem 7 in [42] (adopting 𝛼* = 1 defined in [42]).
As for that of separation methods, the incurred difference lies in the appearance of the weight
of sample complexity 𝜂𝐾 . Thus, we have:

𝑅ℓ,𝒟(𝑓
𝑢

↬)−𝑅ℓ,𝒟(𝑓
*) ≤ 1

1− 𝜌𝑢0 − 𝜌𝑢1

(︃
8𝐿R(ℱ) +

√︃
2 log(4/𝛿)

𝜂𝑢𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀)︃
⇐⇒ 𝑅ℓ,𝒟(𝑓

𝑢

↬)−𝑅ℓ,𝒟(𝑓
*) ≤ Δ

𝑢
𝑅↬,

where Δ
𝑢
𝑅↬ := 8𝐿𝑢

↬R(ℱ) + 𝐿𝑢
↬0

√︁
2 log(4/𝛿)

𝜂𝑢𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
.

A.11. Proof of Theorem 4.6

Proof. Denote by Δ
𝑢
𝑅↬ := 8𝐿R(ℱ)

1−𝜌𝑢0−𝜌𝑢1
+

4

√︂
log(4/𝛿)
2𝜂𝑢

𝐾
𝑁 (1+2(ℓ̄−ℓ))

1−𝜌𝑢0−𝜌𝑢1
, in order to achieve Δ𝑅↬ < Δ

∙
𝑅↬,

we require Δ𝑅↬ < Δ
∙
𝑅↬, which is equivalent to:

8𝐿R(ℱ)
1− 𝜌0 − 𝜌1

+
4
√︁

log(4/𝛿)
2𝜂𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
1− 𝜌0 − 𝜌1

<
8𝐿R(ℱ)

1− 𝜌∙0 − 𝜌∙1
+

4

√︁
log(4/𝛿)

2𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
1− 𝜌∙0 − 𝜌∙1

,

which is further equivalent to:

8𝐿R(ℱ)
1− 𝜌0 − 𝜌1

− 8𝐿R(ℱ)
1− 𝜌∙0 − 𝜌∙1

<
4

√︁
log(4/𝛿)

2𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
1− 𝜌∙0 − 𝜌∙1

−
4
√︁

log(4/𝛿)
2𝜂𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
1− 𝜌0 − 𝜌1

.

Note that both 1− 𝜌0− 𝜌1 and 1− 𝜌∙0− 𝜌∙1 are positive, the above requirement then reduces to:

[(𝜌0 + 𝜌1)− (𝜌∙0 + 𝜌∙1)]8𝐿R(ℱ) <

[︃
(1− 𝜌0 − 𝜌1)− (1− 𝜌∙0 − 𝜌∙1)

√︃
1

𝜂𝐾

]︃
4

√︂
log(4/𝛿)

2𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀



⇐⇒ [(𝜌0 + 𝜌1)− (𝜌∙0 + 𝜌∙1)]8𝐿R(ℱ)

4

√︁
log(4/𝛿)

2𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀ < (1− 𝜌0 − 𝜌1)− (1− 𝜌∙0 − 𝜌∙1)

√︃
1

𝜂𝐾
.

Note that for any finite concept class ℱ ⊂ {𝑓 : 𝑋 → {0, 1}}, and the sample set 𝑆 =

{𝑥1, ..., 𝑥𝑁}, the Rademacher complexity is upper bounded by
√︁

2𝑑 log(𝑁)
𝑁 where 𝑑 is the VC

dimension of ℱ , a more strict condition to get becomes:√︃
1

𝜂𝐾
<

(1− 𝜌0 − 𝜌1)

(1− 𝜌∙0 − 𝜌∙1)
−

[(𝜌0 + 𝜌1)− (𝜌∙0 + 𝜌∙1)]8𝐿
√︁

2𝑑 log(𝑁)
𝑁

4(1− 𝜌∙0 − 𝜌∙1)
√︁

log(4/𝛿)
2𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀ .
Denote by 𝛼𝐾 := 1 − 𝐿∙↬/𝐿↬, 𝛾 = 1+2(ℓ̄−ℓ)

2𝐿

√︁
log(4/𝛿)
4𝑑 log(𝑁) . The above condition is satisfied if

and only if

𝛼𝐾 ·
1

𝐿∙↬/𝐿↬ − (𝜂𝐾)−
1
2

≤ 𝛾.

A.12. Proof of Theorem 4.7

Proof. Similar to the proof of Theorem 3.6, for 𝑢 ∈ {, ∙}, we have:

Var(𝑓
𝑢

↬) = E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

↬(𝑋), ̃︀𝑌 𝑢)
]︁2
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

↬))2.

A special case is the 0-1 loss, i.e., ℓ(·) = 1(·), we then have:

Var(𝑓
𝑢

↬) =E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

↬(𝑋), ̃︀𝑌 𝑢)
]︁2
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

↬))2

=E ̃︀𝒟𝑢

[︁
ℓ(𝑓

𝑢

↬(𝑋), ̃︀𝑌 𝑢)
]︁
− (𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

↬))2

=𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

↬)− (𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

↬))2 = 𝑔
(︁
𝑅

ℓ, ̃︀𝒟𝑢(𝑓
𝑢

↬)
)︁

where 𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

↬) ∈ [0, 1] and 𝑔(𝑎) = 𝑎− 𝑎2 is monotonically increasing when 𝑎 < 1
2 . Note

that:

𝑅
ℓ, ̃︀𝒟𝑢(𝑓

𝑢

↬) <
1

1− 𝜌𝑢0 − 𝜌𝑢1

√︃
log(4/𝛿)

2𝜂𝑢𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
,

when

1

1− 𝜌𝑢0 − 𝜌𝑢1

√︃
log(4/𝛿)

2𝜂𝑢𝐾𝑁

(︀
1 + 2(ℓ̄− ℓ)

)︀
≤ 1

2
⇐⇒

√︀
𝜂𝑢𝐾 ≥

√︂
2 log(4/𝛿)

𝑁

1 + 2(ℓ̄− ℓ)

1− 𝜌𝑢0 − 𝜌𝑢1
,

we have: Var(𝑓
𝑢

←) ≤ 𝑔
(︁√︁

log(4/𝛿)
2𝜂𝑢𝐾𝑁

1+2(ℓ̄−ℓ)
1−𝜌𝑢0−𝜌𝑢1

)︁
. To achieve: Var(𝑓↬) < Var(𝑓

∙
↬), we simply

need: √︃
log(4/𝛿)

2𝜂𝐾𝑁

1 + 2(ℓ̄− ℓ)

1− 𝜌0 − 𝜌1
≤

√︃
log(4/𝛿)

2𝜂∙𝐾𝑁

1 + 2(ℓ̄− ℓ)

1− 𝜌∙0 − 𝜌∙1
⇐⇒ √𝜂𝐾 ≥

𝐿↬0

𝐿∙↬0

.



A.13. Proof of Corollary 4.8

Proof. Regarding the multi-class extension of Lemma 4.5, the only different thing lies in the
constant: 𝐿𝑢

↬0. The following Lemma A.1 helps us find out the multi-class form of 𝐿𝑢
↬0.

Lemma A.1. Assume the clean label 𝑌 has equal prior 𝑃 (𝑌 = 𝑗) = 1
𝑀 ,∀𝑗 ∈ [𝑀 ]. For the

uniform noise transition matrix [44] such that 𝑇 𝑢
𝑖,𝑗 = 𝜌𝑢𝑖 ,∀𝑗 ∈ [𝑀 ], the expected ℓ↬ in the

multi-class setting is invariant to label noise up to an affine transformation:

E
(𝑋,̃︀𝑌 𝑢)∼ ̃︀𝒟𝑢 [ℓ↬(𝑓(𝑋), ̃︀𝑌 𝑢)] =

⎛⎝1−
∑︁
𝑗∈[𝑀 ]

𝜌𝑢𝑗

⎞⎠E𝒟[ℓ↬(𝑓(𝑋), 𝑌 )]. (13)

Proof of Lemma A.1 Recall that 𝒟 and ̃︀𝒟𝑢 refer to the joint distribution over (𝑋,𝑌 ) and
(𝑋, ̃︀𝑌 𝑢), respectively. We further denote the marginal distributions of 𝑋 , 𝑌 , and ̃︀𝑌 𝑢 by 𝒟𝑋 ,
𝒟𝑌 , and ̃︀𝒟̃︀𝑌 𝑢 , respectively. Let 𝑋𝑝 ∼ 𝒟𝑋 , ̃︀𝑌 𝑢

𝑝 ∼ ̃︀𝒟̃︀𝑌 𝑢 be the random variables corresponding
to the peer samples. The peer loss function is defined as

ℓ↬(𝑓(𝑥𝑛), 𝑦
𝑢
𝑛) = ℓ(𝑓(𝑥𝑛), 𝑦

𝑢
𝑛)− ℓ(𝑓(𝑥𝑝,𝑛), 𝑦

𝑢
𝑝,𝑛), (14)

where (𝑥𝑛, 𝑦
𝑢
𝑛) is a normal training sample pair, 𝑥𝑝,𝑛 and 𝑦𝑢𝑝,𝑛 are corresponding peer samples.

Taking expectation for (14) yields

E ̃︀𝒟𝑢 [ℓ↬(𝑓(𝑋), ̃︀𝑌 𝑢)] = E ̃︀𝒟𝑢 [ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)]− E ̃︀𝒟̃︀𝑌 𝑢

[︁
E𝒟𝑋

[ℓ(𝑓(𝑋𝑝), ̃︀𝑌 𝑢
𝑝 )]
]︁
. (15)

The first term in (15) is

E ̃︀𝒟𝑢 [ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)]

=
∑︁

𝑗∈[𝑀 ]

∑︁
𝑖∈[𝑀 ]

𝑇𝑢
𝑖𝑗 · P(𝑌 = 𝑖) · E𝒟|𝑌=𝑖[ℓ(𝑓(𝑋), 𝑗)]

=
∑︁

𝑗∈[𝑀 ]

[︃
𝑇𝑢
𝑗𝑗 · P(𝑌 = 𝑗) · E𝒟|𝑌=𝑗 [ℓ(𝑓(𝑋), 𝑗)] +

∑︁
𝑖∈[𝑀 ],𝑖̸=𝑗

𝑇𝑢
𝑖𝑗 · P(𝑌 = 𝑖) · E𝒟|𝑌=𝑖[ℓ(𝑓(𝑋), 𝑗)]

]︃

=
∑︁

𝑗∈[𝑀 ]

[︃⎛⎝1−
∑︁

𝑖 ̸=𝑗,𝑖∈[𝑀 ]

𝑇𝑢
𝑗𝑖

⎞⎠ · P(𝑌 = 𝑗) · E𝒟|𝑌=𝑗 [ℓ(𝑓(𝑋), 𝑗)] +
∑︁

𝑖∈[𝑀 ],𝑖̸=𝑗

𝑇𝑢
𝑖𝑗 · P(𝑌 = 𝑖) · E𝒟|𝑌=𝑖[ℓ(𝑓(𝑋), 𝑗)]

]︃
.

Accordingly, noting 𝑋𝑝 and ̃︀𝑌 𝑢
𝑝 are independent, the second term in (15) is

E ̃︀𝒟 ̃︀𝑌 𝑢

[︁
E𝒟𝑋

[ℓ(𝑓(𝑋𝑝), ̃︀𝑌 𝑢
𝑝 )]
]︁

=
∑︁

𝑗∈[𝑀 ]

P(̃︀𝑌 𝑢
𝑝 = 𝑗) · E𝒟𝑋

[ℓ(𝑓(𝑋𝑝), 𝑗)]

=
∑︁

𝑗∈[𝑀 ]

∑︁
𝑖∈[𝑀 ]

𝑇𝑢
𝑖𝑗 · P(𝑌𝑝 = 𝑖) · E𝒟𝑋

[ℓ(𝑓(𝑋), 𝑗)]

=
∑︁

𝑗∈[𝑀 ]

[︃
𝑇𝑢
𝑗𝑗 · P(𝑌𝑝 = 𝑗) · E𝒟𝑋

[ℓ(𝑓(𝑋), 𝑗)] +
∑︁

𝑖∈[𝑀 ],𝑖̸=𝑗

𝑇𝑢
𝑖𝑗 · P(𝑌𝑝 = 𝑖) · E𝒟𝑋

[ℓ(𝑓(𝑋), 𝑗)]

]︃



=
∑︁

𝑗∈[𝑀 ]

⎡⎣(︃1− ∑︁
𝑖 ̸=𝑗,𝑖∈[𝑀 ]

𝑇𝑢
𝑗𝑖

⎞⎠ · P(𝑌𝑝 = 𝑗) · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)] +

∑︁
𝑖∈[𝑀 ],𝑖̸=𝑗

𝑇𝑢
𝑖𝑗 · P(𝑌𝑝 = 𝑖) · E𝒟𝑋

[ℓ(𝑓(𝑋), 𝑗)]

]︃
.

In this case, we have 𝜌𝑢𝑖 = 𝑇𝑢
𝑗𝑖,∀𝑗 ∈ [𝑀 ], 𝑗 ̸= 𝑖. The first term becomes

E ̃︀𝒟𝑢 [ℓ(𝑓(𝑋), ̃︀𝑌 𝑢)]

=
∑︁

𝑗∈[𝑀 ]

[︃⎛⎝1−
∑︁

𝑖 ̸=𝑗,𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · P(𝑌 = 𝑗) · E𝒟|𝑌=𝑗 [ℓ(𝑓(𝑋), 𝑗)] +
∑︁

𝑖∈[𝑀 ],𝑖̸=𝑗

𝜌𝑢𝑗 · P(𝑌 = 𝑖) · E𝒟|𝑌=𝑖[ℓ(𝑓(𝑋), 𝑗)]

]︃

=
∑︁

𝑗∈[𝑀 ]

[︃⎛⎝1−
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · P(𝑌 = 𝑗) · E𝒟|𝑌=𝑗 [ℓ(𝑓(𝑋), 𝑗)] +
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑗 · P(𝑌 = 𝑖) · E𝒟|𝑌=𝑖[ℓ(𝑓(𝑋), 𝑗)]

]︃

=

⎡⎣⎛⎝1−
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · E𝒟[ℓ(𝑓(𝑋), 𝑌 )] +
∑︁

𝑗∈[𝑀 ]

𝜌𝑢𝑗 · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)]

⎤⎦ .

The second term becomes

E ̃︀𝒟 ̃︀𝑌 𝑢

[︁
E𝒟𝑋

[ℓ(𝑓(𝑋𝑝), ̃︀𝑌 𝑢
𝑝 )]
]︁

=
∑︁

𝑗∈[𝑀 ]

[︃⎛⎝1−
∑︁

𝑖 ̸=𝑗,𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · P(𝑌𝑝 = 𝑗) · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)] +

∑︁
𝑖∈[𝑀 ],𝑖̸=𝑗

𝜌𝑢𝑗 · P(𝑌𝑝 = 𝑖) · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)]

]︃

=
∑︁

𝑗∈[𝑀 ]

[︃⎛⎝1−
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · P(𝑌𝑝 = 𝑗) · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)] +

∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑗 · P(𝑌𝑝 = 𝑖) · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)]

]︃

=

⎛⎝1−
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠ · E𝒟𝑌
[E𝒟𝑋

[ℓ(𝑓(𝑋𝑝), 𝑌𝑝)]] +
∑︁

𝑗∈[𝑀 ]

𝜌𝑢𝑗 · E𝒟𝑋
[ℓ(𝑓(𝑋), 𝑗)].

Comparing the above two terms we have:

E ̃︀𝒟𝑢 [ℓ↬(𝑓(𝑋), ̃︀𝑌 𝑢)] =

⎛⎝1−
∑︁
𝑖∈[𝑀 ]

𝜌𝑢𝑖

⎞⎠E𝒟[ℓ↬(𝑓(𝑋), 𝑌 )]. (16)

Thus, substituting 𝐿𝑢
↬0 := 1

1−𝜌𝑢
0−𝜌𝑢

1
by 1

1−
∑︀

𝑖∈[𝑀] 𝜌
𝑢
𝑖

, the proof of Corollary 4.8 is finished if we repeat

the corresponding proof of the binary task.

B. Additional Results and Details

B.1. Experiment Details on UCI Datasets

Datasets In this paper, we conducted experiments on two binary (Breast and German) and
two multi-class (StatLog and Optical) UCI classification datasets. As for the splitting of training
and testing, the original settings are used when training and testing files are provided. The
remaining datasets only give one data file. We adopt 50/50 splitting for the testing results’



statistical significance as more data is distributed to testing dataset. More specifically, the
numbers of (training, testing) samples in Breast, German, StatLog, and Optical datasets are (285,
284), (500, 500), (4435, 2000), and (3823, 1797).

Generating the noisy labels onUCI datasets For each UCI dataset adopted in this paper, the
label of each sample in the training dataset will be flipped to the other classes with the probability
𝜖 (noise rate). For the multi-class classification datasets, the specific label which will be flipped
is randomly selected with equal probabilities. For binary and multi-class classification datasets,
(0.1, 0.2, 0.3, 0.4) and (0.2, 0.4, 0.6, 0.8) are used as different lists of noise rates respectively.

Implementation details We implemented a simple two-layer ReLU Multi-Layer Perceptron
(MLP) for the classification task on these four UCI datasets. The Adam optimizer is used with a
learning rate of 0.001 and the batch size is 128.

B.2. Detailed Results on UCI Datasets

In Table 6, we highlight the results with Green (for separation method) and Red (for aggregation
methods) if the performance gap is large than 0.05. Clearly, the label separation method
outperforms both aggregation methods (majority-vote and EM inference) consistently on
StatLog and Optical datasets. For the two binary tasks (Breast and German), aggregation
methods tend to outperform label separation, and we attribute this phenomenon to the fact that
the ”denoising effect of label aggregation is more significant in the binary case”.

B.3. Experiment Details on CIFAR-10 Datasets

The generation of the symmetric noisy dataset is adopted from [44]. As for the instance-
dependent label noise, the generating algorithm follows the state-of-the-art method [77]. Both
cases adopt noise rates: [0.2, 0.4, 0.6, 0.8]. The basic hyper-parameters settings for all methods
are listed as follows: mini-batch size (128), optimizer (SGD), initial learning rate (0.1), momentum
(0.9), weight decay (0.0005), number of epochs (120) and learning rate decay (0.1 at 50 epochs).
Standard data augmentation is applied to each dataset. All experiments run on 8 Nvidia RTX
A5000 GPUs.

B.4. Details Results on CIFAR-10 Dataset

Table 7 includes all the detailed accuracy values that appeared in Figure 5. The results on
the synthetic noisy CIFAR-10 dataset align well with the theoretical observations: label sep-
aration is preferred over label aggregation when the noise rates are high, or the number of
labelers/annotations is insufficient.



UCI-StatLog (symmetric) CE UCI-Optical (symmetric) CE
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 87.94 88.88 88.69 88.69 88.69 88.69 MV 95.27 96.73 95.41 96.73 96.73 96.66
EM 87.63 87.94 88.63 88.69 88.69 88.69 EM 95.34 95.69 96.04 96.73 96.73 96.73
Sep 89.25 90.56 91.19 91.13 91.50 91.25 Sep 97.08 97.57 97.98 98.33 98.26 98.61

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 87.00 87.50 88.25 88.63 88.75 88.69 MV 92.35 96.04 96.11 96.18 96.73 96.73
EM 87.50 87.38 87.75 88.94 88.81 88.69 EM 93.25 94.78 95.68 96.03 96.73 96.73
Sep 87.75 89.31 90.38 91.19 91.19 91.00 Sep 96.59 96.80 97.44 97.64 98.26 98.05

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 80.75 85.00 86.75 87.25 87.75 88.62 MV 83.31 91.51 95.34 95.41 93.11 97.14
EM 85.06 84.37 86.68 87.00 87.81 88.93 EM 88.31 92.35 93.81 95.13 96.31 95.96
Sep 87.18 87.31 88.12 89.81 90.81 90.93 Sep 94.43 95.54 96.52 97.35 97.63 97.98

UCI-StatLog (symmetric) BW UCI-Optical (symmetric) BW
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 89.75 90.06 89.87 89.87 89.87 89.87 MV 94.43 95.41 95.61 96.94 96.94 96.94
EM 89.68 89.87 89.75 89.87 89.87 89.87 EM 94.43 95.82 95.68 96.94 96.94 96.94
Sep 89.87 91.18 92.00 91.43 91.37 91.06 Sep 96.87 97.21 97.63 97.77 98.05 97.63

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 87.62 88.25 89.75 89.62 89.87 89.87 MV 90.19 94.29 94.64 96.80 96.94 96.94
EM 87.93 88.31 89.56 89.81 89.75 89.87 EM 93.53 95.41 96.38 95.89 96.94 96.94
Sep 89.62 89.87 90.18 91.00 91.06 91.37 Sep 95.54 96.59 96.66 97.28 97.77 97.77

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 82.12 87.31 87.00 88.50 89.50 89.81 MV 82.54 88.10 92.97 95.75 93.67 96.52
EM 86.68 86.50 87.31 88.25 89.12 89.81 EM 80.52 90.54 93.11 95.06 96.10 95.82
Sep 86.18 87.62 88.31 89.62 90.93 90.75 Sep 91.72 93.39 93.46 96.38 96.66 97.21

UCI-StatLog (symmetric) PeerLoss UCI-Optical (symmetric) PeerLoss
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 90.25 90.06 90.56 90.56 90.56 90.56 MV 94.71 96.03 96.38 96.52 96.52 96.38
EM 89.87 90.06 90.56 90.56 90.56 90.56 EM 94.43 96.17 96.52 96.52 96.52 96.52
Sep 90.36 91.12 91.68 91.43 91.68 91.43 Sep 97.07 97.35 97.70 98.12 98.05 98.12

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 87.93 89.06 90.18 90.43 90.68 90.56 MV 91.86 94.57 95.54 96.87 96.52 96.52
EM 88.00 88.93 90.12 90.37 90.56 90.56 EM 91.86 93.94 95.96 96.87 96.52 96.52
Sep 89.18 90.25 90.37 91.43 91.68 91.87 Sep 96.66 96.73 96.94 97.63 98.05 98.19

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 78.68 86.68 87.31 88.81 89.75 90.56 MV 76.77 87.34 94.71 95.61 93.88 96.38
EM 86.25 86.68 88.00 88.75 89.12 90.31 EM 86.92 89.98 93.11 96.10 95.82 96.10
Sep 87.50 88.25 88.93 90.18 91.31 91.31 Sep 93.32 95.54 96.10 96.73 97.77 97.91

UCI-pop failuers (symmetric) CE UCI-forest fire (symmetric) CE
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 93.06 93.06 93.06 93.06 93.06 93.06 MV 92.86 92.86 91.84 91.84 91.84 91.84
EM 93.06 93.06 93.06 93.06 93.06 93.06 EM 92.86 92.86 91.84 91.84 91.84 91.84
Sep 93.06 93.52 93.98 94.91 95.83 96.30 Sep 93.88 93.88 95.92 94.90 91.84 93.88

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 93.06 93.06 93.06 93.06 93.06 93.06 MV 81.63 81.63 90.82 91.84 91.84 91.84
EM 93.06 93.06 93.06 93.52 93.06 93.52 EM 58.16 77.55 90.82 88.78 91.84 91.84
Sep 93.06 93.52 93.98 94.91 95.37 95.37 Sep 79.59 79.59 87.76 87.76 90.82 92.86

UCI-pop failuers (symmetric) BW UCI-forest fire (symmetric) BW
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 93.06 93.06 93.06 93.06 93.06 93.06 MV 91.84 92.86 91.84 91.84 91.84 92.86
EM 93.06 93.06 93.06 93.06 93.06 93.06 EM 91.84 92.86 91.84 91.84 91.84 92.86
Sep 93.06 93.52 93.98 95.37 95.83 95.83 Sep 88.78 90.82 92.86 93.88 91.84 94.90

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 92.13 90.59 90.59 90.59 92.91 93.06 MV 84.69 86.73 89.80 91.84 91.84 92.86
EM 93.06 89.35 93.06 91.20 93.06 93.06 EM 73.47 75.51 88.78 91.84 91.84 91.84
Sep 93.06 93.06 93.06 91.20 93.98 94.91 Sep 84.69 84.69 86.73 87.76 86.73 90.82

UCI-pop failuers (symmetric) Peer Loss UCI-forest fire (symmetric) Peer Loss
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 93.06 93.52 94.91 94.44 94.44 94.44 MV 92.86 92.86 92.86 92.86 92.86 94.90
EM 93.06 93.06 94.44 94.44 94.44 94.44 EM 92.86 92.86 92.86 92.86 92.86 94.90
Sep 93.06 92.59 93.98 94.44 95.83 97.22 Sep 88.78 89.80 93.88 93.88 92.86 94.90

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 93.06 93.52 93.52 93.98 94.91 93.52 MV 78.57 78.57 89.80 91.84 89.80 91.84
EM 93.06 93.06 93.06 93.98 93.06 93.52 EM 59.18 73.47 88.78 89.80 89.80 91.84
Sep 88.89 92.59 92.59 93.98 95.83 95.37 Sep 83.67 80.61 85.71 88.78 91.84 92.86

Table 6
The performances of CE/BW/PeerLoss trained on 4 UCI datasets (StatLog, Optical, Pop-Failures, and
Forest Fair datasets), with aggregated labels (majority vote, EM inference), and separated labels. (𝐾 is
the number of labels per training image)



CIFAR-10, Symmetric CE CIFAR-10, Instance CE
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 92.21 92.98 93.54 93.43 93.73 93.40 MV 91.99 93.29 93.57 93.47 93.68 93.60
EM 92.08 92.93 93.54 93.64 93.35 93.37 EM 91.92 93.21 93.55 93.61 93.44 93.44
Sep 92.52 92.89 93.35 93.15 93.42 93.40 Sep 92.36 92.97 93.43 93.24 93.33 93.35

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 89.09 91.59 93.18 93.43 93.26 93.44 MV 87.14 91.15 93.10 93.15 93.23 93.48
EM 88.83 91.02 92.54 93.45 93.69 93.68 EM 88.07 92.40 93.70 93.58 93.74 93.53
Sep 90.61 91.95 92.70 92.92 93.32 93.13 Sep 90.83 91.90 92.63 92.46 93.08 93.26

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 81.85 87.33 89.88 91.88 92.96 93.40 MV 49.22 83.95 89.45 91.60 92.88 93.65
EM 81.04 85.91 89.76 91.57 92.55 93.10 EM 78.34 88.79 91.95 92.97 93.46 93.65
Sep 87.00 89.19 90.70 91.97 92.40 93.17 Sep 83.79 87.55 90.15 91.58 91.86 92.74

𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 20.94 44.62 70.91 79.61 84.83 89.09 MV 14.59 25.25 34.47 57.99 57.51 87.08
EM 37.91 50.78 67.19 75.26 82.97 87.97 EM 20.03 26.54 65.16 80.10 88.59 92.14
Sep 61.47 70.10 79.61 83.93 86.82 90.04 Sep 26.16 28.89 50.35 74.15 71.39 87.54

CIFAR-10, Symmetric BW CIFAR-10, Instance BW
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 92.08 94.09 94.92 94.90 94.79 94.90 MV 92.03 93.87 95.12 95.11 94.97 94.75
EM 92.13 93.08 94.90 94.91 94.90 94.86 EM 91.93 94.39 94.90 94.84 95.05 94.54
Sep 91.74 92.61 92.75 92.59 94.44 92.97 Sep 91.93 92.07 92.70 91.75 93.02 92.47

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 88.28 91.11 92.73 94.60 94.62 94.81 MV 86.61 90.64 93.00 94.73 94.72 94.72
EM 87.41 90.23 92.83 94.77 94.80 95.18 EM 89.83 92.04 94.74 95.00 94.94 94.80
Sep 89.14 89.68 91.07 92.46 92.26 94.24 Sep 88.86 87.89 92.09 89.92 91.05 91.96

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 81.21 86.29 89.51 91.33 93.52 94.81 MV 43.78 82.59 88.56 91.47 93.27 95.06
EM 78.13 84.33 89.44 91.17 92.45 94.60 EM 44.92 87.33 91.39 93.58 94.72 94.99
Sep 83.84 87.05 88.10 89.80 90.95 92.11 Sep 80.88 86.22 88.45 90.69 91.16 92.61

𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 16.43 60.97 71.11 77.86 82.72 88.41 MV 16.00 25.03 33.80 67.91 68.52 86.49
EM 10.00 45.97 66.02 74.37 80.08 87.42 EM 16.06 22.73 53.96 76.24 86.74 92.02
Sep 58.48 69.86 76.03 79.79 82.60 86.31 Sep 27.84 26.68 32.72 37.27 54.41 83.37

CIFAR-10, Symmetric PeerLoss CIFAR-10, Instance PeerLoss
𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.2 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 92.69 93.35 93.90 94.12 94.15 93.81 MV 92.13 93.53 94.00 93.78 94.13 94.08
EM 92.39 93.25 93.76 93.93 93.52 93.77 EM 91.93 93.51 93.78 93.88 94.03 93.82
Sep 93.15 93.51 93.77 93.51 93.56 93.73 Sep 92.86 93.23 93.56 93.72 93.63 93.95

𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.4 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 89.40 91.88 93.42 93.84 93.83 94.04 MV 88.15 91.61 93.21 93.64 93.84 93.69
EM 89.23 91.41 93.06 93.83 93.85 94.11 EM 90.59 92.60 93.95 94.02 94.06 93.68
Sep 91.08 92.38 93.17 93.40 93.56 93.37 Sep 91.06 92.70 93.22 92.92 93.65 93.67

𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.6 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 82.88 87.95 90.42 92.31 93.61 93.79 MV 60.66 84.99 90.30 91.93 93.16 93.81
EM 81.64 86.45 90.09 91.98 93.23 93.58 EM 78.53 89.11 92.44 93.17 93.96 93.85
Sep 87.28 89.80 91.19 92.42 93.18 93.65 Sep 85.76 89.07 91.05 92.22 92.45 93.39

𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49 𝜖 = 0.8 𝐾 = 3 𝐾 = 5 𝐾 = 9 𝐾 = 15 𝐾 = 25 𝐾 = 49

MV 21.82 48.71 72.81 80.32 85.27 89.38 MV 14.35 24.83 40.49 65.47 69.28 88.05
EM 38.29 52.63 68.70 77.42 83.94 88.45 EM 26.52 28.43 66.72 80.71 89.40 92.41
Sep 64.32 72.52 80.31 84.65 87.40 90.56 Sep 33.87 37.49 57.36 77.43 80.51 89.15

Table 7
The performances of CE/BW/PeerLoss trained on (Left half: symmetric noise; right half: instance noise)
CIFAR-10 aggregated labels (majority vote, EM inference), and separated labels. (Different number of
labels per training image)
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