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Abstract
The goal of our work is to show how a theoretical approach to modeling of reasoning can be analyzed
to identify controversial issues that reveal prospects for further research. We will consider one of
the basic approaches to modeling of reasoning based on the concept of belief revision AGM, which
is viewed as classical because it formulates the basic concepts of belief, introduces the main ways of
representing beliefs, cognitive actions, systems of postulates for cognitive actions and the basic principles
for constructing epistemic systems. However, this conceptual foundation raises many controversial
issues that require further research, such as the problem of purity of the doxastic operations, the problem
of primacy of the doxastic operations and the problem of connection between the doxastic operations.
To find a possible solution to these controversial points, we will attempt to model the main ideas of AGM
within the framework of standard consistent, and complete logic Ł3. The basic principle of our translation
is the scheme for constructing an epistemic theory proposed by Gärdenfors, which is considered the
basis of AGM. We use a strict three-valued logic formalism to constrain the functioning of doxastic
operators and to test how they will function when trying to express the corresponding AGM postulates
in a given system. It will allow us to approach the solution of the classical AGM problems or at least to
present them from a different perspective. We consider the fundamental possibility of obtaining other
doxastic operators in this way and also show how we can implement the minimality criterion for the
contraction operator by combining several theorems of three-valued logic. The presented method of
translating an informal conceptual scheme into formal logic is convenient for teaching students the
basics of modeling and makes it possible to demonstrate the relationships and limitations of the modeled
objects and processes.
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1. Introduction

Modeling as a scientific method and educational approach is widely used in various fields.
One of its applications is modeling of reasoning. It can be carried out in two dimensions: as
a modeling of formal reasoning (systems of inferences and proofs) and as a modeling of real
reasoning (arguments and beliefs). Schemes of reasoning developed by mankind are means of
gaining knowledge, prediction and creativity. Modeling of ordinary reasoning also provides an
opportunity to get closer to an understanding of informational influences, which take the form
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of information warfare nowadays, and to predict possible ways for a person to protect against
destructive informational influences.
Modeling of reasoning at the level of ordinary reasoning. Modeling of reasoning

is a fruitful area of scientific research that encompasses various fields in theory and practice.
Modeling of reasoning aims at various processes: decision-making, drawing conclusions, linking
data in databases, creating information patterns, etc. In teaching practice, we also deal with
modeling of reasoning from different angles. On the one hand, it is about the creation of models
of argumentation within the framework of the theory of argumentation and critical thinking.
On the other hand, we are concerned with the use of reasoning as a basis for considering formal
systems. In both cases, we deal with two levels of reasoning – real and formal ones. Both levels
have their modeling peculiarities. Real (or ordinary) reasoning is too hard to formalize because
it is so complex that it sometimes seems illogical. Formal reasoning seems so abstract that
students do not apprehend how to apply it in practice.

There is an almost universally accepted list of characteristics of ordinary reasoning that
shows why it is so difficult to model.

“The following set of features are characteristic of much everyday ‘logical reasoning’, yet
formal logic embodies none of them.

1. Reasoning is often context dependent. A deduction that is justifiable under one set of
circumstances may be flat wrong in a different situation.

2. Reasoning is not always linear.
3. Reasoning is often holistic.
4. The information on which the reasoning is based is often not known to be true. The

reasoner must, as far as possible, ascertain and remember the source of the evidentiary
information used and maintain an estimation of its likelihood of being reliable.

5. Reasoning often involves searching for information to support a particular step. This may
involve looking deeper at an existing source or searching for an alternative source.

6. Reasoners often have to make decisions based on incomplete information.
7. Reasoners sometimes encounter and must decide between conflicting information.
8. Reasoning often involves the formulation of a hypothesis followed by a search for infor-

mation that either confirms or denies that hypothesis.
9. Reasoning often requires backtracking and examining your assumptions.

10. Reasoners often make unconscious use of tacit knowledge, which they may be unable to
articulate” [1, p. 2].

Various researchers focus on some of the items on this list and try to overcome them step
by step by formulating numerous algorithms and methods for modeling ordinary reasoning in
more detail to make the model as close to reality as possible. However, modeling of reasoning
is carried out not only in different areas but also at different levels. We usually offer students
training tasks in which they have to simulate a real process according to formal rules. By
performing them, students learn to reconcile real cases with formal requirements. The tasks
that demand to analyze the requirements themselves, comparing rule systems, comparing two
or more models, rising to a more formal level and evaluating the adequacy of the model are less
common.
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Modeling of reasoning at the formal level. However, the formal level is essential because
it provides the basis for a fundamental understanding of reasoning. The definition of the basic
concepts and their relationships, which are incorporated into the modeled system, is carried out
precisely at the theoretical level. However, when we give students tasks related to modeling of
reasoning, we take the abstract theoretical basis for granted and do not consider it separately.
For example, we assume that the students have already learnt what knowledge is and how it
differs from belief; they know that knowledge can be represented in terms of propositions on
which actions can be taken; we also assume that these actions are obvious – we expand or
reduce our knowledge, etc. All these objects and cognitive actions are the subject of a separate
research carried out at a more abstract, formal level. Its purpose is to clarify the basic features
of the processes of changing beliefs, to develop a common understanding of the concept of a
cognitive action and its possible options, to establish connections between types of cognitive
actions, etc. However, even formal concepts are not free from shortcomings and inconsistencies;
therefore, they require constant revision and completion.

In everyday communication, we operate with information easily. Similarly, we acquire and
lose our beliefs, restore them and change them easily. In addition, we are focused on the
acquisition of knowledge, so we regard it as an obvious thing that the procedure for expanding
knowledge always has priority, but at the same time, we pay very little attention to procedures
that implement contraction, rejection of beliefs. Analyzing the relevant rules is also essential.

For example, most epistemic systems support the criterion of priority of new information
because it corresponds to real cognitive actions as we always pay attention to new information.
The consequence of accepting new information can cause the appearance of a contradiction, so
there are many rules for processing, excluding or isolating contradictory propositions. While
working with real cases similarly, we face the problem of fake news and misinformation,
which may not contradict previous beliefs as they may be either nonsense based on a different
conceptual scheme or confirmed in inaccessible ways. Such information does not trigger the
mechanisms of standard processing of contradictions but is accepted ‘until clarification’, over
time destroying our worldview scheme by turning it into a pile of inconsistent information that
can be neither definitively rejected nor confirmed. The question arises if it is worth reviewing
the principle of priority of new information and exploring possible ways of its implementation.

A generally accepted way of checking the adequacy of a theory or a scheme is its interpretation
using a real case, but it is no less productive to interpret it using another formal scheme.
Backwards interpretation is also a useful task. After formal analysis, we can obtain new
formulations of rules and previously unknown consequences of known rules. They need to be
interpreted in real reasoning.
Modeling of reasoning and teaching. Dealing with epistemic systems relating to knowl-

edge representation schemes and operations on them is important for learning in several ways.
Firstly, the students are considered as epistemic agents participating directly in the functioning

of knowledge. Thus, the modeling of cognitive activity always has at least one case for checking
adequacy. Simultaneously, such a check also has the opposite effect as it affects the formation
of the appropriate reasoning schemes of the epistemic agent. In other words, if the students
work with schemes of reasoning, they not only check them for consistency and correspondence
but also capture the correct ones and implements them in their cognitive activity. Modeling of
reasoning in the educational process makes it possible to build models of two types: ‘model of’
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and ‘model for’ [2, p. 52].
Secondly, epistemic logic has many semantic interpretations. For example, modal interpre-

tation and semantics of possible worlds, multi-valued logics, probabilistic interpretation, etc.
Different formal interpretations of real cognitive activity serve as good educational examples
directly related to human activity but not to cases that the student will not meet anywhere else
apart from studying.

Thirdly, epistemic systems well demonstrate the presence of different levels of formalization:
from a set of individual cases to the highest level of the abstract criteria of rationality. Simul-
taneously, semi-formal conditions and informal agreements are also presented in epistemic
systems. This fact allows us to consider not only the issue of consistency of the real process
and its model but also the issue of consistency of models and schemes of different levels of
formalization.

The goal of our work is to show how a theoretical approach to modeling of reasoning can
be analyzed to identify controversial issues that reveal prospects for further research. We will
consider one of the basic approaches to modeling of reasoning based on the concept of belief
revision AGM, which is considered classical because it formulates the basic concepts of belief,
introduces the main ways of representing beliefs, cognitive actions, systems of postulates for
cognitive actions and the basic principles for constructing epistemic systems. However, this
conceptual foundation raises many controversial issues that require further research. To find
a possible solution to these controversial points, we will attempt to model the main ideas of
AGM within the framework of standard consistent logic. It will allow us at least to present them
from a different perspective if not to solve the classical AGM problems. From the viewpoint
of teaching modeling methods to students, the approach we present shows a way to apply
formal logic to the analysis of complex meaningful concepts. Namely, we consider a method of
translating an informal system into a prefabricated axiomatic system to check its consistency.
On the other hand, we obtain a new meaningful interpretation of the standard logic.
The plan of our work is as follows.

1. We will consider the epistemic system of AGM, in which the main concepts of belief
revision are formulated. This system is semi-formal; the principles of cognitive actions
are defined within it as general guidelines not being subject to strict formalism, but the
general principles of set theory are used.

2. We will consider the concept of cognitive actions, their types and some problems that
concern researchers but do not receive a satisfactory solution.

3. We will formulate the basic principles of interpretation of cognitive actions of AGM as
doxastic modal operators of a three-valued logic.

4. We will check what properties the obtained operators exhibit, what regularities and
connections exist between them, and how we can express the postulates of AGM cognitive
operations in a three-valued logic to obtain theorems. Obviously, we can use tables to
validate the resulting expressions.

5. According to the received interpretation, we will review the minimality criterion for its
compliance with the AGM postulate and offer options for its formulation.
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2. The AGM approach in belief revision

Belief revision is a promising trend in modern epistemic logic. It deals with changes of our
knowledge and beliefs, and its goal is to provide a formal account of the process of belief change.
This theory has many practical applications in AI systems, decision-making systems, databases,
system update procedures and others [3, 4]. Belief revision has also inspired much theoretical
research in the fields of logic and cognitive science.

The best-known trend in belief revision is a so-called AGM approach named after its initiators
Carlos E. Alchourrón, Peter Gärdenfors and David Makinson [5]. This system is considered
to be classical. First, it has rather long roots. The initial ideas developed in the framework
of AGM date back to the second half of the 20th century (Levi [6], Stalnaker [7], Segerberg
[8], Hansson [9]). Then, it is quite fundamental and very productive. Nowadays, AGM is a quite
elaborate approach to the analysis of the belief dynamics. This framework has generated the
basic concepts and principles for considering beliefs, their systems and the ways in which they
can be changed.

The main goal of AGM is to develop general concepts for belief change so that one can
describe and create an acceptable model for rational cognitive actions. Similar to any theory,
AGM requires a considerably high level of idealization. Most of these idealizations are described
in epistemic and doxastic logics (Hintikka [10], von Wright [11]). The idealization presupposes
the presence of a rational agent who cares about their knowledge, who is aware of their
knowledge, who is ready to revise and order it, who knows the rules of logic and how to deduce
consequences. In general, these are quite acceptable and even desirable idealizations.

AGM is designed to be able to apply its principles to the development of models of the belief
dynamics, regardless of scope. Moreover, each additional interpretation enriches in some way
the understanding of the interpreted subject. The main idea of this work is to see how we can
represent cognitive actions considered in AGM within certain logic and to see what interesting
properties can be discovered in this way. Then, we consider the basic concepts and principles
of AGM. After that, we interpret them in a logical scheme. Finally, we see what information we
can obtain about them in the resulting system.

2.1. General rules for the belief dynamics

The AGM system formulates several basic principles that the belief dynamics shall comply
with. We can distinguish two types of these principles. The first group concerns a general
understanding of the dynamics of beliefs. These principles are not very formal but essential.
The second group includes so-called AGM postulates, which directly describe the properties of
expansion, contraction, and revision operations in a more formal way. We will call the principles
of the first group ‘the general rules’ and the principles of the second group ‘the postulates of
doxastic operators’. Basically, the group of general rules describes the field of belief revision.
Let us summarize them.

1. All agent’s beliefs can and should be represented as propositions. In this case, we need to
note that each belief can be represented as a particular formula. Thus, we can use the
familiar notation A, ¬𝐴, 𝐴 ∨ 𝐵 to express beliefs and the relations between them in a
belief set.
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2. A proposition is said to be a belief if an agent accepts it. Therefore, we can divide all
sentences in language into two groups: the sentences included in the agent’s set of beliefs
and the sentences not included in the agent’s set of beliefs. It seems obvious that such
a situation can be interpreted simply using two-valued logic, in which the truth value
of the corresponding proposition is determined by its presence or absence in the set of
beliefs.

3. One of the basic rules of belief revision looks fundamental when it is voiced: ‘the belief
dynamics is possible’. In other words, the agent can change their beliefs. From a viewpoint
of logic, it means that nothing else than those propositions can change their truth values
after certain actions have been performed.

4. Belief changes should come from ordinary reasoning. Belief revision is an actual area of
research whose followers are trying to work out in detail the possible options for belief
changes. However, ordinary reasoning is too diverse and complex to be described in a
strict formalism. Nevertheless, we must not lose the logic.

5. Belief changes should be rational. The meta-level of epistemological theory contains
criteria of rationality used to evaluate the other factors of the theory. Criteria of rationality
are used to determine the behaviour of belief changes [12, p. 8].

2.2. Gärdenfors’s four components of epistemic theory

We will follow the classical definitions of Gärdenfors [12] and try to implement them. He
distinguishes four components of epistemic theory in his fundamental book Knowledge in flux
[12].

Epistemic states are used to represent a current or possible cognitive state of a rational agent
in a certain moment. An epistemic state is “in equilibrium” if it is consistent and satisfies
the criteria of rationality.

Epistemic attitudes are the statuses of beliefs included in an epistemic state. For example,
in the model based on propositions, the epistemic attitudes may be ‘accepted’, ‘rejected’,
‘indetermined’.

Epistemic inputs – ways to initiate change. If we assume that the epistemic state is internally
stable, then its changes require external stimuli, the so-called ‘epistemic inputs’. These
inputs cause ‘belief changes’ and the transformation of the original epistemic state into a
new epistemic state.

Criteria of rationality – ways to manage change. Here are the most commonly used criteria:
primacy of new information (the new information is always accepted); consistency (the
new epistemic state ought to be consistent if it is possible); minimal loss of previous beliefs
(the attempt to retain as much of the old beliefs as possible).

Gärdenfors [12] tries to keep the specified parameters as formal as possible to cover any area
of application. He writes: “The epistemological theories are conceptualistic in the sense that
they do not presume any account of an ‘external world’ outside of the individuals’ epistemic
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states. It is true that the epistemic inputs in general have their origin in such a ‘reality’, but I
argue that epistemic states and changes of such states as well as the rationality criteria governing
epistemic dynamics can be, and should be, formulated independently of the factual connections
between the epistemic inputs and the outer world” [12, p. 9].

2.3. Beliefs and cognitive action

At first, AGM deals with the concepts of belief, a set of beliefs and cognitive actions. A belief in
AGM can be considered as a proposition that the agent believes to be true. A belief is usually
denoted as A (or another capital letter).

Gärdenfors [12] writes that belief states are a representation of a person’s knowledge and
beliefs at a particular point in time. However, they do not contain psychological entities but are
represented as rational idealizations of psychological states. It means that a state in a computer
program can also be seen as a model of an epistemic state [12, p. 7].

Set of beliefs K is the set of propositions (sentences) that the agent believes to be true. The set
of beliefs has the following properties: it is consistent and closed under the relation of logical
consequence. Proposition A is derivable in set of beliefs K if it belongs to the set of beliefs; see
Expression (1).

𝐾 ⊢ 𝐴 iff 𝐴 ∈ 𝐾 (1)

Gärdenfors [12] says directly that a proposition can have three statuses regarding a belief set.

Accepted: belief 𝐴 is accepted iff 𝐴 ∈ 𝐾

Rejected: belief 𝐴 is rejected iff 𝐴 /∈ 𝐾

Indetermined: else the status of 𝐴 is indetermined

AGM develops the concept of a cognitive actions representing belief changes. Since we deal
with beliefs and all actions will be executed with beliefs, we can use the term ‘doxastic’ to name
our interpretation of cognitive actions. So, now we are talking about doxastic operations, with
the help of which we can implement different cognitive actions.

A cognitive action is an operation on a sentence that determines its status with respect to the
agent’s set of beliefs. Gärdenfors [12] explicitly points out that cognitive actions shall implement
scenarios for changing the status of beliefs. He defines only 6 such scenarios: changing the
statuses of the belief from indetermined to accepted (1) and from indetermined to rejected (2) are
implemented by expansion; from accepted to rejected (3) and from rejected to accepted (4) are
implemented by revision; from accepted to indetermined (5) and from rejected to indetermined
(6) are implemented by contraction. Thus, he associates a certain doxastic operation with each
pairs of scenarios.

The basic doxastic operations are expansion and contraction.

AGM expansion: 𝐾 +𝐴 (𝐾 – an initial belief set, 𝐴 – a new belief added to it).

AGM contraction: 𝐾 ÷𝐴 (𝐾 – an initial belief set, 𝐴 – a belief extracted from it).
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The main postulates for these operations have been described in the AGM, so this system
is sometimes called the ‘postulate approach’ [12], [9]. The basic properties of expansion and
contraction are presented in the AGM as a set of formal axioms. It is generally accepted that
any interpretation of doxastic operations should satisfy the appropriate set of axioms.

Giving its name as a title for a field of research, the revision as a cognitive action is considered
a complex action that can be represented as a combination of expansion and contraction. In this
paper, we will focus only on expansion and contraction. Nevertheless, many other operations
can also be defined by these operations, such as the operation of updating, consolidation and so
on. Moreover, we can implement expansion and contraction in different ways. These possibilities
depend on the format of the main epistemic objects, such as epistemic states, allowed epistemic
inputs, expected epistemic outcomes and so on.

Despite conducted research, there are some interesting issues in the belief dynamics. Some
of them are fundamental questions that cannot be solved when being based only on empirical
clarifications.

1. The problem of purity of the doxastic operations. In other words, it is the question if the
expansion not accompanied by contraction is possible. On the other hand, one can ask
the same for contraction: whether it is possible to have a contraction not accompanied
by a previous or further expansion. There is possibly a more precise question: can there
be a contraction that is not caused by an expansion?

2. The problem of primacy of the doxastic operations. It is generally accepted that expansion
and contraction are the two fundamental doxastic operations from which the revision
can be defined. Are they equal in status and can both be considered primary? If we
can determine one of these operations to be primary, we can also argue that the belief
dynamics is determined by that particular operation.

3. The problem of connection between the doxastic operations. The connection between
expansion and contraction is not fully understood. They can be either expressed by the
other or independent [13].

To investigate such issues, it is more necessary to use intra-theoretical or cross-theoretical
research. One of the possible approaches may be to immerse the semi-formal system of AGM
into an adequate formal system of complete logic.

3. Doxastic action in a three-valued setting

Following Gärdenfors [12], we distinguish such main components of a belief system as a class
of models of epistemic states, a valuation function determining the epistemic attitudes, a class
of epistemic inputs and a commitment function that is defined for all epistemic states and
all epistemic inputs [12, p. 18]. It would be interesting to consider a possible interpretation
of the doxastic operations on a three-valued logic. As the main one, it makes sense to take
Lukasiewicz’s three-valued logic Ł3. We believe that within the framework of this logic, we can
construct a system that meets Gärdenfors’s requirement for a belief system.

1. A class of models of epistemic states can be represented through a set of propositions.
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2. Valuation function v(A) determining the epistemic attitudes can also be easily implemented
because Ł3 logic considers a third value that approximates our needs.
A value ½ is the value a proposition if we cannot say anything about its trueness. In
our case, this is value n, which we interpret as a value of a proposition not being in the
agent’s belief set. We have to consider three options:
v(A) = t – the agent believes in A or is confident in A (proposition A is in their belief set);
v(A) = n – the agent is not confident in A so does not use A as their belief (proposition A
is not in their belief set and ¬A is not in their belief set either).
v(A) = f – the agent believes in ¬A (proposition ¬A is in their belief set).

3. A class of epistemic inputs and a commitment function can be implemented by derivability.
The derivability of a formula can be interpreted as the realization of some kind of epistemic
input. In general, we can take ⊢ 𝐴 (A is derivable) as the evidence that A is true, and in
this case, it does not matter how the agent learns about it. In other words, we want to
consider ⊢ 𝐴 as the result of an external validation of A (e.g., A is a fact) or as internally
derivable (A is a consequence of the agent’s beliefs). In any case, the agent’s behavior
must be the same. Based on the principle of primacy of new information adopted in AGM,
the agent shall accept A as their belief.

Moreover, the Ł3 logic not only describes the appropriate domain but is also complete. Thus,
we have two tasks.

1. We need to implement the correct interpretation of the doxastic operations that allow us
to meet the requirements of AGM.

2. We need to obtain an interpretation of the doxastic AGM operations by the Ł3 connectives.

If we accomplish these tasks within Ł3, we can see the properties of the doxastic operators that
can be described in complete logic. We want to use Ł3 as a delimiter for the doxastic operators to
get closer to solving some of the fundamental issues of AGM at a higher formal level. Moreover,
we have a good algorithm to check the adequacy of the interpreted properties without involving
additional semantics. Semantic tables will also show us exactly which propositional values
produce the corresponding results.

3.1. The basic notations and expressions

AGM assumes that cognitive actions are binary operations on pair (K, A): a set of beliefs and a
proposition. The result of these operations is also a set of beliefs. Since the agent possesses the
belief set, and the belief set is always fixed in AGM, we can omit this notation. Thus, we can
consider the set of true propositions supported by the agent as a set of beliefs and consider that
all operations are carried out with it.

If we need to explicitly show the original set of beliefs, we can label it with a formula of
propositional logic, such as B. In more detail, we can represent B as a conjunction of those
propositions that the agent believes and their consequences.

The situation, when a certain proposition A belongs to the agent’s set of beliefs, can be
represented in several ways:
A – proposition A belongs to the original set of beliefs;
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A&B – proposition A and (set of propositions, implied) B, belong to the original set of beliefs;
B→A – proposition A belongs to the set of beliefs described by set of propositions B.

Thus, non-doxastic expressions (i.e. which do not contain doxastic operators) A, ¬𝐴, B, A&B,
A∨B, ¬𝐴&𝐵 represent certain sets of beliefs since each formula can be used as a label for a
complex combination of propositions that represent the agent’s beliefs. Gärdenfors [12] shows
cognitive actions as those that change the status of propositions; this approach gives us a reason
to think of them as unary operators dealing with the truth values of a particular proposition.
Accordingly, we can represent doxastic operations as modal operators [14].

+A – expansion: proposition A is added to the set of beliefs.

÷A – contraction: proposition A is removed from the set of beliefs.

When we consider other propositions of the set of beliefs not explicitly affected by the
doxastic operation, we need to explicitly name the original set of beliefs: +A&B.

In addition, we should carefully consider the interpretation of connectives in the context of
their ability to display the statuses of complex propositions in the belief dynamics.
Negation. Initial belief can be true, unknown or false. The ordinary Ł3 negation turns true

to false, false to true and leaves an unknown value without changes. Thus, we have two kinds
of proposition statuses: determined — true (t) or false (f), and indetermined — n, when the agent
knows nothing about the proposition status. If a sentence has a determined status it can be
negated by ordinary rules. If it is indetermined, it means that neither this sentence nor its
negation belongs to a belief set; naturally, the belief set cannot be negated. In this case, the
indetermined value n presents the application conditions of the operator. It can be read as
follows: if a proposition is indetermined, then its negation is indetermined too, – negation of
the unknown is unknown (table 1). Thus, we can assume that the tabular definition of negation
adequately reflects the properties we need.

Table 1
Table for negation.

¬ 𝑝

f t
n n
t f

Implication. We hope greatly that implication can adequately express the connections both
between beliefs and between the propositions not considered beliefs. We can order truth values
in this way: 𝑡 > 𝑛 > 𝑓 . It makes sense to think that a proposition whose value is currently
undefined can acquire the status of true or false after receiving additional information. (Roughly
speaking, it will turn out to be t or f when the agent learns about it). Simultaneously, the true
and false values represent the maximum and minimum of the truth values, respectively. So,
we can use ordinary implication rules: implication 𝑥 → 𝑦 is true if 𝑦 ⩾ 𝑥. We try to follow
the ways of natural reasoning. Thus, implication is true in case if: consequent is true (the
truth follows from everything); antecedent is false (everything follows from false); uncertainty
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follows from uncertainty. Implication is unknown in other cases if only one of its components
is defined. In the rest, we have only two cases. The one is when the antecedent is true and the
consequent is unknown, and the other case occurs when the antecedent is unknown and the
consequent is false. The value of the implication in these cases is indetermined. Implication is
false if its antecedent is true and its consequent is false (table 2).

Other connectives are entered as follows: v(𝑝 ∨ 𝑞) = max(v(p), v(q)), v(𝑝&𝑞) = min(v(p), v(q)).

Table 2
Table for implication.

→ t n f

t t n f
n t t n
f t t t

3.2. Expansion and contraction as modal operators

Based on the idea of Shramko [14], we can try to consider doxastic operations as unary operators
like modal operators. Thus, we can consider the expansion as unary operator +A, and it means
that proposition A is added to the set of beliefs. In other words, the agent, who possesses the
beliefs, considers the proposition true. This interpretation completely determines the value of
expression +A. The agent does not consider true a proposition that is false or unknown to him.
Therefore, expression +A will be true only when A is true.

Gärdenfors [12] claims that there are six possible ways of belief change. Two of them are
1. from indetermined to accepted; 2. from indetermined to rejected. In addition, they define the
operation of expansion. At first, it seems that we should represent the expansion operator as
one that converts the value of n to true or false, but the expansion does not occur that way. The
expansion captures that the proposition becomes the agent’s belief. Respectively, a belief is a
proposition that the agent believes to be true. We need to note the success of the expansion.
Thus, the proposition is successfully added if the agent considers it to be true.

Table 3
Table for expansion.

+ 𝑝

t t
f n
f f

After expansion by A, sentence A can no longer be unknown or indetermined (i.e. +A = f
if A = n). Depending on the truth value of A, A or not A can be added to the set of beliefs.
Respectively, A becomes accepted or rejected.

If an agent considers the sentence to be true, they add it to their belief set. We obtained +A. If
an agent considers the sentence to be false, they add not A to their belief set. We obtained +¬𝐴.
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“The first type is when the epistemic attitude ‘A is indetermined’ is changed into either ‘A is
accepted’ or ‘—A is accepted’ (that is, ‘A is rejected’). I call this kind of change an expansion,
because it consists in adding a new belief (and its consequences) to the belief set without
retracting any of the old beliefs,” wrote Gärdenfors [12, p. 47]. Unary expansion operator +
successfully completes this task: it returns true only when it succeeds, that is, when the added
proposition is considered true.

The tabular definition of the expansion operator corresponds to the formula in Ł3 ¬(𝑝 → ¬𝑝),
i.e. it is not true that p is non-true. It is also obvious that the definition of the expansion operator
completely coincides with the interpretation of the necessity operator □ in the system Ł3 (or
with an external approval operator ⊢). Thus, we can obtain additional information about the
expansion operator by comparing it with a normal modal operator.

However, the more interesting fact is that this interpretation of the expansion as a unary
operator allows us to describe an indetermined proposition as one that takes the value n in the
case when neither the proposition A nor its negation ¬𝐴 is a belief.

“The second kind of change occurs when one of the attitudes ‘A is accepted’ or ‘A is rejected’
is changed into ‘A is indetermined’. This kind of change is called a contraction, because it
consists in giving up the belief in A (or the belief in — A). This kind of change can be made by
an agent in order to open up for investigation some proposition that contradicts what the agent
previously believed” [12, p. 47]. Unary contraction operator ÷ successfully completes this task:
it returns true only when it succeeds, that is, when the proposition is not added, and neither A
nor ¬𝐴 is not believed (expression 2).

¬+𝐴 & ¬+¬𝐴 (2)

Expression 2 describes a state of the sentence that is unknown to the agent. Accordingly, this
expression takes the value of t only when proposition A takes the value of n. In other cases,
when A is known to the agent, the sentence takes the value of f. This attribution of true values
is fully consistent with the description of the contraction operation ÷. In AGM, a contraction is
an operation that changes the status of a proposition from determined to indetermined. Thus,
÷ shows actually the removal of the proposition from the agent’s belief set.

÷𝐴 = ¬+𝐴 & ¬+¬𝐴 (3)

Table 4
Table for contraction.

÷ 𝑝

f t
t n
f f

With ÷𝐴 we can formulate the law of the excluded fourth, which describes exhaustively the
set of possible states of a sentence with respect to the set of beliefs of the agent. We can prove
the corresponding theorem in Ł3 using a truth table.
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𝐴 ∨ ÷𝐴 ∨ ¬𝐴 (4)

Thus, it looks like we have chosen the correct interpretation of the operators. Moreover,
it is noteworthy that the doxastic operators introduced in this way demonstrate significantly
different properties. +A functions as a normal modal operator and satisfies the corresponding
properties. This operator also allows iteration and can be applied to the doxastic formulae. So,
we can successfully use expressions like ++A = +A and +÷𝐴 = ÷𝐴.

In turn, operator ÷ applied to the doxastic formulae returns a contradictory formula. Both
expansion and contraction deal with three values t; n; f and map them on two values t; f. Thus,
contraction applied to the formula with only t and f values without n gives us only false.

Because + functions as a normal strong modal operator, it is possible to formulate an intro-
duction rule for the expansion operator that allows us to handle the epistemic input and at the
same time implement the priority of new information. The rule is well known in modal logic as
the rule of necessitation N (expression 5).

If ⊢ 𝐴 then ⊢ +𝐴 (5)

It would be interesting to formulate an introduction rule for the contraction operator. To do
this, we need to take into account the conditions of its implementation and think about what
the epistemic input should be whose result of the processing should be a contraction. No matter
how banal it may sound, the following rule reflects well the implementation of the epistemic
input for contraction.

If ⊢ +𝐴 and ⊢ +¬𝐴 then ⊢ ÷𝐴 (6)

The doxastic expansion and contraction operators defined in this way perform the function
of identifying the status of the proposition (table 5).

Table 5
Statuses of proposition.

Action Status Expressions

+𝐴 A is exactly true (only true) 𝐴 ∈ 𝐾 ,𝐾 → 𝐴,𝐾&𝐴
+¬𝐴 A is exactly false (only false) ¬𝐴 ∈ 𝐾 ,𝐾 → ¬𝐴, 𝐾&¬𝐴
÷𝐴 = ÷¬𝐴 A is not defined (not true and not false) 𝐴 /∈ 𝐾 and ¬𝐴 /∈ 𝐾
¬+𝐴 A is not true (A can be indefinite, and can be false) 𝐴 /∈ 𝐾

We can also express some links between these operators.

¬+𝐴 = ¬𝐴 ∨ ÷𝐴 (7)

So far, everything seems to be occurring well, and we can prove the corresponding theorems.
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4. The AGM postulates of expansion in a three-valued setting

Having identified the key ideas of our interpretation, we approached the main task. We need to
consider the AGM postulates defining the expansion and contraction operations and expressing
them in a language that we have determined are appropriate for the three-valued logic. We
translate the AGM postulates into theorems of the complete and consistent three-valued logic.
This gives us a chance to see how the doxastic operators will function when restricted to this
interpretation.

Expansion can be characterized by the set of AGM postulates [12, p. 48-51]. These postulates
describe a family of expansion operators. Factually, with the help of the postulates of expansion
E1-E5, the operator of expansion can be axiomatically defined. In other words, if the doxastic
operator satisfies the postulates of expansion E1-E5, it is an equivalent to the operator expansion
of AGM.

We put these expressions as follows: the upper expression is the AGM postulate, and the lower
expression is its representation in the logic Ł3. To formulate the corresponding expressions, we
relied on the properties of the doxastic operators defined above and on the functioning of truth
values. Using truth tables, it is easy to show that all of them are theorems in Ł3.

Closure 𝐾 +𝐴 – belief set E 1
+(𝐴 → 𝐵) → (+𝐴 → +𝐵)

By adding an implication to the system, we are committed to adding a consequent if an
antecedent is added. This is nothing else than the distributivity of the operator with respect to
the implication.

Success 𝐴 ∈ (𝐾 +𝐴) E 2
+𝐴 → 𝐴

It is also a kind of doxastic commitment. If an agent has added a belief to their belief set, they
are committed to asserting it.

Inclusion 𝐾 ⊆ (𝐾 +𝐴) E 3
𝐵&+𝐴 → 𝐵

If we add new sentence A to belief set B we are committed to maintaining B. In other words,
we should just add A and reject nothing from the initial belief set.

Vacuity If 𝐴 ∈ 𝐾 then (𝐾 +𝐴) = 𝐾 E 4
𝐴 → (+𝐴 → 𝐴)

It is an interesting case to express because the initial set and an added sentence can be labeled
with the same letter. Thus, we have the initial set which implies A. If we add A to this set we
should obtain the same set A. In contrast, we can express vacuity in another way explicitly
specifying the original set of beliefs: (𝐵&𝐴) → (+𝐴 → 𝐵).

Monotonicity If 𝐾 ⊆ 𝐻 then (𝐾 +𝐴) ⊆ (𝐻 +𝐴) E 5
(𝐵 → 𝐶) → ((𝐵&+𝐴) → (𝐶&+𝐴))

Thus, we obtained an admissible interpretation of the AGM postulates for expansion in a three-
valued setting. Given that all postulates of the expansion are theorems of the consistent logic Ł3,
we can suppose that they are consistent although, indeed, the question of their independence
remains open. Despite using the logic Ł3 as a limiter for the semi-formal system of the AGM
postulates, here we do not build a sufficiently rigorous formalism to assert that the expressed in
this way AGM postulates frame a kind of formal system. Moreover, we suppose that it is not
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the case. Nevertheless, sufficient expressiveness of the language of the three-valued logic Ł3
and truth tables for the corresponding logical connectives and operators allow us to approach
the solution of some issues, such as the purity and primacy of the doxastic operators, the
interconnection and mutuality of these operators. Indeed, the expansion operator functions as
a normal operator and does not cause any inconvenience being translated into the three-valued
logic. Moreover, all its properties were quite predictable. In turn, the contraction operator
functions differently; thus, additional formalizations are required to express the AGM postulates
of contraction.

Building a contraction operator is considered to be successful if it satisfies the postulates of
contraction AGM. However, it was not easy to express these postulates using the operator. To
get Ł3 tautologies, we had to strengthen the formulae by expansion operator, but these changes
never went against the essence of the postulate.

Closure 𝐾 ÷𝐴 – belief set C 1
÷(𝐴 → 𝐵) → (÷𝐵 → 𝐴)

If an implication (𝐴 → 𝐵) is indetrmined, i.e. it is deleted from the initial belief set, then
contracting by B allows us to save A as an ordinary sentence. Thus, in the reduced set, all its
consequences remain, and all other propositions are not affected by the reduction.

Success If ⊬ 𝐴 then 𝐾 ÷𝐴 ⊬ 𝐴 C 2
÷𝐴 → ¬+𝐴

If the agent contracted their belief set by A, they commit not to add it back, at least not
immediately.

Inclusion 𝐾 ÷𝐴 ⊆ 𝐾 C 3
¬(÷𝐴 → 𝐵) → ¬+𝐵

The contraction by any proposition shall not cause the expansion of the agent’s belief set
by propositions that were not contained therein. Any proposition not belonging to the set of
beliefs should not appear in it as a result of the contraction by another proposition.

Vacuity If 𝐴 /∈ 𝐾 then 𝐾 ÷𝐴 = 𝐾 C 4
(𝐵&¬+𝐴) → (÷𝐴 → 𝐵)

In contrast, a non-believed sentence does not change the initial set.
Extensionality If 𝐴 ⇔ 𝐵 then 𝐾 ÷𝐴 = 𝐾 ÷𝐵 C 5

(𝐴 ↔ 𝐵) ↔ (÷𝐴 ↔ ÷𝐵)
These five postulates are already enough for the contraction operator to work normally. If

the contraction operator satisfies the rest of five postulates without the postulate of recovery,
it is named a withdrawal operator [17, p. 388]. Makinson [17] proved the theorem that the
withdrawal operator is sufficient to build the revision function.

5. Trouble with contraction and faces of minimality

The contraction operation is deservedly considered more difficult to implement than the ex-
pansion operation. That manifested in our attempt to formulate and prove the postulates of
Gärdenfors’s contraction. Frequently, we have to use an expansion operator to achieve a valid
formula. In addition, this contraction operator only partially satisfies additional postulates for
contraction by conjunction. For example, it satisfies conjunctive inclusion, which allows us to
save one of the conjuncts after contracting by 𝐴&𝐵.
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Conjunctive
inclusion

If 𝐾 ÷ (𝐴 ∧𝐵) ⊬ 𝐴 then 𝐾 ÷ (𝐴 ∧𝐵) ⊆ 𝐾 ÷𝐴
¬(÷(𝐴 &𝐵) → 𝐴) → (÷𝐴 → ÷ (𝐴 ∧𝐵))

However, it partially satisfies the requirement of Conjunctive factoring. If it is necessary
to contract a belief set by removing the conjunction of propositions 𝐴&𝐵, then there are
three ways to do this: to remove A keeping on B; to remove B keeping on A and remove both
propositions A and B.

Conjunctive
factoring ÷(𝐴 &𝐵) → ÷𝐴 ∨ ÷𝐵

It only works in one direction, while the original postulate requires implications in both
directions.

One of the most controversial options for contraction proposed in AGM is the postulate of
recovery. We should be able to obtain the initial belief set after adding a belief rejected earlier.
Indeed, this is a pretty strict rule.

Recovery 𝐾 ⊆ (𝐾 ÷𝐴) +𝐴 C 6
It is easy to see that we cannot express it in our system in a direct way. In general, of course,

we can. We will even get a tautology: [(𝐵&÷𝐴)& +𝐴] → 𝐵.
Due to the definition of expansion and contraction operators, their conjunction leads to a

contradiction. Thus, we cannot use this way of notation to express the recovery postulate.
However, we can formulate and prove a slightly weaker condition.

Weak recovery (𝐵&÷𝐴) → (+𝐴 → 𝐵)
One of the most important tasks of the postulate approach is to limit the performance of

cognitive actions only to necessary operations. There are several kinds of minimality criteria.
The postulate of recovery is one of them. When we change our beliefs, we want to keep on
of our old beliefs as much as possible, avoiding unnecessary losses of information and also
avoiding unjustified expansion. It is quite difficult to implement the minimality for the doxastic
operators. It is often put together from weaker properties like a puzzle.

With the help of contraction and expansion operators, we can formulate very good minimality
conditions for the doxastic actions. We can refer to ordinary reasoning or use the AGM postulates
of minimality.

Minimality 1 ÷(𝐴 → 𝐵)&÷𝐵 → ¬(+𝐴 → +𝐵) EM 6
If both the status of the implication and the status of the consequent are undefined, then

adding an antecedent to a set of beliefs will not provoke the expansion of the set of beliefs with
the consequent. (We need to clarify the status of the consequent because it can be derivable in
the system.)

A possible approach to the minimal loss of previous beliefs is the following: sentence B must
be discarded in the contraction of K by A only if its presence in the contracted set would lead to
A being inferred. This is a part of the minimality for full meet contraction offered by Alchourrón
et al. [5].

Minimality 2 𝐵&(÷𝐴 → ÷𝐵) → (÷𝐴 → (𝐵 → 𝐴)) CM 2
Using combinations of these operators, we can formulate various versions of minimality. All

of them limit changes to the original belief set by some doxastic commitments.
For example, if there is B in the agent’s belief set and an implication (𝐴 → 𝐵) is not true,

then contracting the agent’s belief set by A should not influence any changes in B.
Minimality 3 𝐵&¬+(𝐴 → 𝐵) → (÷𝐴 → 𝐵)
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Indeed, we can obtain many interesting properties with this interpretation. Some of them are
unexpected, but others even allow us to refine the properties of doxastic operations. Thus, we
can say that our doxastic operators satisfy the basic properties of cognitive actions presented in
Gärdenfors’s postulates. Moreover, we can express some additional properties of AGM cognitive
actions by tautologies of Ł3. It suggests that the way of interpretation which we have chosen
is quite acceptable. It allows us to look at the properties of cognitive actions from the other
side. Simultaneously, the Ł3 logic itself does not allow us to go beyond the derivability and
tautologies of this logic, and that forces us to refine the general properties of the operators
based on truth values.

6. Discussion and Conlusion

The considered contraction operator does not reflect the properties of the AGM contraction
very well although, whereas it satisfies the necessary postulates. Moreover, it comes from
Gärdenfors’s requirements for changing the status of beliefs. The operator only partially
satisfies the additional postulates, and, to be honest, it demonstrates some strange properties.
The operator is quite useful for clarifying the mechanism of reasoning with undetermined
propositions. Nevertheless, it covers only part of the cases where the contraction must be applied.
Therefore, there is a suspicion that we may consider another candidate for the contraction
operator in this system. It can be ¬+𝐴. It allows you to express the missing properties of the
contraction, but it also has its features. Does it make sense to collect the AGM contraction
operation from several operators? Can we consider them as separate contraction operators?

Our research allows us to get closer to answering questions of purity and primacy of the
doxastic operators and show some connections between them.

1. Thementioned problem of purity of the doxastic operations gets a possible solution.
Every contraction must be preceded by the expansion. The introduction rule for the
contraction operator assumes the execution of the expansion operator. That is quite
natural since we usually make decisions to give up a particular belief, based on the
acceptance of new information. Generally, propositions with ordinary truth values
cannot provoke contraction.

2. The problem of primacy of the doxastic operations. The expansion operator turns
out to be primary because it handles the epistemic input in the first place. Its presence
is required for the contraction operator to be able to work. More frequently, we had to
use the extension operator in the formulae expressing Gärdenfors’s postulates for the
contraction. That was suggested by the truth values of the formulae themselves.

3. The problem of connection between the doxastic operations. The contraction
operator can be expressed by the expansion and its combination with negation. Given
the conditions for its application, we can introduce an individual but not independent
introduction rule for it. As we can see, the contraction operator satisfying Gärdenfors’s
requirements for changing the status of a belief is closely connected with the expansion
operator.

Indeed, the three-valued setting is not enough to build a real explanation of the real belief
dynamics. Nevertheless, this interpretation is quite useful for clarifying its work with the
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particular propositions in real situations. It is obvious that the actual process of belief change
is very complicated, but it is carried out according to certain rules. The explication of these
rules and the search for possible fallacies is a very interesting task. Therefore, we have achieved
several goals.

1. Based on the general principles of constructing epistemic systems of Gärdenfors [12],
we translated the main concepts and principles of AGM into the setting based on
Lukasiewicz’s three-valued logic Ł3. We used successfully the strict formalism of complete
logic as a limiter for the cognitive operators of AGM and for the rules managing them in
belief revision.

2. According to the received interpretation, we obtained new information about the relation
between the cognitive actions of expansion and contraction as modal operators in the
three-valued logic. We translated the AGM postulates into the language of the three-
valued logic and checked the validity of the corresponding expressions with the help
of the corresponding truth tables. The values of the received formulae helped us to
supplement the interpretation of the postulates of cognitive actions to theorems Ł3. Thus,
we received information to clarify the problems of purity, priority, and connection of
cognitive operators.

3. As a result of the analysis of relevant theorems, we arrived at a possible formulation of the
problem of the minimality of doxastic operators by combining some of their characteristics.
Thus, the criterion of minimal changes was revised, and it turned out that it depends not
only on the contraction operator.

4. Based on the received features of the interpretation of cognitive actions into a complete
logical system with three truth values, which correspond to the cognitive statuses of beliefs
in Gärdenfors’s epistemic system, we established the possibility of different interpretations
of the contraction operator in this system. It is possible since the doxastic modal operators
of contraction and expansion correspond to the formulae of the three-valued logic, and
they are not external, nor do they require additional axioms. Therefore, we can choose
the interpretation of the contraction operator because of how it should change the truth
value of the proposition.

5. We have demonstrated the application of translating one formal scheme into another to
revise its concepts and rules. We believe that such formal operations make it possible
to form a general understanding of the relationships between formal systems, allow
us to distinguish the levels of formalization of the system and deepen the concepts of
interpretation and models.

We work with modal and other non-classical logics with the master’s students in classes. We
deal with formal systems and their properties, most of them describe the process of modeling
of reasoning at a very high level of idealization, and it is quite difficult for master’s students
to translate them into practical activity. To be honest, most of them do not perceive topics in
a modal or a multi-valued logic as relevant to practice, and they perceive the corresponding
tasks as quite interesting but purely formal. On the other hand, belief revision is perceived in
a completely different way since it is only partially formalized. It can be a set of guidelines
that everyday reasoning shall follow to be considered rational. Such a semi-formal approach
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leads to the fact that systems based on belief revision are more closely related to practice but do
not have the proven characteristics of formal systems. Therefore, they are easy to implement,
but there is no guarantee that their requirements are consistent or complete. It is not enough
to specify such semi-formal systems only based on practice; they should be coordinated with
formal schemes of a higher level.

In fact, interesting methodical results were obtained in the educational task proposed by
us. We combined elements of epistemic logic and belief revision and multi-valued logic; we
introduced master’s students to different levels of formalization and rationality; we showed the
method of refining the model not only as a result of its practical implementation but also by
matching it with another model; we showed ways of translating a semi-formal system into a
formal scheme while working with operators, expressions and various notation methods; we
applied semantic tables (truth tables) successfully to prove the adequacy of expressed properties
and demonstrated how the truth values affect the expressions, and we received new data on
solving some fundamental issues.
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