
Composing with Generative Systems in the Digital Audio
Workstation
Ian Clester, Jason Freeman

Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Generative systems present new opportunities for composers, but it can be unclear how to integrate such systems into creative
workflows. We put forward a vision for a generative audio workstation, in which the composer can work with generative
expressions much like ordinary audio or MIDI items, seamlessly mixing static and dynamic musical material. We present
our research prototype in this direction, LambDAW, which takes the form of an extension to REAPER (a popular digital
audio workstation) that executes Python expressions directly in the timeline, and we discuss possibilities for integration with
generative models and machine learning libraries.

Keywords
generative music, end-user programming, music composition, digital audio workstation

1. Vision
Generative musical systems have a long history [3], from
Hiller and Isaacson’s Illiac Suite in 1957, to David Cope’s
Experiments in Musical Intelligence in the 1980s [4], to
deep neural nets such as OpenAI’sMuseNet or Magenta’s
Music Transformer today. In all these cases, the computer
is entirely relied on to generate the final musical material.
Human input ends after constructing the program and
possibly providing a prompt.
This workflow contrasts with the more hands-on ap-

proach enabled by the digital audio workstation (DAW),
in which the composer can directly manipulate and ar-
range items along a timeline, making it easy to import
and work with disparate materials. However, this ap-
proach affords limited support for generative music. To
incorporate generative systems into a piece, the com-
poser has two options.1 They can abandon the DAW in
favor of a computer music environment (e.g. Csound,
SuperCollider, Max) or general-purpose language that
allows programming the system directly. Or they can run
the generative system separately, generate some audio or
MIDI output, and then import that into the DAW, going
back and forth each time they want to tweak the system
or generate a different output.
We put forward a vision for a generative audio work-

station: an environment as adept with generative audio

Joint Proceedings of the ACM IUI Workshops 2023, March 2023, Sydney,
Australia
Envelope-Open ijc@gatech.edu (I. Clester); jason.freeman@gatech.edu
(J. Freeman)
GLOBE https://ijc8.me/ (I. Clester); https://distributedmusic.gatech.edu/
(J. Freeman)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1They can also put the generative system in a plugin, but this is
hidden in the FX chain, exists for all time, and has limited ability to
interact with the DAW.

as DAWs are with (static) digital audio. In our vision,
code is not something separate to be executed outside
of the DAW, nor is it timeless in the FX chain. Instead,
it is right in the timeline, alongside the other musical
materials. Furthermore, it can connect to other materials
by reference, enabling the composer to create meaningful
links through the piece. In this model, the composer need
not give up all control to generative systems, nor reject
them entirely. Instead, they retain ultimate control of the
piece and can bring in generative systems as they see fit,
like any other source of material.

We take inspiration from end-user programming soft-
ware, including the classic example of spreadsheets and
more recent work from Ink & Switch [5, 6]. We also
draw on computational notebooks such as Jupyter [7],
which promote interactive programming and allow code
to generate pieces of the document it is embedded in.
Our work is also related to Manhattan [8] (which brings
code fragments into a music tracker), Ossia Score [9]
(an “intermedia sequencer” which can be scripted via
JavaScript), and Computational Counterpoint Marks [10]
(which brings code into Western music notation).

2. Prototype
Our research prototype takes the form of an extension to
REAPER called LambDAW (“lambda” + “DAW”).2 With
LambDAW, the composer can write Python expressions
in the timeline to generate audio or MIDI output directly
in the DAW, as shown in Fig. 1. These expressions are
stored in take names, so that both the code and its gener-
ated output are visible in the timeline. Like a spreadsheet
formula, a name begins with = to indicate that it contains

2LambDAW is free software, and it is available at https://github.com/
ijc8/lambdaw.

mailto:ijc@gatech.edu
mailto:jason.freeman@gatech.edu
https://ijc8.me/
https://distributedmusic.gatech.edu/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/ijc8/lambdaw
https://github.com/ijc8/lambdaw


Figure 1: LambDAW allows the user to embed Python expressions that generate audio or MIDI directly in the DAW timeline.
In this screenshot, tracks 1 & 2 show examples of expression items that programmatically generate audio and MIDI, while
tracks 3 & 4 show examples that invoke ML models (MusicVAE [1] for melody generation and RAVE [2] for timbre transfer).

an expression to be evaluated. (The = may be further pre-
fixed to give it a name for later reference, as in foo=bar() .)
When LambDAW detects a new or updated expression, it
automatically evaluates it and puts the generated output
in the associated item. The user can also re-evaluate ex-
pressions on demand, e.g. to get different outputs from a
model.

Expressions can refer to other items in the timeline as
variables. For example, if there is a MIDI item in the time-
line named my_cool_riff , an expression item can refer
to it with an expression like =transpose(my_cool_riff,
5) . This feature allows the composer to establish connec-
tions between musical material; if they later modify the
original riff, the derived item can be updated simply be
re-evaluating it (unlike a transformed copy, which “for-
gets” its relationship to the original material). Referring
to items in expressions also facilitates the transformation
of recorded material with code. (Expression items can
also reference other expression items, as in the example
with carp in track 1 of Fig. 1.)

Linking expressions by reference enables the user to
divide up complexity between expressions and so pro-
vides a way to manage complexity and expression length;
the user project module provides another.3 LambDAW
loads a user-defined module for each project in which the
user can define functions, import useful libraries, load
resources, etc., for use in timeline-embedded expressions.
The user can also customize how LambDAW converts
DAW items to/from Python objects. The user project
module thus supports concision and customizability, en-
abling the user to choose their own set of abstractions
for composing and maintain the brevity of expressions
in the timeline.

3An expression in the timeline can be arbitrarily complex, but it is
advisable to keep it brief so that the whole thing can be seen at a
glance and without excessive zooming.

3. Conclusion & Future Work
We believe LambDAW offers a useful way to compose
with AI and ML by bringing code into the familiar in-
terface of the DAW. Because LambDAW allows arbitrary
Python expressions in the timeline and provides the
project module as a place to import libraries and load as-
sets, it enables the user to take advantage of Python’s rich
ecosystem. Expression items can serve as user-specified
“blanks” for an AI to fill in, which the user can re-evaluate
to generate new output. The ability of LambDAW expres-
sions to refer to other items in the timeline provides
a convenient way to work with models that transform
or continue input material, and for the user to pre- or
post-process model data.

Looking ahead, we plan to further explore integrations
with generative libraries and models to find how they can
fit into compositional workflows. Some initial work in
this direction is depicted in Fig. 1, which features expres-
sions that invoke MusicVAE [1] and RAVE [2] to generate
symbolic data and audio, respectively. We also aim to
make architectural changes to improve LambDAW’s us-
ability (especially with ML libraries), such as performing
evaluation in a separate process and allowing to user to
interrupt long-running operations.4 Finally, we hope to
present our system to composers to get their feedback
about the quality of the integration, the degree to which
it facilitates their use of generative systems, and how it
affects their creative process.

4While building our prototype, we encountered technical issues with
REAPER’s embedded Python support when using libraries such as
NumPy, TensorFlow, and PyTorch, which required workarounds.
Moving evaluation out to a separate process (as in Jupyter kernels)
would avoid these issues, enable interrupting/killing the interpreter
without restarting the DAW, and prevent evaluation from blocking
the UI thread.



References
[1] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, D. Eck,

A hierarchical latent vector model for learning long-
term structure in music, in: International Con-
ference on Machine Learning (ICML), 2018. URL:
http://proceedings.mlr.press/v80/roberts18a.html.

[2] A. Caillon, P. Esling, Rave: A variational autoen-
coder for fast and high-quality neural audio syn-
thesis, 2021. URL: https://arxiv.org/abs/2111.05011.
doi:10.48550/ARXIV.2111.05011 .

[3] K. Essl, Algorithmic composition, in: N. Collins,
J. d’Escrivan (Eds.), The Cambridge Companion to
Electronic Music, Cambridge Companions to Mu-
sic, Cambridge University Press, 2007, p. 107–125.
doi:10.1017/CCOL9780521868617.008 .

[4] D. Cope, Experiments in musical intelli-
gence (emi): Non‐linear linguistic‐based compo-
sition, Interface 18 (1989) 117–139. URL: https:
//doi.org/10.1080/09298218908570541. doi:10.1080/
09298218908570541 .

[5] G. Litt, M. Schoening, P. Shen, P. Sonnentag,
Potluck: Dynamic documents as personal soft-
ware (2022). URL: https://www.inkandswitch.com/
potluck/.

[6] J. Lindenbaum, S. Kaliski, J. Horowitz, Inkbase:
Programmable ink (2022). URL: https://www.
inkandswitch.com/inkbase/.

[7] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger,
M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,
J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
C. Willing, J. development team, Jupyter note-
books - a publishing format for reproducible com-
putational workflows, in: F. Loizides, B. Scmidt
(Eds.), Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, IOS Press,
Netherlands, 2016, pp. 87–90. URL: https://eprints.
soton.ac.uk/403913/.

[8] C. Nash, Manhattan: End-user programming for
music, in: Proceedings of the 14th International
Conference on New Interfaces for Musical Expres-
sion, 2014, pp. 221–226. URL: https://www.nime.
org/proceedings/2014/nime2014_371.pdf.

[9] J.-M. Celerier, P. Baltazar, C. Bossut, N. Vuaille, J.-M.
Couturier, M. Desainte-Catherine, Ossia: Towards
a unified interface for scoring time and interaction,
in: TENOR 2015 - First International Conference on
Technologies for Music Notation and Representa-
tion, 2015. URL: http://tenor2015.tenor-conference.
org/papers/13-Celerier-OSSIA.pdf.

[10] J. C. Martinez, Extending music notation as a
programming language for interactive music, in:
ACM International Conference on Interactive Me-
dia Experiences, ACM, 2021, pp. 28–36. URL: https:
//doi.org/10.1145/3452918.3458807.

http://proceedings.mlr.press/v80/roberts18a.html
https://arxiv.org/abs/2111.05011
http://dx.doi.org/10.48550/ARXIV.2111.05011
http://dx.doi.org/10.1017/CCOL9780521868617.008
https://doi.org/10.1080/09298218908570541
https://doi.org/10.1080/09298218908570541
http://dx.doi.org/10.1080/09298218908570541
http://dx.doi.org/10.1080/09298218908570541
https://www.inkandswitch.com/potluck/
https://www.inkandswitch.com/potluck/
https://www.inkandswitch.com/inkbase/
https://www.inkandswitch.com/inkbase/
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://www.nime.org/proceedings/2014/nime2014_371.pdf
https://www.nime.org/proceedings/2014/nime2014_371.pdf
http://tenor2015.tenor-conference.org/papers/13-Celerier-OSSIA.pdf
http://tenor2015.tenor-conference.org/papers/13-Celerier-OSSIA.pdf
https://doi.org/10.1145/3452918.3458807
https://doi.org/10.1145/3452918.3458807

	1 Vision
	2 Prototype
	3 Conclusion & Future Work

