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Abstract
In recent years, machine learning has made significant advancements in various fields, including image recognition. However,
the complexity of these models often makes it difficult for users to understand the reasoning behind their predictions. This is
especially true for sketch recognition, where the ability to understand and explain the model’s decision-making process is
crucial. To address this issue, our research focuses on developing an explainable machine learning framework for sketch
recognition. The framework incorporates techniques such as feature visualization and feature attribution methods which
provide insights into the model’s decision-making process. The goal of this research is to not only improve the performance
of sketch recognition models but also to increase their interpretability, making them more usable and trustworthy for users.
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1. Introduction
The task of creating diagrams on a computer using a
traditional mouse and keyboard can be a difficult task
compared to the ease of drawing with a pen and pa-
per. To bridge this gap, stylus-based devices are used to
provide a similar user experience to paper-based sketch-
ing. Recognizing these sketches, or identifying elements
in the drawing, can enhance the user experience by al-
lowing for advanced functionalities such as automatic
beautification, intelligent editing, and animation of the
content. However, a challenge in the field of sketch recog-
nition is maintaining high accuracy while still allowing
for a free-sketch environment similar to traditional pen
and paper. Even though recognition techniques have be-
come more sophisticated, it is difficult to understand the
inner workings of blackbox machine learning methods
[1, 2, 3]. Without a deeper understanding, it is hard to
make substantial improvements to the recognition algo-
rithm’s accuracy. In this research, we applied explainable
AI techniques to assist in understanding how a machine
learning based sketch recognition algorithm classifies in-
stances. We believe this use of explainable AI (XAI) will
lead to improved accuracy in future sketch recognition
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techniques. The main contributions of this work can be
summarized as follow:

• Inside the blackbox: We are able to provide
insights into the inner workings of a blackbox
machine learning model for sketch recognition.
By using techniques such as feature visualization
and feature attribution methods like SHAP, we
are able to provide a clear understanding of the
model’s decision-making process. This is impor-
tant because it allows researchers to understand
how the model is able to classify sketches and
identify the important features that contribute to
the predictions.

• Methodology for understanding the black-
box: We have outlined a methodology that can be
used in future to understand blackbox sketch re-
ocognisers. By incorporating interpretable mod-
els and feature attribution methods, we are able
to provide a transparent and understandable ex-
planation of the model’s decision-making process.
This is important because it allows users to trust
the model’s predictions and understand why they
are being made.

This work is still in progress and the above contri-
butions are important to the sketch community so that
we can understand how and why blackbox algorithms
work. By providing insights into the inner workings
of the model, we are promoting trust in the algorithms
and allowing researchers to improve the decisions being
made by the recognisers. This is crucial for the further
development and use of blackbox algorithms for sketch
recognition.
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The remainder of the paper is organised as follows. In
section 2 we discuss related work. Section 3 describes
our methodology. Section 4 presents the results of our ex-
periments. Section 6 concludes the paper with directions
for future work.

2. Related work
In recent years, there has been increasing interest in
developing models that are not only accurate but also
interpretable. The concept of model interpretability can
be classified into two categories: global interpretability
and local interpretability [4]. Global interpretability en-
ables users to understand the overall structure of a model,
while local interpretability focuses on the reasoning be-
hind a model’s decision for a specific input. Various
techniques have been developed in Explainable Artifi-
cial Intelligence (XAI) to enhance model interpretability,
including Attention Mechanisms [5], LIME (Local Inter-
pretable Model-agnostic Explanations) [6], Saliency Maps
[7], Counterfactual Analysis [8], Model Distillation [9],
and SHapley Additive exPlanations (SHAP) [10] . SHAP
has gained increasing attention as it provides both global
and local interpretability by assigning an importance
value to each feature in a prediction through the calcula-
tion of the average marginal contribution of the feature in
all possible coalitions. It can measure feature importance
for any model and handle interactions among features
[10].

Previous research in XAI for blackbox machine
learning-based sketch recognition algorithms has mainly
focused on visualising Convolutional Neural Networks
(CNN’s), which is an image-based recognition approach.
Peters et al. [11] produce videos using the dimensional-
ity reduction method, UMAP, to visualise neuron activ-
ity in the training process. Mopuri et al. [12] are able
to highlight discriminative regions of images classified
by the CNN by examining the forward pass operation.
Theodorus et al. [13] compare an interpretable model,
BagNet, to blackbox CNN’s. They use a score to rank
the interpretability of a model based on heatmaps of dis-
criminative regions of an image. Cai et al. [14] focus
on end-user interaction with a sketch recognition sys-
tem by providing two example-based explanations for
predictions, normative and comparative. Normative ex-
planations show examples from the target class (using
the ground truth), while comparative explanations show
examples of the closest predicted classes.

To our knowledge there have not been explorations
into the use of XAI for other blackbox sketch recognition
approaches, such as blackbox feature-based techniques
e.g. using support vector machines [15] or ensembles [1].
While there are feature based approaches that are eas-
ier to interpret [16, 17], research directions have steered

towards more sophisticated blackbox machine learning
methods which produce higher accuracy rates [1]. How-
ever, although these blackbox algorithms might produce
high recognition rates, interpreting the results and how
the classifications are made s becoming far more difficult.
The use of XAI techniques on such blackbox models can
assist in interpreting results and therefore lead to the
design of more successful sketch recognisers, as has been
illustrated other areas of research such as healthcare [18].

3. Materials and methodology
This section presents the details of our proposed method-
ology.

3.1. Datasets
The chosen datasets are all full diagrams containing
shapes and text together (as opposed to isolated shapes
or text). They were chosen to represent a large variation
of diagram domains, as we seek to investigate domain
independent systems. They include examples of con-
nected (e.g. directed graphs) and unconnected diagram
domains (e.g. user interface). They also include variations
in the placement of text, such as those with text inside
shapes (e.g. organisation), outside shapes (e.g. Euler), or
annotated connectors (e.g. process diagrams). Table 1
summarises datasets used in this research.

Table 1
Number of participants and strokes per dataset

Dataset # Participants # Text # Shape # Total
Training
User interface [1] 20 4354 671 5025
Directed graph [1] 20 164 354 518
Organisation [1] 20 1098 607 1705
Verification
ER [19] 33 2143 1050 3193
Process [19] 33 2674 1195 3869
Testing
Mind-map [1] 20 1815 364 2179
To-do list [1] 20 1710 201 1911
UML class [1] 20 1481 383 1864
Euler [20] 9 60 60 120

3.2. Feature Library
For reliable and accurate recognition a set of quality fea-
tures must be supplied to the algorithms. We employed
Blagojevic et al’s [21] digital ink feature library for our
experiments. This library contains 114 features each
measuring unique characteristics of each stroke such as
curvature, density, direction, intersections, pressure, size,
temporal and spatial context and time/speed.

3.3. Classification methods
We have used Extra-trees classifier, which is generally
considered to be a black box technique because it uses an



Figure 1: Overview of the structure of the proposed framework

ensemble of decision trees to make predictions. Decision
trees are a type of supervised learning algorithm that
is used to classify instances based on their features. It
works by recursively partitioning the feature space into
smaller regions, known as leaves, and making predictions
based on the majority class within each leaf [22]. The
Extra-trees classifier makes predictions based on a com-
bination of features, and it may be difficult to determine
which features are most important or how they are being
weighted by the model [23].

3.4. Methodology
This section presents a framework for improving the in-
terpretability of any sketch classification system (SCS).
The framework is designed to enhance the transparency
of SCS, which is crucial for human operators making
decisions. The framework, as shown in Figure 1, com-
prises of two parts: the traditional structure of SCS on the
left, and the interpretability-enhancing component on
the right. The traditional structure includes the dataset,
trained classification models, and predictions.

The focus of the interpretability framework is on pro-
viding local and global explanations, using the SHAP
method, to improve experts’ trust in the SCS. The main
idea behind SHAP values is to calculate the contribution
of each feature to the prediction of a specific sample. The
SHAP value for a feature is defined as the average dif-
ference between the prediction of the model with that
feature and the prediction of the model without that
feature, for all possible coalitions of features. Mathemati-
cally, the SHAP value for a feature 𝑖 for sample 𝑗 denoted
as 𝑆𝐻𝐴𝑃 (𝑖, 𝑗), is defined as:

𝑆𝐻𝐴𝑃 (𝑖, 𝑗) =
∑︁

(𝑆)

⎡⎣ (|𝑆|!)

(|𝑆| − |𝑇 |)!
×|𝑇 |!×

(︁
𝑓(𝑆 ∪{𝑖})− 𝑓(𝑆)

)︁⎤⎦ (1)

where, where
∑︀

(𝑆) represents the summation over all
possible sets of feature indices, 𝑆 is a set of feature indices
and 𝑇 is a subset of 𝑆. |𝑆| represents the cardinality of
set 𝑆, which is the number of elements in the set and |𝑆|!
represents the factorial of |𝑆|. (|𝑆|− |𝑇 |)! represents the
factorial of (|𝑆| − |𝑇 |), which is the number of elements
in the set𝑆 minus the number of elements in the subset 𝑇 .
|𝑇 |! represents the factorial of |𝑇 |, which is the number
of elements in the subset 𝑇 . 𝑓(𝑆) represents the average
prediction of the model when input features indexed by
𝑆 are set to their baseline values. 𝑓(𝑆𝑈𝑖) represents
the average prediction of the model when input features
indexed by 𝑆 are set to their baseline values and feature
𝑖 is set to its actual value for sample 𝑗. (𝑓(𝑆𝑈𝑖)− 𝑓(𝑆))
represents the difference between the average prediction
of the model when input features indexed by 𝑆 are set to
their baseline values and feature 𝑖 is set to its actual value
for sample 𝑗, and the average prediction of the model
when input features indexed by 𝑆 are set to their baseline
values.

In simple terms, equation 1 provides a local explana-
tion i.e. provide an understanding of how each feature
is impacting the prediction for a specific sample. Global
explanations provide an understanding of the overall
importance of each feature and how it impacts the pre-
dictions of the model across all samples. The global SHAP
values are calculated for each feature and they represent
the average change in the model output caused by set-
ting feature i to its actual value, while holding all other
features fixed at their baseline values across all samples.
The equation for the global SHAP value of feature 𝑖 is:

𝑆𝐻𝐴𝑃 (𝑖) =
∑︁

(𝑗)

⎡⎣(𝑓(𝑆𝑈{𝑖}) − 𝑓(𝑆))

⎤⎦ (2)

In equation 2, 𝑗 represents the index of the sample being



evaluated, and 𝑆 is a set of feature indices. The term 𝑓(𝑆)
represents the average prediction of the model when in-
put features indexed by 𝑆 are set to their baseline values.
On the other hand, 𝑓(𝑆𝑈𝑖) represents the average pre-
diction of the model when input features indexed by 𝑆
are set to their baseline values, and feature 𝑖 is set to its
actual value for the sample 𝑗.

4. Results and Discussion
This section describes the experimental setup, perfor-
mance metrics used to evaluate the proposed approach
and lastly, observed results are discussed in detail. This
study was carried out using 2.3 GHz 8-core Intel i9 pro-
cessor with 16 GB memory on Big Sur 11.4 operating sys-
tem. The proposed approach is developed using Python
programming language with several statistical and visu-
alization packages such as Sckit-learn, Numpy, Pandas,
Tensorflow, SHAP [24] and Matplotlib. In this work, we
have used the Accuracy, Precision, Recall, F1-score for
binary-class classification (text/shape).

Table 2
Classification results from extra-tree classifier

Dataset Precison Recall F1-score Accuracy
User Interface, Directed graph
and Organisation diagrams
dataset

0.96

Text 0.95 1.00 0.98
Shape 1.00 0.83 0.91
ER and Process diagrams
dataset

0.92

Text 0.90 0.99 0.95
Shape 0.98 0.77 0.87
To-do list, Mind-Map and UML
class diagrams dataset

0.95

Text 0.96 0.98 0.97
Shape 0.89 0.78 0.83
Euler diagrams dataset 0.95
Text 0.97 0.95 0.96
Shape 0.94 0.96 0.95

4.1. Discussion
We have made a number of different observations to un-
derstand the performance implications both during the
training and testing phases. Table 2 presents the classifi-
cation outcomes for various diagram datasets. The table
shows the performance of the model on different datasets
in terms of accuracy, precision, recall, and F1-score. From
the table, it can be seen that the model performed well
and was successful in identifying shape strokes and text
strokes. Additionally, the table illustrates that text strokes
had a higher recall rate compared to shape strokes, mean-
ing that the model was able to correctly identify a higher
percentage of text strokes than shape strokes out of all
the text strokes that were present in the dataset. How-
ever, it is important to note that the accuracy, recall,
precision, and F1-score can only provide an overall per-
formance metric for the model and it does not explain
the reasoning behind its decision-making. To understand

Figure 2: User interface, directed graph and organisation
diagrams dataset

Figure 3: ER and Process diagrams dataset

Figure 4: To-do list, Mind-map and UML class diagrams
datasets

the model’s decision-making in more detail, the second
part of the framework is used to provide global and local
explanations of the model’s predictions. Global expla-
nations provide an understanding of the overall feature
importance and how it impacts the predictions of the
model across all samples. Local explanations provide an
understanding of how each feature is impacting the pre-



Figure 5: Mengli-Euler diagrams dataset

diction for a specific sample. This can provide insights
into which features are most important for the model’s
predictions and how the model is making its decisions.
The beeswarm plots presented in Figure 2 through Fig-
ure 5 shows how each feature contributes to the overall
output of a black-box model, providing a means to in-
terpret the model’s global explanations for each dataset.
It is a combination of a scatter plot and a violin plot,
where each dot represents a sample, and the y-axis rep-
resents the feature importance. To avoid overlapping,
the dots in Figures 2 to 5 are horizontally jittered, and
their colors represent the actual value of the feature for
the corresponding sample; red dots indicate high feature
values, while blue dots indicate low feature values. The
violin plot in each figure shows the number of samples
with similar feature values and can also identify outliers.
These figures display the twenty most important features
extracted from the extra tree classifier for the shape class
in various datasets. Each point in the figures represents
a Shapley value for a feature per sample, and the features
are arranged in descending order of importance. For ex-
ample, Figures 2 to 5 reveal that LogLongestSideRect is
the top feature for the extra tree classifier, and the model
will consider data points as shape if this feature has a
larger value.

The local explanation is provided by Figure 7 and Fig-
ure 9 through a visual representation of the contribution
of each feature to the model’s predictions for individual
samples. It also provides a reference point by showing
the baseline which is the average prediction of the model
when all features are set to their baseline values. It can
be used to interpret the predictions of a black-box model
and to identify any potential issues with the model’s
decision-making. The length of arrows tells about im-
portance of feature in the prediction i.e. long arrows
have a large effect on the prediction. These features are
likely to be the most important for the model’s decision.
Features with short arrows have a small effect on the
prediction. These features are likely to be less important

Figure 6: Misclassified text stroke

Figure 7: Local explanation visualisation behind wrong text
sample

Figure 8: Misclassified shape strokes

Figure 9: Local explanation visualisation behind wrong shape
sample

for the model’s decision. For example, Figure 6 shows
text stroke classified as shape by the model. The Figure
7 shows an explanation behind wrong prediction. In this
specific example, it can be seen that the Average Density
of Close Strokes had a stronger influence on the model’s



decision to classify the stroke as a shape, while the length
of next stroke had a stronger influence on the model’s de-
cision to classify it as text. In addition above two features
are most important feature for model’s decision for this
particular instance. Similarly, Figure 8 show instances of
arrows that were incorrectly classified as text, whereas
Figure 9 providing an explanation for one arrow that was
incorrectly classified as text.

5. Conclusion
This study aims to enhance the interpretability of sketch
recognition models, as many machine learning models
in this field do not provide any insight into the reasoning
behind their decisions. Future work in this field could
include the following. Firstly, XAI techniques could be
applied to other types of models to better understand and
interpret their predictions. In this work we focused on
using XAI techniques to interpret and explain the predic-
tions of a black-box ensemble learning model. However,
there are many other types of models, such as deep neu-
ral networks and support vector machines that could
also benefit from the use of XAI techniques. Secondly,
using a combination of XAI techniques could be explored.
Each XAI technique provides different types of explana-
tions therefore combining them can further enhance our
understanding of the model’s decision-making by provid-
ing a more complete picture of the model’s predictions.
Lastly, building on Cai et als work [14], user feedback
can be further incorporated to better understand how
users interpret the explanations provided by the models.
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