
Comparison of Human Experts and AI in Predicting Autism
from Facial Behavior
Evangelos Sariyanidi1, Casey J. Zampella1, Ellis DeJardin1, John D. Herrington1,2,
Robert T. Schultz1,2 and Birkan Tunc1,2

1Center for Autism Research, The Children’s Hospital of Philadelphia, United States
2University of Pennsylvania, United States

Abstract
Advances in computational behavior analysis via artificial intelligence (AI) promise to improve mental healthcare services
by providing clinicians with tools to assist diagnosis or measurement of treatment outcomes. This potential has spurred
an increasing number of studies in which automated pipelines predict diagnoses of mental health conditions. However, a
fundamental question remains unanswered: How do the predictions of the AI algorithms correspond and compare with the
predictions of humans? This is a critical question if AI technology is to be used as an assistive tool, because the utility of an
AI algorithm would be negligible if it provides little information beyond what clinicians can readily infer. In this paper, we
compare the performance of 19 human raters (8 autism experts and 11 non-experts) and that of an AI algorithm in terms of
predicting autism diagnosis from short (3-minute) videos of 𝑁 = 42 participants in a naturalistic conversation. Results
show that the AI algorithm achieves an average accuracy of 80.5%, which is comparable to that of clinicians with expertise
in autism (83.1%) and clinical research staff without specialized expertise (78.3%). Critically, diagnoses that were inaccurately
predicted by most humans (experts and non-experts, alike) were typically correctly predicted by AI. Our results highlight the
potential of AI as an assistive tool that can augment clinician diagnostic decision-making.
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1. Introduction
Modern medical disciplines typically rely on a variety
of technological tools to assist in diagnosis and moni-
tor treatment progress. From brain imaging technolo-
gies to blood and genetic tests, instruments that assist
medical decision-makers are a cornerstone of modern
medicine. In the domain of psychiatry and psychology,
however, medical decision-making relies nearly exclu-
sively on observational or paper-and-pencil instruments.
Thus, recent advances in computer vision and artificial in-
telligence (AI) are poised to rapidly advance research and
clinical decision-making in psychiatry by introducing
reliable and granular tools within a new paradigm: com-
putational behavior analysis [1, 2, 3, 4, 5]. Such tools can
capture and quantify human behavior with extraordinary
precision, even from brief video recordings.

Autism spectrum disorder (ASD), like nearly all psy-
chiatric conditions, is defined by observable behavioral
cues—what a person does well or not well, too little or
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too much. Its core traits include observable differences
in social communication, social reciprocity, nonverbal
communication, and relationships, as well as restricted
patterns of interests and activities [6]. The current re-
liance on assessment and interpretation of overt behavior
makes autism an excellent candidate for computational
behavior analysis approaches. Coupling computationally-
derived biomarkers with expert clinician judgment may
provide an extremely potent approach to autism care,
by enhancing the currently limited reliability of clinical
assessments (e.g., DSM-5 field trials Kappa = 0.69) [7],
shortening lengthy diagnostic evaluations, and improv-
ing sensitivity for capturing change over the course of
treatment and development.

This potential has spurred a plethora of studies that
aim to diagnose autism via AI pipelines based on vari-
ous behavioral modalities and sensors [8]. Notably, to
our knowledge, no study has directly compared AI algo-
rithms and human raters with respect to overall predic-
tive capacity or specific decisions on individual cases. A
comparison of this kind is important when it comes to
using AI as an assistive technology for clinical decision-
making, as it can determine whether or not AI provides
significant incremental utility beyond existing tools. AI
algorithms can maximize and cooperate synergistically
with human assessment by complementing and augment-
ing human decisions. On the other hand, clinicians would
have little interest in or benefit from incorporating AI
algorithms if their decisions –and errors– highly overlap
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with their own. We aim to address this issue by examin-
ing whether or not AI detects diagnostic indicators that
may go unnoticed by human observation.

In this paper, our main contribution is comparing the
performance of AI and humans with knowledge of autism
in accurately classifying autism from a 3-minute get-to-
know-you conversation with a non-clinician conversa-
tion partner. Specifically, we implemented a computer
vision pipeline for predicting autism using features of
facial behavior during conversations with a sample of
𝑁 = 42 adults – 15 individuals with autism spectrum
disorder (ASD) and 27 neurotypical (NT) individuals. We
then recruited a total of 19 human raters (8 expert clin-
icians, 11 non-experts with experience with autism) to
predict the diagnostic status of the same participants. The
expert raters were doctoral level clinicians with extensive
training on autism, while most of the non-experts were
BA level researchers still learning about autism. Raters
watched the same videos of participants’ faces during con-
versations that were fed to the computer vision pipeline,
without sound to allow for a fairer comparison with the
AI algorithm.

Results suggest that the AI pipeline based on partici-
pant facial behavior predicts diagnostic status with 80.5%
accuracy. This accuracy was comparable to the 80.3%
overall accuracy achieved by human raters (83.1% for
experts and 78.3% for non-experts), demonstrating the
potential of AI to detect facial behavioral patterns that
differentiate adults with autism from neurotypical peers
in the context of a casual, get-to-know-you conversa-
tion. Moreover, we show that the prediction errors of AI
and humans had little overlap, indicating that the AI can
provide complementary information that could prompt
and assist clinicians with their evaluations and decision-
making. The fact that all the results of this paper are
extracted from a brief naturalistic conversation is a sig-
nificant contribution, as a 3-minute conversation with
a non-expert is a highly scalable paradigm, and thus a
promising option as a screening or (preliminary) diagnos-
tic procedure. The results of this paper motivate further
research efforts to understand the decision mechanisms
of AI algorithms, particularly for uncovering subtle be-
havioral patterns in psychiatric conditions.

2. Participants and Procedure
Forty-four adults participated in the present study (ASD:
n=17, NT: n=27, all native and fluent English speakers).
Participant groups did not differ significantly on mean
chronological age, full-scale IQ estimates (WASI-II) [9],
verbal IQ estimates, or sex ratio (Table 1). Participant
diagnostic status (ASD or NT) was confirmed as part
of this study using the Clinical Best Estimate process
[10], informed by the Autism Diagnostic Observation

Schedule - 2nd Edition, Module 4 (ADOS-2) [11] and
adhering to DSM-V criteria for ASD [12]. All aspects
of the study were approved by the Institutional Review
Board The Children’s Hospital of Philadelphia (CHOP).
Two participants were excluded from analysis due to their
lack of consent for this particular set of experiments or
their data being unavailable for processing, yielding a
final sample of 42 participants (ASD: N=15, NT: N=27).

Participants underwent a battery of tasks that assessed
social communication competence, including a slightly
modified version of the Contextual Assessment of So-
cial Skills (CASS) [13]. The CASS is a semi-structured
assessment of conversational ability designed to mimic
real-life first-time encounters. Participants engaged in
two 3-minute face-to-face conversations with two dif-
ferent confederates (research staff, blind to participant
diagnostic status and unaware of the dependent vari-
ables of interest). In the first conversation (interested
condition), the confederate demonstrates social interest
by engaging both verbally and non-verbally in the con-
versation. In the second conversation (bored condition),
the confederate indicates boredom and disengagement
both verbally (e.g., one-word answers, limited follow-up
questions) and physically (e.g., neutral affect, limited eye-
contact and gestures). All analyses throughout this paper
are based on the interested condition only.

During the CASS, participants and confederates were
seated facing one another. Audio and video of the CASS
were recorded using an in-house device comprising two
1080p HD (30 fps) cameras (Fig. 1), which was placed
between the participant and confederate on a floor stand.
The two cameras of the device point in opposite direc-
tions to allow simultaneous recording of the participant
and the confederate. However, the AI analyses in this
paper are conducted on the video data of the participant
only. In other words, even if the context of the conversa-
tion is dyadic, our AI-based analysis is not dyadic since
it discards the information from the confederate and fo-
cuses only on the participant. We refer to this type of
analysis as monadic analysis.

CASS confederates included 10 undergraduate stu-
dents or BA-level research assistants (3 males, 7 females,
all native English speakers). Confederates were semi-
randomly selected, based on availability and clinical judg-
ment. In order to provide opportunities for participants
to initiate and develop the conversation, confederates
were trained to speak for no more than 50% of the time
and to wait 10s to initiate the conversation. If conver-
sational pauses occurred, confederates were trained to
wait 5s before re-initiating the conversation. Otherwise,
confederates were told to simply naturally engage in
the conversation. Prior to each conversation, study staff
provided the following prompt to the participants and
confederates before leaving the room: “Thank you both
so much for coming in today. Right now, you will have 3



Table 1
Participant characterization within our sample. Wilcoxon rank sum tests with continuity correction were used for statistical
group comparisons, except for sex ratio where the Chi-squared test was used. One NT participant had missing ADOS-2 scores.
RRB=Repetitive Behaviors and Restricted Interests subscore of the ADOS-2. *Statistically significant difference between
diagnostic groups, p<0.05.

Variable ASD Mean (SD) NT Mean (SD) Statistics p-value
Age (years) 26.9 (7.3) 28.1 (8.4) W = 234 0.923
Sex (Male, Female) 15m, 2f 23m, 4f 𝜒2: 0.08 0.774
Full-Scale IQ 102.1 (19.8) 111.7 (9.5) W = 157 0.080
Verbal IQ 112.6 (22.1) 112.4 (11.2) W = 215 0.736
ADOS Total 13.1 (3.0) 1.1 (0.9) W = 442 < 2e-8*
ADOS Social Affect 9.8 (2.3) 1.0 (0.9) W = 442 < 1e-8*
ADOS RRB 3.3 (1.5) 0.1 (0.3) W = 441 < 1e-9*

Figure 1: Left: The device used to record the conversation. The device has two cameras, each pointing to one party of the
conversation. Right: Example of videos shown to the human raters. The video contains synchronized videos of the heads/faces
of both the participant and the confederate as recorded by the device on the left. The video of the participant’s face only
served as input to the AI pipeline.

minutes to talk and get to know each other, and then I
will come back into the room.”

3. Prediction of Autism Diagnosis

3.1. Human Raters
We recruited a total of 19 human raters to view the videos
from the sample of 𝑁 = 42 participants. Eight of the
raters were autism clinical experts, doctoral level clini-
cians with extensive training at the Center for Autism
Research (CAR) of CHOP. The remaining 11 (non-expert)
raters had some familiarity with autism but not special-
ized training and worked at CAR. Most of these non-
expert raters were BA-level psychology students learning
about autism.

The videos that were shown to the human raters were
prepared as follows: First, we cropped the videos of the
participant and their corresponding confederate conver-
sation partner so that only the heads and necks were
visible. Next, we combined the synchronized videos of
the heads/faces of the participant and confederate into a
single video file per participant such that participant and
confederate were positioned side by side (Fig. 1, right).
The audio was removed in order to allow human raters
to focus on the facial behavior, as was the case for the AI
algorithm. The videos for all 𝑁 = 42 participants were

presented to human raters in a random order on high
resolution monitors.

Raters were instructed to watch each video just once
and to make a decision as to whether the study partic-
ipant had autism or not. They were told that all par-
ticipants were either confirmed to have autism through
clinical evaluation by a licensed expert, or were recruited
specifically as neurotypical controls (i.e., clear cases of
individuals without autism). Raters were not allowed to
go back and review earlier videos. They were instructed
to watch all videos within 1 to 3 viewing sessions, with
nearly all being completed in 1 or 2 sessions.

3.2. Computer vision
3.2.1. Quantification of facial behavior

Our goal is to quantify all observable facial behavior
of a participant, which includes facial expressions and
head movements. Also, we did not want to limit analysis
to emotion-related expressions (e.g., the six basic emo-
tions), as other kinds of facial movements (e.g., commu-
nicative expressions, speech-related mouth movements)
are also important for diagnosing autism [14]. There-
fore, we quantify behavior using a 3D morphable model
(3DMM) [15] as 3DMMs contain expression bases (e.g.,
[16]) that can quantify any facial movement. Moreover,
3DMMs can simultaneously model facial identity, pose,
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Figure 2: We divide the facial mesh of 𝑃 points into the four
groups illustrated in this figure: (1) brows and forehead; (2)
eyes; (3) nose and cheeks; and (4) mouth and chin. Each of
the 𝑃 mesh points is assigned to one of these four groups by
first computing the distance of the point to all the 51 facial
landmarks (iBUG-51 [19]), and then identifying the facial
feature (i.e., brow, eye, nose or mouth) corresponding to the
closest landmark. The expression basis that we use has a total
of 60 components, distributed as shown in the figure.

and expression. This increases the precision of parsing fa-
cial expressions and head movements, since the effect of
identity (i.e., identity bias [17]) is reduced when modeled
and thus explained away. Specifically, we use the 3DI
method [18], as it can learn identity from multiple frames
and thus model and remove its effect more accurately.
Moreover, 3DI can take the parameters of the camera as
input, which is critical for increasing the accuracy with
which facial expressions and pose are decoupled [19].

A 3DMM method produces a dense mesh of 𝑃 three-
dimensional points X ∈ R3×𝑃 to represent the face
in a given video frame I. (𝑃 is 23, 660 for the 3DI
method). This 3D mesh is a function of the facial pose
(i.e., a rotation matrix R ∈ R3×3 and a translation vector
𝜏 ∈ R3×1), the facial identity of the person X̄ and the
facial expression variation in the image ΔX ∈ R3×𝑃 :

X = R(X̄+ΔX) +T, (1)

where the columns of the matrix T ∈ R3×𝑃 are identi-
cally 𝜏 . The matrices of interest in the scope of our study
are the matrix of head rotation R and the expression
variation, ΔX. 3DMMs represent expression variation
as a linear sum, ΔX = W𝜀, where 𝜀 ∈ R𝐾×1 is the
vector representing the expression. The expression ba-
sis W used by 3DI method is constructed via PCA [16],
which limits the interpretability as PCA components are
not localized–we cannot associate any PCA component
with a specific facial region. To make the results of our
study more interpretable, we modified the expression
model in a way that the resultant expression model, W′,
contains 60 localized basis components as shown in Fig. 2.
Using this model, we represent the expression variation
in the image with the vector 𝜀′ that minimizes the norm
||ΔX−W′𝜀′||2. We ignore the 7 components that cor-
respond to the nose and cheek regions (Fig. 2), and we

finally represent the expression variation in a video of
𝑇 frames with a matrix E of size 𝑇 × 53, obtained by
horizontally concatenating the expression vectors from
all the frames. Finally, using the rotation matrix R esti-
mated at each frame, we compute the yaw, pitch and roll
angles per frame, and represent head rotation throughout
the video with a matrix Φ of size 3×𝑇 . The facial move-
ment variation and head rotation of a person throughout
the video are represented together with a matrix Y of
size 56× 𝑇 , obtained as

Y =

[︂
E
Φ

]︂
. (2)

Alternatively, one can consider using the Action
Units (AUs) of the Facial Action Coding System instead of
the 3DMM-based expression features that we used above.
However, our analysis is based on correlation of time
series (Section 3.2.2), which requires a representation
where AU intensity needs to be provided—binary AU
labels would be very limiting. Since automated AU detec-
tion systems (e.g., OpenFace [20]) provide AU intensity
only for a relatively small number of AUs, we preferred
to use the 3DMM-based features instead of the AUs. One
could also consider to add the AU features to the features
Y above, but we refrained from doing so, because the
number of our correlation features increases exponen-
tially with the number of rows in Y (Section 3.2.2). This
also explains why we refrained from adding the features
from nose and cheek regions, as the potential extra infor-
mation that would be provided by these regions may not
justify the exponential increase in the dimensionality of
the feature space. That said, the utility of all such extra
information should be explored in future AI pipelines
that can be trained with data from larger samples.

3.2.2. Correlation features

An important aspect of social communication is how
different modalities of communicative behavior are in-
tegrated and coordinated. For example, the ADOS, the
gold standard clinical assessment for autism diagnosis,
includes criteria that evaluate how an individual com-
bines speech with gestures and eye contact with facial
expression [14]. Similarly, the coordination of behavior
within a communicative modality (e.g., movements across
different parts of the face) is important; for example, atyp-
ical aspects of facial expressions can be characteristic of
autism [21, 22]. Thus, to capture coordination across
different types of facial and head movements within a
person, we apply windowed cross-correlation [23] on the
matrix Y. That is, considering the 𝑖th and 𝑗th row of
Y as two time series, we compute the cross correlation
between the two, over time windows of length 𝑇𝑤 and a
step size of 𝑇𝑤/2 (i.e., consecutive time windows have an
overlap of 50%). We then compute the average 𝜇𝑖,𝑗 and



Table 2
Average prediction accuracy of all human raters, non-expert raters, expert raters and AI.

All human raters Non-expert raters Expert raters AI
80.3% 78.3% 83.1% 80.5%

standard deviation 𝜎𝑖,𝑗 of the maximal cross-correlation
values (w.r.t. lag) per window. To distinguish between the
cases where, say, a mouth movement was followed with
a pose variation from the opposite direction, we allow
only forward lag on the second time series in the pair,
thus (𝜇𝑖,𝑗 , 𝜎𝑖,𝑗) is in general different from (𝜇𝑗,𝑖, 𝜎𝑗,𝑖).
In sum, since Y has 56 rows, we have 56× 56 ordered
pairs, and with 2 features (i.e., mean and standard devia-
tion) per pair, the total number of features that represent
the behavior of a participant is 𝑀 = 6272.

3.2.3. Classification

We predict the diagnostic group of participants (ASD vs.
NT) using a linear SVM classifier by simply using the
default 𝐶 value for SVM (i.e., 𝐶 = 1). We report results
based on nested cross-validation, where the only hyper-
parameter that is being optimized is the time window 𝑇𝑤 ,
and we optimize over values of 𝑇𝑤 = 1, 2, 4, 6 seconds.
The time window length that was selected in most cross
validation folds was 𝑇𝑤 = 2𝑠.

While more advanced AI models based on deep learn-
ing could be used, the sample size is insufficient for reli-
ably training deep learning models from scratch. More-
over, to our knowledge, there is no publicly available
pre-trained deep learning model that is directly applica-
ble for our problem, thus taking an existing model and
re-training only a part of it (e.g., the classification layer)
with our data is also not an approach within reach.

4. Results and Discussion
Table 2 shows the prediction accuracy of the human
raters and the AI method. The results for the AI method
are obtained via 10-fold cross validation (repeated 100
times with shuffling participant order). The average ac-
curacy of expert clinicians is slightly higher than that of
non-experts. Of note, the average accuracy of all human
raters (expert and non-expert) is similar to that of the AI
approach. The average positive predictive value, nega-
tive predictive value, sensitivity and specificity of the AI
model are respectively 0.86, 0.79, 0.55, 0.95.

We next investigate whether the errors of the human
raters coincide with the errors of the AI algorithm. Ta-
ble 3 shows the participants whose diagnoses were in-
accurately predicted by most human raters (i.e., average
prediction accuracy < 50%), along with the correct diagno-
sis and diagnosis predicted by AI. Results show that four
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Figure 3: The average prediction accuracy of human raters
against the average prediction accuracy of the AI pipeline, per
participant. The average prediction for the AI results in this
figure are computed by repeating 5-fold cross-validation 1000
times, and averaging over the predicted 1000 predictions per
participant.

out of these five human mispredictions were correctly
predicted by the AI, including the first participant in the
list, whose diagnosis was predicted correctly by only 21%
of the human raters. In other words, participants that
were difficult for most human raters to accurately classify
were not particularly difficult for the AI. This suggests
that the decision mechanism of AI is different than that
of the humans, and the following results further support
this point of view.

Fig. 3 plots the average prediction accuracy of human
raters against the average accuracy of the AI algorithm
per participant. The correlation between these quantities
is not strong (𝜌 = 0.35) and is mostly driven by the par-
ticipants that are correctly classified by both humans and
the AI (i.e., the top right points of the plot). For example,
if we remove the subjects that are correctly classified by
at least 95% of the human raters, the correlation drops to
𝜌 = 0.19. The lack of points in the lower-left quadrant of
the Fig. 3 supports the conclusion that the diagnoses that
were difficult to predict for humans were not typically
difficult for the AI, and vice versa.

This outcome further supports that the decision mech-
anism of the AI is different than that of the humans, and



Table 3
The five participants whose diagnosis (dx) was mispredicted by most human raters (i.e., average prediction accuracy < 50%),
with the corresponding average accuracy by the AI (computed by repeating 5-fold cross-validation 1000 times) and the diagnosis
predicted by AI via leave-one-out cross-validation.

dx Average accuracy (humans) Average accuracy (AI) predicted dx (AI, leave-one-out CV)
ASD 21.1% 88.1% ASD
ASD 31.6% 77.4% ASD
ASD 42.1% 82.1% ASD
ASD 47.4% 89.4% ASD
ASD 47.4% 12.8% NT

is a desirable outcome if AI is to be used as an assistive
technology for human clinical decision-making, since
it implies that human decisions can be augmented with
the help of AI. For example, in a potential application
for autism screening from similar short social videos,
humans and AI could simultaneously make predictions,
and humans could re-evaluate their decision if it is incon-
sistent with the decision of the AI algorithm. However,
arguably, a scenario of this kind is conceivable only if
the AI algorithm produces a semantically interpretable
output—that is, the algorithm lists the detected behav-
ioral patterns that lead to a diagnostic decision of autism
vs. NT. Otherwise, without any explanation of the pre-
diction, it would be difficult for a clinician to determine
to what degree the result of the AI algorithm should be
taken into account.

In order to shed some light on the decision mecha-
nism of the AI, we analyze the features that were domi-
nant in the SVM classifier—the features that had greater
weight. Fig. 4 shows the weights of all the features and
Fig. 5a shows the 10 features that had the greatest (ab-
solute) weight across cross-validation folds along with
their names. While a complete analysis of the seman-
tic interpretation of each feature is a difficult task, we
can still gain some insight into the SVM decisions by
inspecting these results. First, note that pose-pose fea-
tures (i.e., features that summarize correlation between
two head rotation angles) have the greatest weight on
average (Fig. 4 top), indicating that head movements are
important for distinguishing behavioral patterns of autis-
tic vs NT participants. Moreover, correlation features
combining the pose and eye emerge as important both
in Fig. 4 and in Fig. 5a, supporting previous literature
suggesting that blinking and nodding are important non-
verbal behaviors in conversations [24], and head and eye
movements are indicators of social attention [25]. Sec-
ond, mouth-related features also emerged as important.
For example, six out of 10 correlation features in Fig. 5a
are related to mouth, with three of them being pairs of
mouth-mouth features.

We next analyze which, if any, of the four feature cat-
egories (eyes, brows, mouth, pose) have greater presence

among the top 𝑘 features. Fig. 5b plots the proportion
of the eye-, brow-, mouth- and pose-related features in
the top-10, top-100, top-1000 most important features, as
well as their proportion in the entire pool of 6272 features.
For example, while the baseline rate of pose features is
only ∼5.3% (i.e., ∼5.3% of the entire set of 6272 features
are pose-related), we see that the top 10 features contain
a pose-related feature at a ratio of ∼13.3% (see caption
of Fig. 5 for the computation pose-related features), in-
dicating that the pose features have ∼2.5 times more
presence in the top-10 features compared to their base-
line. Similarly, the baseline rate of mouth-related features
is ∼25.5%, but ∼40% of the top-10 features are related
to the mouth, indicating that mouth features also have
greater representation in the set of important features
compared to their baseline. In sum, our analyses sug-
gest that the AI algorithm places high emphasis on pose-
and mouth-related features when classifying between
autism and NT groups. Further analysis to uncover why
these features are important is beyond the scope of this
study, as this would require more granular expression
models (e.g., 3D versions of localized bases [26]), because
the approach that we designed from an existing model
does not allow us to pinpoint the facial movements of
interest beyond the level of the partitioned regions in
Fig. 2; for example, we cannot distinguish between parts
of the mouth, such as upper lip or mouth corner. Still,
our analyses allowed a degree of interpretation that cor-
roborates previous findings on the importance of mouth-
related movements [2, 4], as well as the central role that
head movements have in social orienting, attention and
backchannel feedback (e.g., nodding) [27, 28, 24, 25, 29].

5. Conclusions and Future Work
In this paper, we studied the prediction of autism from
facial movement behavior during casual conversations.
Specifically, we compared the predictive accuracy of ex-
pert and non-expert human raters with that of an AI
algorithm. Results show that, while both humans and the
AI are capable of distinguishing individuals with autism
spectrum disorder (ASD) from neurotypical (NT) indi-
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viduals with high accuracy, their errors do not overlap,
suggesting that the decision mechanism of an AI algo-
rithm may be different than that of a human. Thus, AI
technologies have the potential to provide complemen-
tary information to a clinician and become an assistive
tool for decision making. Arguably, the most immediate
application based on our results is a new, semi-automatic
screening technology for autism, where an individual is
advised for further diagnostic evaluation in the event that
a (non-expert) human or the AI model predicts that the
individual exhibits autism-specific behavior. However, in
a real life scenario, the problem of interest would be more
difficult as a potential patient may not be NT but may
not have ASD either. Thus, future research is needed to
identify the performance of humans and AI models in
predicting ASD diagnosis from neurodiverse samples.

Our results directly motivate further future research
in multiple directions. The most pressing future direc-
tion from the perspective of making AI an effective as-
sistive tool is examination of the behaviors that lead to
a predicted diagnosis. Having interpretable outputs is
necessary for using AI technologies in clinics, as clini-
cians should understand how the AI algorithm makes
a prediction before taking this prediction into account.

Furthermore, research on younger participants is needed,
given that early diagnosis improves access to effective
early interventions and thus can improve developmental
outcomes. Another future direction is to investigate the
benefits of dyadic analysis, where, unlike our monadic
analysis (Section 2), the behavior of confederate is also
taken to account. Finally, user research is necessary to
test if and to what degree clinician diagnoses can be im-
proved through the use of AI assistive tools.
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