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Abstract
The project concerns a system recommending films using the KNN algorithm. The program in order to find movies, is based
on the history of viewed items. Movie Recommender initially chooses the best ones from the history of films, in order
to finally give the proposals best suited to the user’s preferences. The model works with data from IMDB [? ] data set
downloaded from datasets.imdbws.com.
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1. Introduction
Currently, the most dynamically developing IT tools are
methods of artificial intelligence [1, 2]. Algorithms sup-
porting decision-making or supporting inference based
on fuzzy sets [3, 4] find a number of applications, among
others, in the detection of anomalies on roads [5] or in the
control of intelligent home management systems [6, 7].
At this point, one cannot fail to mention a wide class of
heuristic algorithms based on the observation of animal
behavior [8, 9, 10], which are widely used. The energy
reduction applications [11, 12, 13, 14, 15] are very im-
portant. The most common applications relate to the
use of [16] neural networks in a wide variety of applica-
tions that affect almost every area of life [17, 18, 19, 20].
Very interesting applications concern the care of the el-
derly [21, 22, 23, 24]. Often, neural networks are used
in various types of detection tasks for certain features
[25, 26, 27, 28]. The use of neural networks also plays a
very important role in machine learning [29, 30].

Due to digitization of our modern world prediction
models are extremely crucial in these days. That’s be-
cause they can optimize some of the user’s processes, that
would facilitate comfort of using a given app. Movies
are extremely complex thanks to a lot of variables into
which they can be divided. People struggle with choosing
a movie to watch, because they not only might not be
aware of their preferences, but also they may not have
enough time to check and compare all data[31]. Whole
problem could be solved by a program doing all the neces-
sary calculations for you, basing on user’s watch history
and reviews.
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2. Assumptions for algorithms
Each of the algorithms should be prepared to meet the
following criteria:

1. Prepared according to the mathematical descrip-
tion of the algorithm;

2. Optimized for the performance on our data set;
3. Returns an array containing information about

top k (number of predicted movies) movies, bas-
ing on top 3 movies from our watch-list.

3. Program description
The task of our project is to create a system recommend-
ing films using the KNN algorithm. The program in order
to find movies, is based on the history of viewed items.
Movie Recommender initially chooses the best ones from
the history of films. Then each video goes through the
algorithm so that the program finally gives the proposals
best suited to the user’s preferences. (Including watch
history). In this particular cases, KNN uses three metrics:
Taxi cab, Cosine distances and Euclidean.

4. KNN history
The origins of KNN can be traced to research conducted
for the U.S armed forces. Evelyn Fix (1904-1965) was
a mathematician and statistician who taught at Berke-
ley. Joseph Lawson Hodges Jr. (1922-2000) was a Berke-
ley statistician who worked with the 20 United States
Air Forces (USAF) from 1944. Combining their brilliant
minds, in 1951 they wrote a technical analysis report for
the USAF. He introduced a discriminant analysis, non-
parametric classification method. However, the newspa-
per was never officially published - most likely due to
confidentiality in the aftermath of World War II.
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5. Euclidean metrics history
Euclidean distance is the distance in Euclidean space;
both concepts are named after ancient Greek mathemati-
cian Euclid, whose Elements became a standard textbook
in geometry for many centuries.Concepts of length and
distance are widespread across cultures, can be dated to
the earliest surviving "protoliterate" bureaucratic doc-
uments from Sumer in the fourth millennium BC (far
before Euclid),and have been hypothesized to develop in
children earlier than the related concepts of speed and
time.But the notion of a distance, as a number defined
from two points, does not actually appear in Euclid’s Ele-
ments. Instead, Euclid approaches this concept implicitly,
through the congruence of line segments, through the
comparison of lengths of line segments, and through the
concept of proportionality.

6. Taxi Cab metrics history
Taxicab Geometry is a non-Euclidean Geometry that mea-
sures distance on horizontal and vertical lines. According
to Taxicab Geometry - History, the taxicab metric was
first introduced by Hermann Minkowski (1864-1909) over
100 years ago; however, it did not get its name until 1952.
Taxicab is unique in that it is only one axiom away from
being a Euclidean metric. In Euclidean Geometry the
minimum distance between two points is the shortest
line segment between those two points. However, in Taxi-
cab Geometry there can be multiple minimal distances or
‘shortest paths’ made up of line segments perpendicular
or parallel to the x-axis. Taxicab Geometry - History
suggests that modern research on taxicab did not occur
until as recent as the 1980s. The measurement of distance
using vertical and horizontal lines rather than diagonal
lines has sparked questions about its applications and
encouraged more research and exploration of this simple
yet unique metric

7. Description of the program’s
operation

Initially, we started the project by preparing the data in
such a way that we could then carry out calculations
on them. For this purpose, we downloaded the IMDB
database, which consisted of four files containing data
on:

• Data on the movie itself.
• Ratings for individual videos.
• The cast of the movie.
• Personal data of people participating in the film.

In order to optimize the algorithm, we do not use the full
names of the cast at this stage of operation.

The next step is to create a person’s profile to keep
a history of the videos watched along with the user’s
rating. Before starting the algorithm, the program selects
three top movies according to the user’s rating. Then,
based on this data, it performs calculations to find the
best matching items in our database.
The metric used in the KNN algorithm is the sum of the
cosine, taxicab and euclidean distances,between the val-
ues of the film elements we compare, i.e. genres, writers,
directors. We use previously created numerical values.
Formulas used to determine distances between successive
parameters looks like this:

• Cosine distance

1− 𝑢 · 𝑣
‖𝑢‖2‖𝑣‖2

, (1)

• Taxi cab distance

|𝑢− 𝑣| (2)

• Euclidean distance⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑢− 𝑣)2 (3)

where u i v are the arrays to be compared

The next step is to use the KNN algorithm, which will
use the previously described metric, in order to find the
k-nearest neighbors of a given movie. In the algorithm it-
self, we predict finding k neighbors. As the algorithm can
receive a maximum of 3 user top videos, it will therefore
return a top 3k of the proposed positions. For example,
if we add movies to the history:

• Coffee & Kareem, rating: 8
• Das Cabinet des Dr. Caligari, rating: 9
• The Kid, rating: 8.5

Program would output:
Recommended Movies basing on: Coffee & Kareem

• The F word
• It’s All Gone Pete Tong

Recommended Movies basing on: Das Cabinet des Dr.
Caligari

• Psycho
• 6 donne per 1’assassino

Recommended Movies basing on: The Kid

• The Circus
• Modern Times

8. Algorithms
In this section we will present pseudocodes of the most
important algorithms used by us.
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Data: Input: Id of the first movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1, Id of
the second movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2

Result: The lack of data

genresA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
genresB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
genreDistance = the cosine distance between two
values.

directorA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
directorB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
directorDistance = the cosine distance between

two values.

writerA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
writerB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
writerDistance = the cosine distance between two

values.

return genreDistance + directorDistance +
writerDistance

Algorithm 1: Cosine distance metric pseudocode

Data: Input: Id of the first movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1, Id of
the second movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2

Result: The lack of data

genresA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
genresB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
genreDistance = the taxi cab distance between

two.

directorA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
directorB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
directorDistance = the taxi cab distance between

two values.

writerA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
writerB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
writerDistance = the taxi cab distance between

two values.

return genreDistance + directorDistance +
writerDistance
Algorithm 2: Taxicab metric pseudocode

Data: Input: Id of the first movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1, Id of
the second movie 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2

Result: The lack of data

genresA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
genresB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
genreDistance = the euclidean distance between

two values.

directorA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
directorB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
directorDistance = the euclidean distance between

two values.

writerA = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑1
writerB = genre of 𝑚𝑜𝑣𝑖𝑒𝐼𝑑2
writerDistance = the euclidean distance between

two values.

return genreDistance + directorDistance +
writerDistance

Algorithm 3: Euclidean metric pseudocode

Data: Input: The name of the movie 𝑛𝑎𝑚𝑒,
Amount 𝑘, User Name 𝑢𝑠𝑒𝑟

Result: Featured Videos

newMovie = movie name
distances=[]
neighbors = []

for 𝑚𝑜𝑣𝑖𝑒 in 𝑚𝑜𝑣𝑖𝑒𝑠 do
if movie not in history then

Add distances to the distances array using
the ’Similarities’ metric between the
given movie and the rest of the movies
in the database.

end
end
distances.sort()
for 𝑥 in 𝑘 do

Add to 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 calculated distances.
end
for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

View featured video data 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
end

Algorithm 4: An algorithm that returns Recom-
mended Videos based on user preferences.
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Data: Input: movie’s name,
k - number of films searched
Result: Prediction: k - movies’ name

movie = movie information database row
neighbors = KNN algorithm using the taxi metric,
given k - amount of movies to be found

for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
neighbors = KNN algorithm using the Cosine

distance metric
end

for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
neighbors = KNN algorithm using the

Euclidean metric
end

𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑𝑀𝑜𝑣𝑖𝑒𝑠 = []

for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
𝑎𝑣𝑔𝑅𝑎𝑡𝑖𝑛𝑔 = average rating of the movie
(additional information from knn)
𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑𝑀𝑜𝑣𝑖𝑒𝑠 += [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟,
𝑎𝑣𝑔𝑅𝑎𝑡𝑖𝑛𝑔]

end

return 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑𝑀𝑜𝑣𝑖𝑒𝑠

Algorithm 5: An algorithm containing various met-
rics to find the best matches for the user.

9. Data base

9.1. Used Database
The following database was used for demonstration pur-
poses in a non-commercial, scientific manner - IMDB [32]
data set downloaded from datasets.imdbws.com. Tables
used:

• name.basics.tsv
• title.basics.tsv
• title.crew.tsv
• title.ratings.tsv

The database, after our simplifications and prior prepara-
tion, contains a collection of 9,827 films with information:

9.2. Description of the columns
The set consists of 6000 rows and 7 columns.
A detailed description is provided below:

1. OriginalTitle - Original title of a movie.
2. Genres - List of movie genres.
3. AverageRating - Average rating of a movie.
4. Writers - A list of writers of a given movie.
5. Directors - A list of directors of a given movie.

6. Genres_bin - Converted column ’Genres’ to a
numerical form.

7. Writers_bin - Converted column ’Writers’ to a
numerical form.

8. Directors_bin - Converted column ’Directors’
to a numerical form.

Based on the data base above, we have created several
rankings that show the popularity ratio of the data that
was used in the KNN algorithm:

Figure 1: Top genres

Figure 2: Top writers
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Figure 3: Top directors

10. Conclusion and future work
In order to improve the operation of the algorithm and
to make the use of it more enjoyable, you can use a more
friendly GUI in the future. To make the algorithm work
better, it is also possible to use more data (more extensive
user history) to further refine the metic used.
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