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Abstract
The global spread of the COVID-19 virus has become one of the greatest challenges that humanity has faced in recent years.
The unprecedented circumstances of forced isolation and uncertainty that it has imposed on us continue to impact our mental
well-being, whether or not we have been directly affected by the virus. Over a period of nearly three years (2017-2020),
data was collected from multiple administrations of the Rorschach test, one of the most renowned and extensively studied
psychological tests. This study involved the clustering of data, collected through the RAP3 software, to analyze the distinctive
trends in data recorded before and after the pandemic. This was achieved through the implementation of the well-established
machine learning algorithm, Expectation-Maximization. The proposed solution effectively identifies the key variables that
significantly influence the subject’s score and provides a reliable solution. Additionally, the solution offers an intuitive
visualization that can assist psychologists in accurately interpreting shifts in trends and response distributions within a large
amount of data in the two periods.
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1. Introduction
Since the beginning of 2020, humanity had to battle
against an invisible enemy: the COVID-19 virus. As
well known nowadays, this virus can spread very easily
and this has forced humans to dramatically change their
common and usual behaviors: shaking hands, hugs, and
kisses allow a fast transmission of this virus and they
are now strictly forbidden unless you are sure that the
person in front of you is not infected. This is not so easy
to detect because this virus is mutated many times since
March 2020 and many subjects may be infected without
showing symptoms.

Regarding the symptoms that an infected subject could
have, the most common ones are high fever, cough, sore
throat, loss of smell and taste, and general tiredness.
Some of these symptoms allow this virus to appear as
simple flu and that’s another reason why this virus is
dangerous and hard to detect sometimes. In some fragile
subjects (elders, and people with other serious illnesses),
this virus may cause death. With the development of the
vaccine, we have been able to restrict and occasionally
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weaken the virus’s capacity to spread, with the hope that
everyone will soon be able to resume their regular social
activities in safety.

Since the scientific world didn’t fully understand the
COVID-19 virus at the time of its initial discovery and,
more importantly, since individuals didn’t know how to
behave in the first place, staying at home was one of
the hardest problems it presented to us. These factors
compelled governments all over the world to relocate
lockdowns in cities and states. For instance, the govern-
ment of Italy has imposed two significant lockdowns,
the first lasting from March 2020 to June 2020 and the
second lasting from October 2020 to January 2021. These
lockdowns may have had a large and dramatic impact
on people’s personalities and conceptions of reality, in
addition to the disease, the spreading of uncertainty, and
terror. The culmination of these unlucky occurrences
may also have an impact on certain brain processes.

Despite all the negative events that occurred during
this brief but intense historic moment, psychologists are
now studying this topic in order to determine whether
the virus can genuinely permanently alter brain func-
tion in addition to any physical harm that it may do.
The Rorschach test is one of the most effective and so-
phisticated methods psychologists employ to examine
mentality and personality. Hermann Rorschach, a Swiss
psychologist who lived between the end of the 19th and
the beginning of the 20th century, inspired the creation
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Figure 1: Cards used in the Rorschach test. Notice the sym-
metry of the inkblot for each card.

of this test and gave it his name. This test requires the
participant to bring 10 cards (or tables) to their attention,
each of which has a symmetric inkblot. The cards are
shown in Fig. 1, where it can be seen that there are 5
monochromatic, 2 two-tone, and 3 colorized versions of
them. One by one, these cards are given to the subject,
who is then asked to comment on every aspect the card
represents from its perspective. It’s crucial to note that
the subject may take any amount of time to respond and
that there are no "correct" or "wrong" answers because
the responses are all subjective. Also, notice there can
be more than one response for each card: the psychia-
trist/psychologist encourages the subject to give many
original replies. Typically, the psychologist notes every
answer the subject gives and it is related to a specific
part of the inkblot. It’s important to add that there is no
specific submission order for the cards.

Many things we can say about this test, but this lit-
tle jump into the psychology world is enough to un-
derstand the utility of this test for the task. In fact,
a big amount of data was collected in a dataset called
‘COVID-19 Rorschach test dataset’ which contains sev-
eral samples of protocols and responses, from 2017-01-01
to 2020-09-15, available online for free. It includes some
demographics-related variables and the codes of the Com-
prehensive System (Exner, 2001). The dataset contains
more than 500,000 coded responses to the test inkblots
stimuli. The series of responses refer to the interpretation
given by a certain subject. The data were collected by
using the Rorschach Assistant Program (RAP3) software
[1], which is one of the currently available examples of
a system for online testing [2, 3, 4, 5, 6] and assessment
[7, 8, 9, 10, 11, 12].

This dataset contains a significant amount of informa-
tion for us to analyze. The final interpretation given by a
psychiatrist depends on various factors, including the re-
sponse’s content, the visual stimuli, and the region of the
inkblot that elicits the response. Our task in this paper is

to identify which variables are responsible for eliciting
the responses and examine how these values change in
the data collected before and during the pandemic. It is
worth noting that the dataset does not specify whether
the subjects who underwent the test during the pandemic
were infected or not.

The main idea is to perform a clustering of the data iso-
lating some important features and sketching and under-
standing the behavior of the responses based on a prob-
abilistic manner. For this purpose, clustering is a good
choice since this is an unsupervised task, and to achieve
that the Expectation-Maximization is the algorithm we
are looking for. This algorithm will be implemented us-
ing a Gaussian Mixture Model (GMM) according to the
number of clusters we assume to have, which is one of
the results we’d like to achieve with this work.

2. Related works
Since the pandemic came up just a couple of years ago,
the state-of-the-art research and literature about this spe-
cific task are quite poor. The most popular Rorschach
test-related research involved the use of deep learning
and neural networks for image classification [13], but
this is closely related to inkblots for computer interpreta-
tion. As specified before, in this case, we are interested
in what kind of feature is the most effective for the re-
sponses of the subjects and the difference in trends of the
responses between tests done pre-pandemic and during
the pandemic.

One of the major problems was (and is) the submission
of the Rorschach test to infected people: as the AIP [14]
1 said the remote test submission introduces significant
complications in some assessments where the physical
presence of the subject was needed (cognitive, neurode-
velopment, work stress). However, remote submission
was strongly recommended in the other cases (must be
done if the patient was currently affected by Covid-19).
In detail, psychologists take into account lots of stimuli
from a subject: during the remote sessions, they may
find some little alterations in the verbal activities of the
subject, but the non-verbal stimuli and handling manip-
ulation may be dramatically affected, due to brightness
and sharpness of the screen mainly. In-depth studies
of the test results have not been published because the
specialists need to preserve the privacy of the patients.

Referring to software applications created to help the
psychiatrists in the analysis of the signatures, it’s worth
mentioning the PRALP3 [15] software that was made up
by Pancheri, De Fidio and Corfiati from the University of
Rome and the university of Bari and published in 1995,

1Associazione Italiana di Psicologia (Italian Association of Psy-
chology, in English). Notice that Italy is the country with the highest
submissions of the Rorschach test registered in the dataset.
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the RIAP5 [16] scoring program that was developed by
the PAR company, the RAP3 program cited before and
the CHESSSS [17] program published in 2016. From this,
it’s clear that computer programs already helped industry
specialists in a relevant manner.

Some sort of clustering performed on this very same
dataset was done by Surekha Ramireddy and published
on the Kaggle platform[18]. In this work, the clus-
tering has been performed by the KMeans algorithm
[19, 20, 21, 22]. The choice of the KMeans algorithm is
easy: it is one of the simplest and most intuitive algo-
rithms in unsupervised ML. Assuming that the distribu-
tion of the samples in the dataset is generated by Gaus-
sian distributions represented by a number of K means
(priors and covariance matrices are the same for each
Gaussian distribution), the algorithm works by starting
with a random initialization of the K means, then assign
each point to the closest mean (they represent the center
of the clusters) by computing the distance between the
point and all the means and taking the one with lower
distance. Then, it repeats the process updating the means
(when a sample is added to a cluster). The algorithm stops
when there is no change of cluster between the current
and previous step.

Convergence is always reached if the used distance
function guarantees the sum of distances decreases from
one iteration to the next (when the mean is moving to
the center of the centroid).

Some problems might be encountered: the choice of
K is fundamental (usually, from 1 to 10), and mostly de-
pend on the choice of the distance function. Also, this
algorithm doesn’t consider priors and covariance ma-
trix as parameters, so we rely on the computation of the
means only and we do not have any information about
the covariance matrices of the distributions, namely we
cannot control the amplitude of the clusters. Moreover,
the KMeans algorithm tends to cluster the data in a cir-
cular shape if in 2D (spherical if in 3D) and this may lose
accuracy if the dataset is strongly unbalanced.

3. Dataset
Let’s take a closer look at the dataset that will be used
in this analysis. The dataset comprises 506,480 samples,
each consisting of 24 features. The features are listed
below for completeness:[18]:

• User: user ID number;
• PQlevel: professional qualifications levels
• Client: client ID number;
• Age: client age in years;
• Gender: client gender;
• Country: client country;
• Protocol: protocol ID number;

• Test Date: the date the RAP3 protocol was cre-
ated;

• R: total number of responses in the protocol;
• ResponseOrder: the order of responses in the

protocol;
• CardID: Rorschach card number, 1 to 10;
• Location: indicated to which area of the blot the

responses referred to;
• LocationNumber: location normative number;
• Developmental Quality: quality of processing;
• Determinants: all the visual stimuli in the blot

that shaped the reported objects in the response;
• Pair: two identical objects are reported, based on

the symmetry of the blot;
• Form Quality: indicates how good is the fitness

between the area of blot and the form of the object
specified in the response;

• FQText: the form quality associated Normative
Text;

• Contents: abbreviations for the category to which
the responded object belongs;

• Popular: responses that occur with a frequency
with a normative sample;

• ZCode: the relationship between distinct blot ar-
eas;

• ZScore: numerical value assigned to responses in
which such organization activity occurs;

• Special Scores: indicate the presence of special
features in the response;

• Rejection: number of card rejections in the proto-
col.

Not all of these features are relevant to our task; in
fact, the features we will take into account to perform
the clustering are the ones stored in the Location, De-
terminants, and Contents columns. All of these features
store information about the test that may be useful for
the interpretation of the inkblots provided by the subject.
In addition to being unnecessary for this task, the other
features can be eliminated because they will add to the
payload’s computational burden and processing time due
to the large number of missing values they contain.

The choice to cluster the data using the Location, Con-
tents, and Determinants features is easily understandable.
However, rather than using the categorical Location fea-
ture, we opt for the numerical LocationNumber feature.
Despite containing some missing values, this feature can
still be used as the latent variable for the EM algorithm.
Thus, we simplify the dataset by condensing it into three
primary features.

Our goal is to cluster the data based on the determi-
nants feature, but due to the limitations of clustering
algorithms, it is not meant to consider more than 30
centroids. Therefore, we need to group similar values
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together to reduce the number of possible centroids. To
do this, we can categorize the values of the determinants
into major groups based on their similar meanings:

• Determinants based exclusively on the form fea-
ture of the blot;

• Determinants based on the parts of the blot that
either seems to reflect or are paired with other
parts of the blot.

• Determinants based on movement features of the
figure represented by the blot;

• Determinants based on the color features of the
blot as the principal cause of response;

• Determinants based on the shading part in both
achromatic and chromatic cards;

Our hypothesis is to create a model with five clusters,
each corresponding to the categories we identified earlier.
To ensure that our data is coherent, we need to take
additional steps. One such step is to exclude protocols
with less than seven responses, as they are considered
non-useful for our purposes. This will result in a slight
reduction in the size of our dataset.

Another step that we have to do is to split the val-
ues into Contents and Determinants because one sample
may be collected in the dataset with more than one de-
terminant and/or content. Moreover, every protocol has
many responses associated with it, so we need to split
this data in order to be considered as a single response.
The splitting operation will increase the shape of the
dataset significantly. The complete list of all the values
recorded in the Contents column is shown in Table 1.
These are still categorical values and we could encode
them as one-hot vectors, but a number from 0 to 26 is
associated with each content to let the program run on a
local machine (0 to A, 1 to H, and so on).

Moreover, it’s useful to see what these values represent
from the point of view of the specialist. The values refer
to some reference classes each answer belongs to. For
example: content A refers to animal or animal parts;
contents H, Hd, Hh refer to human parts; contents Sx
and Sc refer to sexual responses etc.

Now we have a very augmented dataset to work with,
but we need to make a couple of steps before constructing
the models.

The next step is to split not a single category but the
brand-new dataset into two subsets: one containing only
data from tests submitted before the pandemic, and the
other one containing only data from tests submitted after
the pandemic. In the first one, we’ll have tests done from
Jan 1, 2017, to Feb 29, 2020, while in the second one,
we’ll have tests submitted from Mar 1, 2020, to Sep 15,
2020. From now on, we will refer to these two subsets
as the pre-pandemic dataset for the first one, and the
post-pandemic dataset for the second one. It’s easy to

Table 1
Number of values for contents in the splitted dataset

Value Pre-pandemic Post pandemic

A 530729 59786
H 429648 46689
Cg 348894 36672
Sc 233454 24655
Hd 184813 18626
Hh 165845 18504
An 159584 16953
Na 144547 16731
(H) 160612 16325
Ad 148635 15936
Art 159168 15862
Hx 144663 15365
Ls 123480 13426
Bt 122926 13264
Fi 106805 11020
Ay 108365 10070
Bl 88084 10000
Sx 100066 9962
Id 87419 8583
Fd 58476 6547
(A) 59012 6434
(Hd) 54297 5814
Ex 34783 4024
Cl 34015 3593

(Ad) 18953 1893
Ge 12717 1301
Xy 14238 1285

notice that the pre-pandemic dataset contains way more
samples than the post-pandemic dataset because it covers
tests done in more than 3 years.

The last step of the pre-processing is to deal with miss-
ing or null values for the LocationNumber feature. This
is done by substituting the missing values with the mean
value of the features using the SimpleImputer class of
the Sci-Kit Learn library for Python (this library will help
us for the whole development of this project). Next, we
will encode the Determinants features using a 1-out-of-K
encoding technique (not the one provided in the library),
storing a 4-dimensional array for each determinant with
a 1 in position i, where i = 0, 1, 2, or 3, according to the
category the determinant belongs to (as shown earlier).
Finally, we will perform a scaling operation on the data
before fitting the model, transforming it to a standard
normally distributed data ranging between [-1,1], with a
mean of 0 and a standard deviation of 1.

After completing the pre-processing steps, the pre-
pandemic dataset will contain 1,177,056 samples, and the
post-pandemic dataset will contain 136,408 samples, with
each dataset having 7 features (1 for location numbers,
1 for contents, and 5 for storing 5-dimensional one-hot
encoding for the determinants). Since we are dealing
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with a large number of samples, we will randomly select
10,000 samples from each dataset to evaluate clustering.
However, we can confidently rely on this choice because
of the scaling operation conducted just before fitting the
model.

4. Implementation
In this paper, the EM[23] algorithm has been chosen to
cluster the data. This algorithm provides the computa-
tions of the mean, the covariance matrix and the prior of
each distribution (cluster) involved in the problem, given
a dataset. This choice is reasonable: this algorithm is
able to determine the cluster attributes in a smoother
way, e.g. by considering the data to be distributed in
an elliptical way. In this way, the clusters appear to be
smoother than the KMeans clustering and allow us to
overcome the drawbacks described before.

4.1. Gaussian Mixture Model
First, we have to make a strong assumption: the sam-
ples in the dataset we’re dealing with are generated by a
Gaussian distribution. Since we are dealing also with K
types of clusters, we assume the samples are generated
by K different Gaussian distributions. So the probability
of having a specific sample x in the dataset is expressed
as:

𝑃 (𝑥) =

𝐾∑︁
𝑘=1

𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)

where x is a sample in the dataset 𝐷 = 𝑥𝑖, i=1,...,N, 𝜋𝑘 is
the prior, 𝜇𝑘 is the mean and Σ𝑘 is the covariance matrix
of the k-th distribution.

The model is composed of a combination of Gaussian
distributions because all K distributions are handled si-
multaneously, hence the term Gaussian Mixture Model
(GMM).

In this case, a good way to express the data is by intro-
ducing the so-called latent variables 𝑧𝑘 ∈ {(0, 1)}, with
z = (𝑧1, ..., 𝑧𝑁 ) and each 𝑧𝑘 is the 1-out-of-K encoding
where only one component is 1 (in the k-th position) and
the other K-1 components are zeros. Using this repre-
sentation, we are assigning each sample to one specific
distribution and each sample has a prior probability of
being assigned to the k-th distribution equal to

𝑃 (𝑧𝑘 = 1) = 𝜋𝑘

thus the probability of having a specific set of latent
variables is given by

𝑃 (𝑧) =

𝐾∏︁
𝑘=1

𝜋
𝑧𝑘
𝑘

so only the k-th prior is selected for any sample.
For a given value of z, we have

𝑃 (𝑥|𝑧𝑘) = 𝒩 (𝑥;𝜇𝑘,Σ𝑘)

thus

𝑃 (𝑥|𝑧) =
𝐾∏︁

𝑘=1

𝒩 (𝑥;𝜇𝑘,Σ𝑘)
𝑧𝑘

so now we are able to compute the joint distribution of
samples and latent variables as

𝑃 (𝑥|𝑧𝑘) = 𝑃 (𝑥)𝑃 (𝑥|𝑧).

In this case, the z variables have the 1-out-of-K encod-
ing property and the probability of having the dataset
generated by the defined model can be computed by

𝑃 (𝑥) =
∑︁
𝑧

𝑃 (𝑥)𝑃 (𝑥|𝑧) =
𝐾∑︁

𝑘=1

𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘)

One can notice that the GMM distribution P(x) can be
seen as a marginalization of a distribution P(x,z) over the
variables z.

Given a dataset of observations D =
{︁
(𝑥𝑛)

𝑁
𝑛=1

}︁
, each

data point 𝑥𝑛 is associated to the corresponding variable
𝑧𝑛 which is unknown. The analysis of latent variables
allows for a better understanding of input data (e.g., di-
mensionality reduction).

4.2. Expectation Maximization
The Expectation Maximization (EM) algorithm is an ap-
proach for maximum likelihood estimation in the pres-
ence of latent variables. It’s a general technique for find-
ing maximum likelihood estimators in latent variable

models. In detail, given a dataset D =
{︁
(𝑥𝑛)

𝑁
𝑛=1

}︁
and

a GMM defined as P(x), the algorithm determines the
estimations of the mean 𝜇𝑘 , the covariance matrix Σ𝑘

and the prior 𝜋𝑘 .
The EM algorithm is based on the estimation of the

maximum likelihood: let’s define the posterior probabil-
ity after observation of x as

𝛾 (𝑧𝑘) = 𝑃 (𝑧𝑘 = 1|𝑥) = 𝑃 (𝑧𝑘 = 1)𝑃 (𝑥|𝑧𝑘 = 1)

𝑃 (𝑥)

𝛾 (𝑧𝑘) =
𝜋𝑘𝒩 (𝑥;𝜇𝑘,Σ𝑘))∑︀𝐾
𝑗=1 𝜋𝑗𝒩 (𝑥;𝜇𝑗 ,Σ𝑗))

thus the maximum likelihood is computed as

argmax 𝑙𝑛𝑃 (𝑋|𝜋,Σ, 𝜇)
𝜋,Σ,𝜇

where at maximum
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𝜋𝑘 =
1

𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)𝑥𝑛

Σ𝑘 =
1

𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘) (𝑥𝑛 − 𝜇𝑘) (𝑥𝑛 − 𝜇𝑘)
𝑇

𝜋𝑘 =
𝑁𝑘

𝑁
,𝑁𝑘 =

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)

for any k = 1,...,K.

The EM algorithm [23] is an iterative approach that
cycles between two modes. The first mode attempts to
estimate the missing or latent variables called the esti-
mation step (or E-step). The second mode attempts to
optimize the parameters of the model to best explain
the data, called the maximization step (or M-step). At
first, the algorithm takes a random initialization of the
parameters as:

𝜋
(0)
𝑘 , 𝜇

(0)
𝑘 ,Σ

(0)
𝑘 ,

4.2.1. E-step

In this step, the model estimates the missing (latent) vari-
ables in the dataset. This is performed by the following:

𝛾 (𝑧𝑛𝑘)
(𝑡+1) =

𝜋
(𝑡)
𝑘 𝒩 (𝑥;𝜇

(𝑡)
𝑘 ,Σ

(𝑡)
𝑘 ))∑︀𝐾

𝑗=1 𝜋
(𝑡)
𝑗 𝒩 (𝑥;𝜇

(𝑡)
𝑗 ,Σ

(𝑡)
𝑗 ))

4.2.2. M-step

In this step, the model maximizes the parameters of the
model in the presence of the data and updates the param-
eters for further iterations. This is done by the following
equations:

𝜋
(𝑡+1)
𝑘 =

1

𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)
(𝑡+1) 𝑥𝑛,

Σ
(𝑡+1)
𝑘 =

1

𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)
(𝑡+1) 𝑑𝑡+1(𝑥𝑛, 𝜇𝑘),

𝜋
(𝑡+1)
𝑘 =

𝑁𝑘

𝑁
,𝑁𝑘 =

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)
(𝑡+1)

where

𝑑𝑡+1(𝑥𝑛, 𝜇𝑘) =
(︁
𝑥𝑛 − 𝜇

(𝑡+1)
𝑘

)︁(︁
𝑥𝑛 − 𝜇

(𝑡+1)
𝑘

)︁𝑇

Figure 2: Sketch of the silhouette scores for the pre-pandemic
data with the number of clusters for 2 to 10.

4.2.3. Convergence

This algorithm converges to the local maximum likeli-
hood which provides the estimate of the latent variables
𝑧𝑛𝑘 that are the core of the computations of the parame-
ters. It can be seen as an extended version of K-Means:
indeed, if K=1 one can prove that these equations made
up the K-Means algorithm itself, and it consists of a prob-
abilistic assignment to a cluster 𝑧𝑛𝑘 .

4.2.4. Silhouette function

At this point, we need to compute some performance
metrics to choose the right number of clusters. For this
purpose, we are going to compute the silhouette score[24]
which is calculated by taking into account the mean intra-
cluster distance 𝑎 and the mean nearest-cluster distance
𝑏 for each data point. The silhouette score for a sample
is (𝑏− 𝑎) / 𝑚𝑎𝑥 (𝑎, 𝑏). The value is explained in the
following:

• A silhouette score with a value near 1 means the
data point is in the correct cluster;

• A silhouette score with a value near 0 means the
data point might belong in some other cluster;

• A silhouette score with a value near -1 means, the
data point is in the wrong cluster.

The silhouette score is computed for K = 2, ..., 10, and the
number of clusters are chosen considering the highest
silhouette score, in general.

5. Results
After going into the numerical results, we would like to
underline that we compute the silhouette score to see
what is the suggested number of clusters. Remember that
we’d like to have k=4 clusters, so the silhouette scores will
be used as a guide rather than a hard rule when deciding
the number of clusters since the GMM is a probabilistic
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Figure 3: Sketch of the silhouette scores for the post-
pandemic data with the number of clusters for 2 to 10.

Table 2
Silhouette scores

k Pre-pandemic Post-pandemic

2 0.8818 0.8846
3 0.5604 0.5757
4 0.5821 0.2513
5 0.4529 0.1981
6 -0.0523 0.0791
7 0.4297 0.4202
8 0.2259 0.0291
9 0.3132 -0.2531
10 0.27581 0.1751

model. The scores are sketched in Figure 2 for the pre-
pandemic data and in Figure 3 for the post-pandemic data
and the numerical values are listed in Table 2. They have
been computed by using the silhouette_score func-
tion provided by the Sci-Kit Learn library [24]. Further-
more, the average Silhouette score for the pre-pandemic
GMM model is 0.4077, while the average Silhouette score
for the post-pandemic GMM model is 0.2622.

One may notice that the functions do have not similar
shape, but the highest Silhouette score for both datasets
is related to k=2: this should suggest that the best number
of clusters should be 2 for this dataset, but the meaning of
the silhouette score is to see that our choice k=5 is reason-
able. Despite the poor score for the post-pandemic data,
we can keep the initial choice because we are assuming
that the distribution of entire data points is similar with-
out any distinction of data submissions. The choice of
k=5 is also acceptable because it’s bigger than the average
Silhouette score (for the pre-pandemic data).

From the plots, we can say the choice of either k=3
or k=4 could be acceptable, too. We may anticipate that
the clusters might be distinct but some data points may
overlap in space.

In Figure 4 and Figure 5, the data points randomly
chosen for clustering are shown, whereas the GMMs are
shown in Figure 6 and Figure 7. In particular, Figures 4

Figure 4: Random pre-pandemic samples, represented as 2D
points.

Figure 5: Random post-pandemic samples, represented as 2D
points.

and 6 are related to the pre-pandemic data points and
distributions, while Figures 5 and 7 are related to the
post-pandemic data. Please notice that in both Figure
4 and Figure 5 plots, some points may overlap so you
might see fewer points for a cluster.

It’s also interesting to see that some points are very
far away from the others and this happens for points
that have been collected with a location number equal to
99 (the mean of the location numbers is 10.7) that have
been predicted as belonging to the shading category (the
yellow one). Those points may have an effective rule
by enlarging and stretching the Gaussian distributions,
especially the one related to the movement category.

We plot the encoded location numbers on the horizon-
tal axis and the encoded contents on the vertical axis.
One can assert the following statements for these plots:

• For the pre-pandemic data, the plot is showing a
similar distribution of samples predicted as the
other 4 categories along the horizontal axis, while
it is very diverse and distinct along the vertical
axis: it’s clear that we don’t have many cases in
which the distributions share same parts of the
space;

• For the post-pandemic data, the plot is showing
a very different scenario with respect to the pre-
vious one: we see a big increment of samples pre-
dicted as belonging to the form category (the dark
blue ones), but one can see also see a decrease
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in numbers of samples predicted as belonging to
the movement category (the orange ones) and the
reflection category (the green ones) and the color
category (the light blue ones) samples change a
little bit their trend;

• For both pre and post-pandemic models, some
points are very far away from the others and this
happens for points that have been collected with
a location number equal to 99 that have been pre-
dicted as belonging to the shading category (the
yellow ones). In this case, the location number
is referring to this category only. We can under-
stand this trend also by seeing at the model plots:
indeed, the yellow Gaussian distribution is very
thin (namely the minor semi-axis is really close
to zero) and far away from the other Gaussian
components.

Figure 6: Visualization of the GMM for the pre-pandemic
data.

Figure 7: Visualization of the GMM for the post-pandemic
data.

So, in general, we notice a significant change in dis-
tributions of almost all the categories. Because of that,
we want to understand which feature is the most pre-
dominant one between the locations and the contents:
to do this, we’ve performed the PCA (Principal Compo-
nent Analysis)[25] by using the decomposition.PCA
class of the Sci-Kit Learn library and we have got the
following results: [0.90091513 0.09491116] for the
pre-pandemic model, and [0.88808373 0.10983465]
for the post-pandemic model, so in both cases, the most
dominant component is the location number, and so the
location of the inkblot which prompted the patient to
respond in that way. One may conclude the location
number can be seen as a kind of scaling factor for the
data points.

6. Conclusions
The project highlights the significant impact that the nu-
merical value assigned to the location of a region on a
blot has on the psychologist’s final interpretation. Fur-
thermore, Figures 6 and 7 demonstrate that the results
produced by the KMeans algorithm can be quite chaotic.
The proximity of the means and the elliptical shapes of
the distributions computed by the GMM indicate that the
KMeans algorithm may not be able to accurately fit the
data. This is likely due to the algorithm’s constraint of
computing circular-shaped distributions.[26].

Given the richness of the dataset and the subjectivity
of the Rorschach test, other projects can be done. An
interesting approach would be to cluster the data based
on the location or contents of the blot. Another option
would be to analyze the data distribution by grouping it
according to the cards and determining the most frequent
response provided by participants for each card.

Notwithstanding any potential future research, the
main aim of this project is to facilitate psychologists in
comprehending the variations in Rorschach tests con-
ducted before and after the Covid-19 pandemic. The
primary objective is to identify the most significant non-
correlated variable that affects the overall subject choice
in responses, thereby enabling an accurate interpretation
of this phenomenon.
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