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Abstract
This article presents and explains how we have used Naive Bayes Classifier and date base to predict the weather. We compare
the dependence of accuracy on the probability of different distributions for various types of data.
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1. Introduction

Many IT systems use the widely understood artificial
intelligence [1, 2]. Artificial intelligence methods also
apply to the data processing [3, 4, 5]. The wide appli-
cation of artificial intelligence also applies to systems
installed in cars, which are used, for example, to detect
the quality of the surface [6]. Many technical problems
lead to the optimization tasks [7, 8, 9], where the com-
plexity of the [10, 11, 12] functional is a big challenge.
Optimization processes concern many different areas of
life require constant search for new, more effective op-
timization methods [13, 14] based on the observation
of nature [15, 16, 17]. A very important and important
branch of artificial intelligence are the applications of
broadly understood [18] neural networks. Interesting
applications concern health protection [19], adult care
[20, 21]. Artificial intelligence methods are also used
for weather forecasting [22, 23, 24], as well as for the
detection of features [25, 26, 27].

2. Program description

The task of our program is to predict the weather using
the naive Bayes classifier. It is especially suitable for
problems with a lot of input data, so it is perfect for our
project. It uses a conditional probability formula that
looks like this:

P(B|A) = P(A)

PAIB) = == 5

1)

+ A is our hypothesis
« B is the observed data (attribute values)
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« P(BJA) is the probability that we would observe
such data if the hypothesis were true

« P(A) is the a priori probability that the hypothe-
sis is true

« P(B) is the probability of the observed data

Importantly, the naive Bayes classifier assumes that
the influence of the attributes is independent of each
other, therefore P(B|A) can be written as

P(Bi|A) x P(B2|A) * ... x P(Bn|A). ()

The naivety of this classifier follows from the above as-
sumption.

3. Description of how the
program works

We started the project with an analysis of data from the
database. Initially, we shuffled and normalized the data
to the 0 — 1 range to operate on smaller numbers, thus
increasing the performance of our program. After di-
viding into validation and training sets, we move on to
the main part of our program, i.e. the use of the naive
Bayesian classifier. Its task is to return the name of the
most probable weather for a given sample.

This algorithm uses a probability distribution defined by
a density function that describes how the probability of
a random variable (x) is distributed. We implemented 5
different probability distributions to compare the algo-
rithm’s efficiency for different probability density formu-
las. We use the following distributions: Gauss, Laplace,
log-normal, uniform, triangular.

3.1. Gaussian distribution

It is one of the most important probability distributions,
playing an important role in statistics. The formula for
the probability density is as follows:
1 —(z—p)*
ex
ovas P2 )
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The probability function plot of this distribution is a bell-
shaped curve (the so-called bell curve).
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Figure 1: Graph of the probability density function
Source: Wikipedia.org

Where p is the expected or mean value and o stan-
dard deviation. The red line corresponds to the standard
normal distribution.

3.2. Laplace Distribution

It’s a continuous probability distribution named after
Pierre Laplace. The probability density is given by the
formula: | |
S p—
(e @
Where (i is the expected value, i.e. the mean, and b> 0 is
the scale parameter. The function graph looks like this:
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Figure 2: Graph of the probability density function
Source: Wikipedia.org

3.3. Log Normal Distribution

It is the continuous probability distribution of a positive
random variable whose logarithm is normally distributed.
Pattern:

1 —(lnz — p)?
V2rox exp( ( 202 ) ) * L(0,00) ©)
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Where (4 is the mean value and o is the standard devi-
ation.
The density function graph is as follows:
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Figure 3: Graph of the probability density function
Source: Wikipedia.org

3.4. Triangular Distribution

It is a continuous probability distribution of a random
variable. The probability density of a triangular distribu-
tion can also be expressed as:

Odlam<,u—\/60
“g;—é‘—i—ﬁdlau—\/éagxgu
5t t gy dap <o < p+ Voo

0dlaw>,u+\/60

f(@)

(6)
Where 1 is the mean value and o is the standard devi-
ation.
The function graph looks like this:
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Figure 4: Graph of the probability density function
Source: Wikipedia.org

3.5. Uniform distribution

It is a continuous probability distribution for which the
probability density in the range from a to b is constant
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and not equal to zero, and otherwise equal to zero. We
can see it in the formula below

Odlax<u—\/§a

ngadlau—\/gagxg,u—&—\/ga

0dlax>u—|—\/§0

f(z) )

Where p is the mean value and o is the standard devia-
tion.
The function graph is as follows:
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Figure 5: Graph of the probability density function
Source: Wikipedia.org

3.6. Select Distributions

As we can see, the formulas differ significantly, which
will definitely have a big impact on the effectiveness
of the program. We tried to choose such formulas for
the probability density so that the values were not very
divergent, as we will present in the next paragraphs.

4. Algorithm

The naive Bayes classifier uses probability density func-
tions to compute the probability of a given start con-
dition. The NaiveClassifier class has 6 static methods:
Japlace”, ,logarytmiczny”, ,jednastajny”, ,trojkatny”,
Lgauss”, ,bayes”, where the first 5 are different proba-
bility distributions . We use as many as 5 to compare
the algorithm’s effectiveness for different formulas on
the probability density. The "bayes" method accepts the
following input data: data — training set, sample — a set of
values in the range 0-1 that represent successive database
columns, name - the name of the probability distribution
(Gauss, Laplace, log-normal, uniform, triangular). At the
beginning, the algorithm extracts the records with the
given weather. Then, using the loops, the program goes
through all the records of the training set, calculating
the mean values and standard deviation of each column
for each type of weather. Using the given "name", the
algorithm calls the appropriate method, where the input
data is: sample [j] - where j is the sample value for the
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column j, sr [j] - the mean value of the column j and
std [j] - standard deviation of the values from column j.
These methods process the input data through the formu-
las for the probability distribution and return the value
of the probability density function at the point sample
[j], that is, the probability of sample [j] occurring under
the conditions sr [j] and st [j]. Finally, the algorithm
returns the name of the weather most likely to occur at
the sample input.

Each probability distribution has a differently defined
density function. Therefore, the distributions may differ
in the results. Below we present the pseudocode of Naive-
Classifier class methods with an emphasis on processing
the input data by probability distributions.

Data: Input data, sample, name

Result: Weather Name

Extract weather records ;

Enter the weather record sets into the list names;
1:=0;

for i < len(names) do

tr=J;

7:=1

for j < 7do

Calculate the mean value of the column j ;
Calculate the column standard deviation j

if name == laplace’a then

trappend(NaiveClassifier.laplace
(sample(j].sr[j-1]));

end

if name == log — normalny then

trappend(NaiveClassifierlogarytmiczny
(sample[j].std[j-1].sr[j-1]));

end

if name == jednostajny then

trappend(NaiveClassifier.jednostajny
(sample(j],std[j-1],sr[j-1]));

end

if name == trojkatny then

trappend(NaiveClassifier.trojkatny
(sample(j].std[j-1],sr[j-1]);

end

if name == gauss then

trappend(NaiveClassifier.gauss

(sample[j],std[j-1].sr[j-1]));

end

end

Return the probability of the given weather;
end

Return the name of the most likely weather;
Algorithm 1: Bayes algorithm
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Data: Input z, mean
Result: The value of the density function at x
b:=2;
return
((1/(2*b))*(math.exp(-(math.fabs(x-mean)/b))));
Algorithm 2: Laplace’s algorithm

Data: Input z, std,sr
Result: The value of the density function at x
if z > 0 then
return (1/((math.pi*2)**(1/2)*std*x))*math.exp(-
((math.log(x)-sr)**2)/(2*std**2));

end
else
‘ return 0;
end
Algorithm 3: Logarithmic algorithm

Data: Input z, std,sr
Result: The value of the density function at x
if x < sr — 3 x%(1/2) * std then
‘ return 0;
end
if 2 >=sr — 3% x(1/2) x std && © <=
sr+ 3% x(1/2) * std then
‘ return 1/(2*(3**(1/2))*std);
end
if x > sr+ 3 % %(1/2) * std then
‘ return 0;
end
else
‘ return 0;
end
Algorithm 4: Uniform algorithm

Data: Input z, std,sr
Result: The value of the density function at x
if x < s7 — 6 % x(1/2) * std then
‘ return 0;
end
if £ >=sr — 6% x(1/2) && x <= sr then
‘ return (x-sr)/(6*std**2)+1/(6™*(1/2)*std);
end
if x > srandz <= std + 6 * x(1/2) * std then
‘ return -(x-sr)/(6*std**2) + 1/(6**(1/2)*std);
end
if © > sr+ 6 % x(1/2) * std then
‘ return 0;
end
else
‘ return 0;
end
Algorithm 5: The triangle algorithm
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Data: Input z, std,sr

Result: The value of the density function at x

return (1/(dev*np.sqrt(2*np.pi))) np.exp(-((x-
mean)**2)/(2*dev**2));

Algorithm 6: Gauss algorithm

5. Databases

5.1. Database Analysis

For our project, we use the Istanbul Weather Data
database, downloaded from the kaggle website. The
database has 3896 records. It contains the following
data columns: DateTime, Condition, Rain, MaxTemp,
MinTemp, SunRise, SunSet, MoonRise, MoonSet, Avg-
Wind, AvgHumidity, AvgPressure.

Data columns (total 12 columns):

#  Column Non-Null Count Dtype
@ DateTime 3896 non-null  object
1 Condition 3896 non-null  object
2 Rain 3896 non-null  floated
3 MaxTemp 3896 non-null  inte4
4 MinTemp 3896 non-null  inte4
5  SunRise 3826 non-null  object
6  SunSet 3896 non-null  object
7 MoonRise 3764 non-null  object
8  MoonSet 3765 non-null  object
9  AvgWind 3896 non-null  inte4
18 AvgHumidity 3896 non-null  int64
11 AvgPressure 3896 non-null  inted

dtypes: float64(1l), int64(5), object(s)

Figure 6: Data types in each column

We analyzed the data using a matrix graph that shows
the relationships between weather variables.

The chart is dominated by warm colors, which means
that most of the records in our database are sunny and
slightly cloudy.

It can be seen that the data is presented in compact
groups. This means that the parameters for different
weather conditions do not differ much from the others.
This can make our algorithm that determines the weather
based on these parameters not very accurate. There
may be situations where the algorithm will calculate the
weather "Sunny" because it was the most probable, but
the actual weather will be different. In the Experiments
section, we will test and analyze the obtained results of
the algorithm’s accuracy.

We also analyzed the data using a violin graph for all
weather conditions and maximum temperature as we can
see below:
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Figure 7: Matrix graph

In the attached photo we can see how the temperature
value changes for a given weather, for example for "Mod-
erate rain", i.e. moderate rain, the maximum temperature
ranges from 5 to 20 degrees.

5.2. Database modification

DateTime, SunRise, SunSet, MoonRise, MoonSet will not
be used in our project, so we can get rid of them.

data.drop(’DateTime’
inplace True)

data.drop (’ SunRise’
inplace True)

data.drop(’SunSet’,axis=1,
inplace True)

data.drop (’MoonRise’ , axis=1,
inplace = True)

data.drop (' MoonSet’, axis=1,
inplace True)

,axis=1,

,axis=1,

40
Augiiind
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To normalize the data to the range 0-1, we changed int64
to float64.

6. Implementation

6.1. ProcessingData class

Our project consists of two files: a file containing the
program code - "Pogoda.ipnb” and the database - "Istan-
bul Weather Data.csv". After analyzing the data from
the database, we went to the "ProcessingData" class, in
which we created 3 static methods: shuffle, splitSet and
normalize.

6.2. Shuffle method

It takes base as input, i.e. our database. We use for loop
to go through it selecting records and swapping them.
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Data: Input base Data: Input z, k
Result: Database with jumbled records Result: Training and validation set
for i in range(len(base)-1,-1,-1): do n = int(len(z) * k)
take two records from the database, the xTrain = x[: n]
second with a random index and swap them zVal = z[n ]
end return xTrain, xVal;
return base; Algorithm 8: SplitSet algorithm
Algorithm 7: The shuffle algorithm
def splitSet(x,k):
Program code n=int (len(x)+«k)
@staticmethod X;r/r?in:X.[:n]
def shuffle (base): xVal=x[n:]
£ .. return xTrain, xVal
or i in range(len(base)
-1,-1,-1):
base. IIOC [i],base.iloc[rd 6.4. Normalize method
.randint (0,i)]=base.
iloc[rd.randint(0,i)], Takesx, which isa database that will have records scram-
base.iloc[i] bled using the shuffle method. At the beginning, we enter

return base

6.3. Splitset method

It takes as input x - database and k - division of the set. In
the variable n we write the length of the set x multiplied
by k to know how to divide this set. Then, to two xTrain
variables, we write the data from the database to the
value n, creating the training set, and to the variable xVal
- all data following the value n, creating the validation
set. Finally, we return both of these sets.

Program code
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all data from the database into the variable values, except
for the string value, and the values of the column names
into the variable columnNames. We loop through all the
columns in the column, and then take all the rows in
the column column and store them in the variable data.
Variables max1 and minl are assigned maximum and
minimum values from date. Using the next loop, we go
through all the rows and assign to the variable val the
formula for normalization min-max, that is, we subtract
the coordinate database record [row, column] from the
value min1, and then divide this difference by the differ-
ence between max1 and min1. Finally, we write the value
after normalization to the database. The method returns
us a normalized database.
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Data: Input x

Result: Standardized database

values = z.selectqtypes(exclude =, , object”)
columnNames = values.columns.tolist()

for columnincolumnNames): do
take all the rows from the column column
mazxl = mazx(data) minl = min(data)
for row in range(0,len(x) do
we go through all the lines
val = (z.at[row, column] —
minl)/(mazxl — minl)
z.at[row, column] = val
end

end

return x;
Algorithm 9: The normalize algorithm

Program code
def normalize(x):
values=x.select_dtypes(

exclude="object") #select
all data from the database

except the object, i.e.
string

columnNames=values . columns.
tolist ()

for column in columnNames:
data=x.loc [:,column] #
summon all rows in

column column

maxl=max(data)
minl=min(data)

for row in range(0,len(x)

): #we go through all

the lines

val =(x.at[row, column
]-min1) /(max1-minl
)

x.at[row, column]=val

return x

6.5. NaiveClassifier class and bayes
method

The NaiveClassifier class has 6 static methods: "laplace”,
"logarithmic", "uniform", "triangle", "gauss”, "bayes". The
first 5 are methods describing the functions of different

probability distributions. The "bayes" method has been
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described in general in the "Algorithm" section, so now
we will look at the details. First, the method extracts the
database records with the given weather name into sepa-
rate lists. Then each of the lists created above is put into
the "names" list. Additionally, we create a stringnames
list with string weather names and a values list that will
store the calculated probabilities for each weather.
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Data: Input data, sample, name

Result: Weather name

Extract weather records ;

Enter weather record sets into names ;

Enter weather names in the list string,ames ;
values := [ i := 0;

for i < len(names) do

tr=1];

sr=[;

std = [J;

=1

for j < 7do

Calculate the mean value of the column j ;
Calculate the column standard deviation j

if sr[j — 1] == 0 then
| sr[j-1]=0.0000001;

end

if std[j — 1] == 0 then
| std[j-1]=0.0000001;

end

if name == laplace’a then

tr.append(NaiveClassifier.laplace
(sample(jl.sr{j-1)

end

if name == log — normalny then

trappend(NaiveClassifierlogarytmiczny
(sample[j].std[j-1],sr[j-1]));

end

if name == jednostajny then

trappend(NaiveClassifier.jednostajny
(sample(j].std[j-1].sr[j-1]));

end

if name == trojkatny then

tr.append(NaiveClassifier.trojkatny
(sample[jl.std[j-1],sr[j-1]);

end

if name == gauss then

trappend(NaiveClassifier.gauss

(sample[j],std[j-1],sr[j-1]));

end

end
values.append
(np.prod(tr)*len(names[i])/len(names));

end

Index = values.index(maz(values));

return value from stringnames at index IndeX ;
Algorithm 10: Bayes algorithm

71
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The next step is to loop through all the values of the
names list in sequence. Then we create auxiliary lists: tr
[] - to store 6 probability values that correspond to the
next database column, sr [] - to store the mean values
from each column, std - to store the standard deviations
for each column. We pass the next loop through all the
columns one by one. Then we calculate the mean and
standard deviation for a given column. The next step is
the conditions that prevent sr [] and std [] from occurring.
The time has come for timetables. Depending on the in-
put data "name" to the list tr [] we add the result of the
function of the given distribution. After going through
the inner loop, we compute the value from Bayes’ theo-
rem. Based on the formula for conditional probability, we
multiply the values in the tr list, then multiply that prod-
uct by the list of names [i]. We divide the whole thing by
the length of the "names" list. We add the obtained result
to the "values" list. After going through both loops, we
determine the index from the values list with the highest
value. Finally, we return the name of the weather with
the given index from the stringnames list.

6.6. AnalizingData class

Another class in our project is AnalizingData with the
Analyze method. This method measures the accuracy
as a percentage of the Bayes classifier. The input data
is: Train - training set, Val - validation set and name
- name of the probability distribution. The algorithm
first sets the value of the corrtect variable to 0. Then it
goes through the iterator loop and goes through all the
records of the Val set. If the value returned by the bayes
classifier at the input: Train, Val [i], name is the same
as the weather name for the Val [i] record, increase the
variable correct by 1. Finally, the algorithm returns the
accuracy, which we calculate by dividing correct by the
product the length of the validation set and 100.

Data: Input T'rain, Val, name
Result: Accuracy of the bayes algorithm
correct := 0
t:=0fori < len(Val)): do
if

NaiveClassifier.classify(Train, Val.iloc[i], name) =

Val.iloc[i].Condition then
‘ correct+=1;
end
end
accuracy=correct/len(Val)*100;
return x;
Algorithm 11: Analyze algorithm

Program code

class AnalizingData:
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@staticmethod
def analize (Train, Val ,name):
correct=0
for i in range(len(Val)):
if NaiveClassifier.
classify (Train, Val.
iloc[i],name)==Val.
iloc[i].Condition:
correct+=1
accuracy=correct/len(Val)=100
return accuracy

7. Tests

We started our tests by checking the algorithm’s opera-
tion using various samples.

samplel=["",8.801,8.5,0.3,0.1,0.9,8.0082]# Overcast
sample2=["",0.002,0.7,0.4,0.4,0.2,8.6] #Sunny
sample3=["",0.086,08.42,0.4,0.2,0.6,08.03] #Partly cloudy

rozktad="gauss"
NaiveClassifier.clas si-Fy(Tr‘ain,sampleZL rozktad)

"Sunny '

Figure 9: Sample tests

The above code shows us that depending on the value in
the sample, the algorithm returns different values, which
proves the correct operation of the algorithm.

The next step was to determine the accuracy of our al-
gorithm for various probability distributions. For this we
used the AnalizingData class with the analysis method.
We called the method for each of the 5 types of probabil-
ity distributions for the training and validation division
in the ratio of 7: 3, and then, using the plt package, we
displayed the graph.

Accuracy of Bayes

o
log-normalny trojkatny  jednostajny  laplace'a
Probability

gaussa

Figure 10: The graph of the accuracy of the algorithm de-
pending on the probability distribution

As you can see in the attached picture, the algorithm
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has different accuracies depending on the probability dis-
tribution. The Gaussian distribution definitely exceeds
other distributions with its accuracy, which is over 60%.
This means that more than 60% of the weather names
returned were valid. However, the Laplace and uniform
distributions do not lag far behind. Their values are in the
range 50-60%. Log normal and triangular distributions
are the least efficient because their accuracy is less than
20%. Additionally, we measured the execution time of
the algorithm. It was almost 4.512 minutes.

8. Experiments

8.1. Analysis of algorithm results for
normalized and non-normalized data

We tested the operation of our program for both nor-
malized and non-normalized values and we determined
the algorithm execution time for both data sets. The
graphs below show the dependence of the accuracy on
the probability of individual distributions.

Accuracy of Bayes

Accuracy

log-normalny wojkatny  jednostajny  laplace'a
Prabability

gaussa

Figure 11: Bar chart for unnormalized data

The first plot shows the Bayesian operation for unnor-
malized data in a ratio of 7: 3, while the second plot shows
the operation for unnormalized data with the same par-
tition. The program launch time for the first graph was
4.512 minutes, while for the second graph it was 4.433
minutes. As we can see, the only significant difference
was when using the Laplace distribution, the accuracy of
which decreased by almost 10%. The remaining results
are similar for both types of data. The time difference is
insignificant as it is only 5.023s.

8.2. Analysis of the algorithm’s results
for different data divisions

The following charts show the efficiency of the algorithm
for normalized data for various divisions into training
and validation sets:

The algorithm execution time decreases with the re-
duction of the training set. For the last execution of the
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Accuracy of Bayes

log-normalny wojkatny  jednostajny  laplacea
Probability

gaussa

Figure 12: Bar chart 1. for the training set 0.1

Accuracy of Bayes

=

log-normalny tréjkatny  jednostajny  laplace'a
Prabability

gaussa

Figure 13: Bar chart 2. for the training set 0.3

Accuracy of Bayes

]
log-normalny tréjkatny  ednostajny  laplace'a
Probability

gaussa

Figure 14: Bar chart 3. for the training set 0.5

Accuracy of Bayes

=

o
log-normalny wojkatny  jednostajny  laplace'a
Probability

gaussa

Figure 15: Bar chart 4. for the training set 0.9

algorithm, where the division was in the ratio of 9: 1, the
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time was only 1.467 minutes. However, the first calcula-
tions, where the division was in the ratio of 1: 9, took as
long as 9,517 minutes. This is because by reducing the
training set, we increase the number of records in the
validation set. As a result, the algorithm will be called
more times and the most time-consuming elements such
as extracting records with a given weather or loops will
be performed many times.

Analyzing the above, we can see that the accuracy
of the Gaussian distribution is superior to all of them,
its value is practically unchanged. The Laplace distri-
bution is in second place, almost tapping 60%. The
value of the uniform distribution ranges from 50-55 %. It
achieves the most on the last chart where the training
set is 0.9. Triangular and log normal distributions reach
much lower values than the previously mentioned dis-
tributions. The jump is quite big, around 30%. However,
the log-normalized distribution only slightly exceeds the
triangular distribution once, and it is in the third graph.
Nevertheless, the accuracy values of both distributions
never exceed 20%.

9. Conclusion

We can conclude from this that the Gauss distribution
is the best probability distribution for our database. The
algorithm with this distribution, with each modification,
correctly determines about 60% of weather names, which
is a good but unsatisfactory value. This is due to the
way the data is distributed in the database. In the case
of more different values for different weather conditions,
this algorithm could become much more efficient.
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