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Abstract
As science and technology advance, rotary machines in modern industries become more advanced and complex, making
maintenance more difficult. Multiple failures can occur in machine components, requiring monitoring and periodic mainte-
nance. Multiple types of failure may occur, causing severe damage. As a result, modern technologies for early fault detection
have developed. Vibration analysis of rotating machinery is one of the most often used condition monitoring techniques.
Artificial intelligence (AI) approaches are widely used for selecting the features affected by faults. This paper discusses three
different types of artificial intelligence methods, which are Artificial Neural Networks, K-nearest neighbor, and Support Vec-
tor Machine, and presents a comprehensive review of recent studies on fault diagnosis for various rotary machine elements,
comprising the type of failure, feature extraction method, and classification technique performance.
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1. Introduction
The use of rotating machinery in modern industries is
growing more sophisticated and complicated as science
and technology development, and maintenance becomes
more difficult as the sophistication of these machines in-
creases. Due to the extensive working hours with severe
loads of this type of equipment, its components are sub-
jected to multiple faults, requiring monitoring and peri-
odic maintenance. Multiple types of failure may occur in
various parts, such as bearings, gears, pulleys, shafts, etc.
These faults affect the machine’s performance and might
result in major issues and financial losses. As a result,
modern technologies for early detection of faults, includ-
ing condition monitoring and fault diagnostics are being
investigated and developed to ensure that the machines
operate effectively. The main goals of fault diagnostic
investigation are to determine the machine’s normal op-
erating condition, identify the type of fault, and predict
the fault’s progression. One of the most common types
of condition monitoring is the vibration analysis of rotat-
ing machines. However, vibration signals are typically
non-stationary, non-linear, and intermixed with noise.
consequently, recent research has forecasted the domi-
nance of AI over technological innovations [1, 2, 3, 4, 5].
As a result, the features from these signals are extracted,
and artificial intelligence (AI) techniques are employed to
identify the exact sensitivity of features for each type of
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fault. Elaborating that the authenticity and uniqueness
of the extracted features are of major concern [6, 7, 8, 9].

This paper discusses the applications of three types of
artificial intelligence methods in machinery faults diag-
nosis, which are the Artificial Neural Networks (ANN),
K-nearest neighbor (KNN), and Support Vector Machine
(SVM), and presents a comprehensive review of previous
studies on fault diagnosis techniques for several com-
ponents of rotary machines, including the type of fail-
ure, feature extraction method, and the performance of
classification technique. The remaining of this paper is
organized as follows. Section 2 introduces a theoretical
basis of AI techniques. Section 3 reviews the applications
of AI techniques in fault diagnosis of rotating machinery.
Finally, the conclusions are drawn in Section 5.

2. Theoretical basis of Artificial
Intelligence techniques

2.1. Artificial neural networks (ANN)
The ability of biological neurons in the human brain has
inspired researchers to invent a computational structure,
namely the Artificial Neural Network. Frank Rosenblatt,
a psychologist, came up with the first artificial neural
network in 1958. ANN is made up of a group of linked
neurons that are arranged in layers to form a network.
Usually, ANN consists of an input layer, an output layer,
and at least one hidden layer. The number of neurons in
the input and output layers is defined by the number of
input and output variables required to define the problem,
as well as the nature of the problem, while the process
of trial and error dictates the number of hidden layers
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and neurons within each layer. Each neuron in a layer
(excluding the input layer) sums the input value with
the related weight to determine a single value threshold.
Then, the single value threshold is added with a bias to
form a net value. Finally, a non-linear activation function
is applied to the net value, creating an output value, as
shown in Figure 1. For a supervised learning method,
input values are compared with the output values, and
then a back propagation algorithm is utilized for training
the ANN model by adjusting the weights between each
neuron in the multiple layers [10]. Many applications
have employed ANN due to its great performance [11, 12],
such as pattern recognition, fault prediction and classi-
fication, speech recognition, handwritten and printed
text recognition, image processing, and cancer diagnosis
[13, 14, 15, 16].

2.2. K-nearest neighbour
K-NN method is one of the most basic and straightfor-
ward classification approaches. It is an instance-based
learning technique based on grouping components with
similar features; it determines the class category of a
test case based on its k closest neighbors. Evelyn Fix
and Joseph Hodges developed it in the early 1950s, and
Thomas Cover extended it subsequently[17]. Every train-
ing sample in KNN classification algorithms is repre-
sented as a two-dimensional space based on the value of
each of its characteristics. The testing sample is therefore
displayed in the same space as its K closest neighbors.
The classes of each closest neighbor of K are counted,
and the class with the most votes is selected as the testing
sample’s classification. Typically, the distance between
the testing sample and each training sample is used to
estimate the K-nearest neighbors. The distance between
the testing sample and each training sample is typically
used to estimate the K-nearest neighbors. As shown in
Figure 2, three factors influence KNN performance: K
value, Euclidean distance, and parameters’ normaliza-
tion. KNN is particularly effective for huge training data
sets, although it takes more time to compute than other
methods. Along with its simplicity, it is generally used in
the fault diagnosis of rotating machinery[18, 19]. Like-
wise, it is used in medical prediction, data mining, face
recognition, and financial modeling [20].

2.3. Support Vector Machine
Support vector machines are a model of artificial intelli-
gence technology commonly used for data classification
and regression. SVMs, which Vapnik introduced in the
middle of the 90s, are supervised learning techniques
based on statistical learning theory. Because of their
greater capacity to construct an accurate representation
of the connection between the input and output from a

limited amount of training material, SVMs have lately
garnered much attention. An SVM, for instance, will
classify a two-class dataset by locating a splitting plane
that separates the area containing the data. Each side
of the hyper-plane will have its own class of points. A
linear boundary in the input feature space can be the best
separation plane, while in other instances, a non-linear
boundary might be utilized to separate the target classes
when a linear boundary would not be able to successfully
separate them [21, 22], as shown in Figure 3. SVMs are
being used in various research fields, including biological
sequence analysis, facial identification, and mechanical
problem diagnostics [23]. Even though its performance
varies depending on the application, SVM is a robust,
effective, and simple tool for various applications such as
speech recognition, texture categorization, face detection,
heart disease,and fault diagnosis [24, 25, 26].

Figure 1: ANN

3. Applications of AI techniques
in rotating machinery

3.1. ANN applications
Mohammed et al. [27] developed a method for crack de-
tection using Power Spectrum Density (PSD) in a motor-
shaft-generator system. The vibration signals were col-
lected from three piezoelectric accelerometers placed in
different places; one attached to the motor bearing hous-
ing, the other attached to the generator bearing hous-
ing, and the last placed in the center of the shaft cover-
ing guard. The vibration signals were fed to the charge
amplifiers, which are connected to an analog to digital
converter involving a dSPACE-DS1102 DSP controller.
Data acquisition instruments were included in the DSP
program for acquiring data from the model and are sup-
ported by Matlab software. The peak position component
method (PPCM) was used to identify the highest peaks
and their positions from the PSD analysis and form a ma-
trix for the input data of ANN. The Figure 4 shows the vi-
bration spectrum of the first accelerometer. A multilayer
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Figure 2: K-NN

perceptron ANN for each accelerometer was employed to
classify four health cases: normal shaft and a shaft with
40%, 50%, and 60% pre-crack. The Levenerg-Marquart
learning algorithm was used as a training method. ANN
for the data of the first and the third accelerometer distin-
guished four conditions with 100% accuracy, and for the
second accelerometer data, it achieved 99.7% accuracy in
fault classification.

Ali et al. [28] proposed a feature extraction method
based on Empirical Mode Decomposition (EMD) energy
entropy and ANN to classify seven bearing conditions: a
healthy condition, degraded roller, degraded outer race,
degraded inner race, failure roller, degraded outer race,
and failure inner race. The EMD approach is based on
the simple assumption that each signal is made up of
various simple intrinsic modes of oscillations, named
intrinsic mode functions (IMFs). This adaptive decom-
position approach is especially useful for non-linear and
non-stationary signal analysis. The data was collected
from high-sensitivity accelerometers attached to four
bearings. Ten time-domain features were extracted in
addition to the EMD energy entropy to create a feature
vector for ANN input layer. The three zones of run-to-
failure vibration signals are shown in Figure 5 for the
outer race failure. A statistical criterion was applied to
decide the most effective IMFs for bearing diagnosis. A
back-propagation algorithm was employed for training
the ANN. The proposed method was able to classify bear-
ing states with an average accuracy of 93%.

Jaber and Bicker [29]developed an intelligent bearing
fault diagnosis system using the discrete wavelet trans-
form (DWT). Inner and outer races bearing faults were
simulated on the elbow joint of the PUMA 560 robot,
which is shown in Figure 6. An Electrical Discharge Ma-

Table 1
ANN designing parameters[29]

Number of input layer neurons 24
Number of hidden layer neurons 17
Number of output layer neurons 11

Number of hidden layers 1
Hidden layer activation function Sigmoid
Output layer activation function Linear

Training algorithm To be identified
Learning rate 0.05

MSE stopping criteria 10e–4
Minimum performance gradient 10e–5

Maximum number of epochs 50,000

chine (EDM) was used to create the faults in the bearing’s
elements. A 14-bit USB-6009 National Instrument data
acquisition is used to collect signals from three calibrated
single-axis ADXL001 accelerometers. Labview, Matlab,
and C language software were used for data acquisition
to extract and analyze vibration data. After the DWT,
the statistical features were extracted and used for de-
signing ANN. Only the standard deviation (STD) was
chosen as an input to ANN as it was the most sensitive
feature for bearing faults. A multilayer perceptron neural
network was utilized for fault detection. Table 1 shows
the parameters used for designing the neural network.
ANN was trained to differentiate between various types
of robot-bearing faults and achieved a remarkable level
of fault diagnosis with an accuracy of 100%.

Luwei et al. [30]used frequency domain data fusion to
classify rotating machine faults with the help of ANN.
From four sensors placed on each bearing, higher-order
spectra components were extracted at different speeds
and various fault conditions. ANN was performed in
two stages. In the first stage, five types of one-against-
all (OAA) ANN were trained using the Resilient Back-
propagation learning algorithm to specify the presence
of five faults: bent shaft, loose bearings, shaft misalign-
ment, cracked shaft, and rubbing in the shaft. For the first
and second ANN, the accuracy was 100% and very good
classification accuracy for the remaining ANN. In the
second stage, all-against-all (AAA) ANN was performed
to determine the particular fault type using the same
learning techniques as in the first stage. The receiver
operating characteristics (ROC) curve was utilized for es-
timating the accuracy of AAA network classification (see
Figure 7). The classifier’s performance is measured using
the area under the curve (AUC).The larger AUC value
means its performance is better (perfect classification).
The approximate AUC values for the five fault conditions
mentioned were 1, 0.992, 0.999, 0.986, and 0.992, respec-
tively, indicating excellent classification performance.

Jaber and Ali [31]developed a fault detection system
for a pulley-belt rotating test rig. Two ADXL335 vibra-
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Figure 3: SVM A.Linear B.Non-linear

Figure 4: Vibration spectra for different cut depths at fre-
quency range of 800 to 950 Hz[27]

Figure 5: Bearing run-to-failure vibration signals[28]

tion sensors placed on each bearing were employed to
extract vibration signal features. These sensors are wired
to an Arduino MEGA 2650 based on the ATmega 2560

Figure 6: PUMA 560 robot[29]

microcontroller. The Arduino microcontroller was used
as a low-cost data acquisition device. For ANN train-
ing data, five time-domain features from each sensor
were extracted as input data: the mean value, RMS, skew-
ness, kurtosis, and standard deviation. Also, five different
faults were studied: unbalance, driving pulley fault, a side
cut-out in the belt, belt slippage, and misalignment in
pulleys. Labview software was employed for collecting
vibration signals and extracting their data features. The
extracted features are then uploaded to Matlab to design
a multilayer ANN. As a result, the designed ANN was
able to identify each fault perfectly. The performance
plot is shown in Figure 8.

Sharma et al. extracted [32]frequency-domain features
from the vibration signals of a three-phase induction mo-
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Figure 7: ROC plot[30]

Figure 8: ANN perfomance plot[31]

tor. The vibration signal was collected from a single-axis
accelerometer. The extracted features are used to classify
three bearing conditions: healthy, inner race defect, and
outer race defect. The electric discharge machine (EDM)
was used to create 2 mm holes in the inner and outer
races. For each condition, five features are extracted
from the frequency domain: mean frequency, median
frequency, lower band power, upper band power, and
band power ratio. The acquired features were normal-
ized to increase classification accuracy and distinguish
any bias. As a result, ten sets of five normalized charac-
teristics were collected for each bearing condition. Six
sets were used for training ANN, while the remaining
four were used for testing. A single-layer ANN was uti-

lized for fault classification. To train ANN, two different
techniques, scaled conjugate gradient (SCG) and Leven-
berg–Marquardt (LM), are used, and their performance is
compared. For greater network sizes, the SCG algorithm
outperforms the LM algorithm, and the proposed ANN
could identify each fault condition with great accuracy.

Rao and Reddy [33]used wavelet transforms to iden-
tify a method for detecting irregularities such as open
cracks or grooves on a rotating stepped shaft with sev-
eral discs. The vibration signals were extracted from the
displacement sensor and transformed into discrete and
continuous wavelet transforms (DWT and CWT) at a
specific rotor speed. The detailed process and techniques
of analysis are shown in the Figure 9. The difference in
wavelet coefficients of rotors with and without grooves
is analyzed to identify the damage or groove locations.
A reduction in the shaft’s diameter was used to model
the cracks and grooves classified as radial cracks. A nu-
merical analysis of various cases was used to find each
case’s first five natural frequencies. In this research, a
three-layer feed-forward ANN was utilized. The DWT
coefficient of various crack locations and depths was
used to train ANN. The Levenberg-Marquardt algorithm
is employed to train ANN. Consequently, the overall pre-
diction accuracy of the developed ANN is 99.53%. It was
able to detect cracks as small as 1% of their diameter.

Espinoza and Sinha [34]developed a smart vibration-
based machine learning model that uses ANN. The model
is then tested blindly to detect the rig’s healthy and faulty
conditions when running at different speeds. The test rig
has four accelerometers placed on four bearings. Four
scalar features were extracted from vibration data sam-
ples and arranged in three scenarios. In the first scenario,
each sample is obtained randomly from an accelerometer
from only one bearing. The second scenario considers the
measurement from only one bearing with a fixed location.
The third scenario considers a simultaneous vibration
signal collection from all four bearings. The scalar fea-
tures are: root mean square (RMS),kurtosis, variance, and
skewness. Spectral analysis is also used to examine the
dynamic behavior of the rig under various conditions.
ANN of multilayer perceptron (MLA) based on the back
propagation was utilized to classify acquired data. De-
pending on the results obtained in the particular scenario,
either Bayesian regularization functions or scaled conju-
gate gradient are used to train the network. The results
found that the first scenario observed has an almost 25%
chance that the health conditions will be misdiagnosed
as faulty. The second scenario performs relatively bet-
ter than the first because consistent data from a specific
bearing point exposes some features of machine behavior.
The third scenario indicates the best performance, with
100% accuracy. The model was trained at a rotational
speed of 1800 rpm and was tested blindly using test rig
data at 2400 rpm without training. The results showed
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Figure 9: Analysis block diagram[33]

Figure 10: Overall performances, training and testing at 1800 RPM[34]

100% accuracy in machine condition diagnosis, as shown
in Figure 10.

3.2. K-NN applications
He et al. [35] proposed a two-step plastic-bearing fault di-
agnostics method. This approach investigated cage fault,
rolling element fault, and surface contact faults in the
inner and outer race. Two accelerometers attached to the
surface of the bearing house were used to collect vibra-
tion data with NI PCI-4472B data acquisition. Frequency
domain features were extracted from vibration signals by
the envelope analysis technique and fed to the statistical
classification method. The first step only used the statis-
tical classification method to classify the outer race fault,
as shown in Figure 11. As a second step, entropy and
distance (time-domain features) were extracted by EMD

and used for training the KNN to detect the remaining
faults. The results showed an accuracy of 100% for the
first step, and the overall accuracy exceeded 90% for the
second step.

Pandya et al.[36] presented a fault classification
method based on acoustic emission for bearing health
monitoring. Five conditions were examined: healthy
bearing, outer race, inner race, ball, and combined defect.
The data was collected using an acoustic emission sen-
sor installed on the housing of the test bearing and an
OROS 3 SERIES acoustic analyzer, and it was processed
using NVGATE software. The Hilbert–Huang Transform
(HHT) was employed in this method. Band-pass filtering
with empirical mode decomposition was performed on
the collected signals, and IMFs were optimized. IMFs
were used to extract nine time-frequency domain fea-
tures: peak, mean, RMS, kurtosis, crest factor, impulse
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Figure 11: Frequency domain features[35]

factor, shape factor, ring down count, and energy. Multi-
ple supervised machine learning techniques were used
for the fault classification using WEKA software, and the
weighted KNN was the most efficient technique. Then, a
modified KNN method based on an asymmetric proximity
function (APF) was developed to improve classification
accuracy even further. The results demonstrate that the
proposed APF-KNN algorithm with optimized features
surpasses the KNN method by 96.6667%.

Wang et al.[37] developed a bearing fault diagnosis
method based on combining the Kernel Principal Com-
ponent Analysis (KPCA) with the KNN algorithm. KPCA
is a method for applying the kernel method to generalize
linear Principal Component Analysis (PCA) to non-linear
cases. An electro-discharge machine was used to artifi-
cially seed a single point fault in the bearing inner race,
outer race, and rolling element. The accelerometers were
used to sample vibration signals positioned at the drive
end. The extracted features are the clearance factor, the
greatest peak, impulse factor, kurtosis, mean absolute
difference, peak factor, peak-to-peak value, rad ampli-
tude, RMS value, skewness, variance, waveform index,
and kurtosis value. KPCA was applied to the extracted
signal and used to define KNN. As a result, this method
could classify bearing faults with an accuracy of 96.67%,
as shown in Figure 12.

Safizadeh and Latifi[38] developed a unique bearing
fault diagnostic approach based on KNN and a combina-
tion of an accelerometer and a load cell. This method was
used to classify three bearing conditions: a healthy, outer
race defect, and ball defect. Spark erosion techniques
were employed to create the defects in bearing elements.
A Piezoelectric IMI 608A111 accelerometer was used to
collect vibration data, and a SEWHACNM SM601 load
cell was used with a DACELL DNAM100 amplifier to mea-
sure the load. The output of each sensor was connected
to the NI-USB-9233 DAQ. Two frequency domain features
were extracted (amplitude in ball pass frequency of the
outer race and ball spin frequency) with ten time-domain

Figure 12: Theoretical and predict classification[37]

features (RMS, standard deviation, skewness, crest factor,
kurtosis, peak level, K factor, mean value, variance, and
median). PCA was used to reduce features. The waterfall
fusion model was used as the fusion approach to merge
sensor data effectively. The results of the experiments
indicate that the proposed method improves fault identi-
fication and diagnostic accuracy, as shown in the Table 2.

Tain et al.[39] proposed a method for detecting and
monitoring bearing faults in an electric motor. Four faults
were investigated: the outer race, inner race, rolling el-
ement, and cage fault. Vibration signals were extracted
from two accelerometers installed on the bearing hous-
ing and decomposed in the frequency domain to obtain a
set of sub-signals. Different fault features were extracted
based on cross-correlation and spectral kurtosis (SK). The
principal component analysis (PCA) technique was uti-
lized to reduce the redundancy of fault features. KNN is
used to combine the features with a health index, which is
further analyzed for defect detection. Following various
experiments, a gearbox was mounted to create signals
that mask bearing signals and cause false-negative de-
tection. As a result, this method was effective in fault
classification and isolating bearing signals from gear sig-
nals to detect previously unknown faults.

Gohari and Eydi [40] used KNN to identify shaft un-
balance in multi-disc rotors and compared the results
with the Decision Tree (DT) Algorithm. Various masses
were mounted in three radiuses to create an unbalanced
condition. Two ADXL335 accelerometers attached to
the shaft were employed to collect vibration data from
the test setup. A data acquisition device (ADVANTECH
4711A) was used for data collection. A program was de-
veloped in Labview Software for signal processing and
recording, and filtering of unwanted noises. Eight sta-
tistical features were extracted from time and frequency
domain signals: the peak value, skewness, average, RMS
error, absolute average, the peak of average ratio, crest
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Table 2
Effectiveness of each technique[38]

Bearing condition Accelerometer detection Load cell detection Data fusion technique

Healthy Outer race fault Healthy Healthy
Outer race fault Outer race fault Outer race fault Outer race fault
Outer race fault Outer race fault Outer race fault Outer race fault
Outer race fault Outer race fault Outer race fault Outer race fault

Ball fault Ball fault Outer race fault Ball fault
Ball faul Ball fault Outer race fault Ball fault

Figure 13: KNN perfomance in unbalance locating [40]

factor, standard deviation, kurtosis factor, and peak in
the frequency domain. The extracted features were fed
to the KNN and the DT algorithms. The study revealed
that the KNN surpasses the Decision Tree in estimating
unbalance parameters and can classify the faults with an
average accuracy of 86.6%. The Figure 13 shows the KNN
performance of unbalanced locating.

Lu et al. [41] proposed a fault diagnosis method for
rotating machinery called Enhanced K-Nearest Neighbor
(EKNN), based on KNN and spare coding. This method
investigated four bearing conditions: normal conditions,
inner race faults, outer race faults, and roller faults. An
accelerometer attached to the bearing was utilized to col-
lect vibration signals. Fast Fourier Transform (FFT) was
applied to gather frequency domain features for creating
the training dataset. Then, discriminative features were
extracted by applying Spare Filtering (SP) to the training
dataset. Finally, the discriminative features were opti-
mized by the L-BFGS algorithm and transferred into the
feature vector. The feature vector was fed to the EKNN
and the traditional KNN. As shown in Figure 14, the pro-
posed method could classify faults with 99% accuracy,
surpassing the traditional KNN.

Li et al. [42] presented a bearing fault detection method
based on the Orthogonal Wavelet Transform K-Nearest
Neighbor Algorithm (OWT-KNN). The OWT can decom-
pose the signals into the equivalent local detail signals at
each scale in terms of time and frequency. The Figure 15

Figure 14: Classification accuracy of EKNN[41]

shows the flowchart of (OWT-KNN). EDM was used to
implant faults in the inner race and the ball. The vibration
signals were collected from three accelerometers placed
in different positions and subjected to a multilayer or-
thogonal wavelet transform. Peak-to-peak values were
found on each scale to create the feature vectors. Lately,
the created feature vectors are utilized to generate the
classification model and train the KNN classifier. The
classification results show that this approach can achieve
a 100% fault classification.

3.3. SVM Applications
Jiang et al. [43] used SVM and multi-sensor informa-
tion fusion to develop a fault diagnosis approach for
rotating machines. This approach investigated differ-
ent cases for machine elements: three conditions for the
gears (normal, missing, and chipped tooth), four con-
ditions for the bearing (normal, defect, inner race de-
fect, and outer race defect), and three conditions for the
shaft (normal, 3mm crack depth, and 5mm crack depth).
IMI 608A11 accelerometers collected vibration signals
with the Dewetron data acquisition system. Twelve time-
domain features were extracted for each condition, in-
cluding mean, peak, amplitude square, RMS, root ampli-
tude, standard deviation, skewness, kurtosis, waveform
factor, pulse factor, and margin factor. The multi-sensor
information fusion model was utilized to establish a mul-
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Figure 15: OWTKNN Flowchart[42]

tidimensional vector by extracting the same character
from different sensors. The SVM was applied to each
case for fault classification. According to the results, the
highest accuracies achieved by the SVM classifier were
93.33%, 100%, and 99.67% of gears, rolling bearing, and
cracked shaft cases, respectively.

Tabrizi et al. [44] proposed a combined automatic
method for detecting tiny defects on roller bearings that
uses Wavelet Packet Decomposition (WPD) with Ensem-
ble Empirical Mode Decomposition (EEMD). Tri-axial ac-
celerometers were used to collect vibration data at three
different shaft speeds and external loads. Afterward, the
original signals were extracted from the noisy signals
using WPD, and EEMD was applied to decompose the
vibration signals into IMFs. Then, a feature vector was
created from the normalized IMFs energy and fed to the
SVM. With Daubechies DB10 Denoising, the proposed
method was able to detect the defects with 100% accuracy.

Senanayaka et al. [45] presented a method based on
the SVM algorithm for the early detection and classifica-

Figure 16: Accuracy results[46]

tion of bearing faults. This method studied the following
cases: healthy, inner and outer race degradation, and in-
ner and outer race failure. A run-to-failure test provided
the data for this investigation. Vibration data was col-
lected by four accelerometers attached to four bearings.
The RMS was calculated from the collected time-domain
signals; the Hilbert transformation was used to detect the
envelope of a time-domain signal. Then, the envelope sig-
nal is converted into the frequency domain using the fast
Fourier transformation. Fault-specific frequencies are
found in the frequency spectrum, and energy associated
with each frequency band is collected. Four frequency do-
main features were extracted in addition to RMS, and all
these features were used to train the SVM classifier. The
obtained classification accuracy for healthy, inner and
outer race degradation and inner and outer race failure
is 99.3%, 86.2%, 97.7%, 87.8%, and 84.2%, respectively.

Huo et al. [46] proposed a fault diagnosis method for
rotating shafts based on Multi-Scale Entropy (MSE). This
method investigated two shaft conditions: healthy and 4
mm cracked shaft. The vibration data for each condition
were collected from the PT 500 machinery diagnostic
system. WPD and EMD were employed to decompose
the signals to obtain reconstruction vectors and IMFs
data sets. Afterward, Shannon entropy criteria were uti-
lized to select the largest entropy in the decomposed
vectors. The MSE method was then used to define fault
symptoms and create feature vectors. Finally, the feature
vectors were fed to the SVM for fault classifying. Experi-
mental results showed that WPD combination with MSE
achieved a classification accuracy of 97.3%, whereas EMD
combination with MSE had a better classification rate of
98.5%. The Figure 16 shows the accuracy results using
EMD, MSE, and SVM.

Gu et al. [47] developed a fault diagnosis for rolling
bearings based on SVM and PCA. Four deep groove ball
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Table 3
Classifier Results[49]

Method Best Model Accuracy Training time

10% Data Validation Cubic SVM 95.6% 15.947
15-Fold Cross Validation Quadratic SVM 94.7% 60.62
10-Fold Cross Validation Quadratic SVM 94.7% 19.401
5-Fold Cross Validation Quadratic SVM 93.8% 10.283

Figure 17: Classification results[48]

bearings conditions were examined: normal condition,
roller flaking, inner ring flaking, and outer ring flaking.
An IMI 601A1 accelerometer was used with a UUA300
data acquisition card for vibration signal monitoring. A
wavelet packet was used to decompose the collected sig-
nals and create the feature vectors. Then, the feature
vectors were integrated by PCA and fed to the SVM clas-
sifier. Different kernel functions and SVM classification
algorithms were used to compare and verify the influence
of kernel functions and classification algorithms on the
accuracy of the SVM classifier. Finally, the developed
method achieved a performance of more than 97%. Pang
et al. [48] proposed a novel rotor fault diagnosis method
based on Characteristic Frequency Band Energy Entropy
(CFBEE) and SVM to investigate three rotor faults: im-
balance, rubbing, and oil film instability failures. The
shaft vibration signals were collected using two eddy-
current sensors attached to the mounting blocks. The
time-frequency features were decomposed by improved
singular spectrum decomposition (ISSD) into a series of
singular spectrum components (SSCs). The Hilbert Trans-
form (HT) demodulates the obtained SSCs to determine
their instantaneous amplitude (IA) and instantaneous
frequency (IF). IF and IA reflect the time-frequency infor-
mation of SSC, and the Time-Frequency Spectrum (TFS)

Figure 18: PCA using the pre-processing data[50]

can be derived by integrating the time-frequency infor-
mation of all SSCs. Time-frequency entropy (TFE) was
calculated from TFS to build CFBEE. Then a feature vec-
tor was obtained from calculated CFBEEs and fed to the
SVM, and the SVM was able to classify rotor faults, as
shown in Figure 17.

Parmar and Pandaya [49] developed a fault diagnosis
method for cylindrical bearings based on SVM. Four con-
ditions were investigated: healthy bearing, defects in the
inner race, outer race, and the rolling element (defect
sizes are around 0.5 mm). A three-axis sensor was used
to collect vibration signals, and CoCo-80 Dynamic Signal
Analyzer processed the collected signals. The collected
signals were analyzed by wavelet packet decomposition
(with mother wavelet ’sym20), then mathematical param-
eters were extracted, such as mean value, mean square
value, skewness, kurtosis, standard deviation, crest factor,
and energy. Then these parameters were normalized and
fed to two classification methods: ANN and SVM. The
results showed that ANN classification accuracy did not
exceed 90%, while the SVM (cubic model) was able to
classify faults with 95.6% accuracy. Table 3 shows the
SVM classification results.

Lee et al. [50] developed a method to detect misalign-
ment in a rotating machine shaft based on the SVM algo-
rithm. A gyro vibration sensor was attached to the shaft’s
end between the rotor and the shaft to collect normal
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and abnormal vibration data. The SVM was applied to
the collected data without preprocessing, and its classi-
fication accuracy was 49.71%. Then, the FFT technique
was used to extract the power spectrum from the time
domain data, and the PCA algorithm was used to reduce
the dimensions (see Figure 18). The SVM algorithm was
applied to the processed data and could predict the nor-
mal and abnormal conditions with an average accuracy
of 98.8%.

4. Conclusion
Rotating machinery fault diagnosis plays an important
role in saving maintenance costs, downtime, and safety
risks. In this study, a variety of AI approaches for rotat-
ing machinery diagnostics are discussed. The theoretical
approach and fault diagnostic application of ANN, K-NN,
and SVM have been reviewed. This study advises per-
forming feature selection on the feature vector before em-
ploying AI classification techniques to identify the most
sensitive feature for each fault case. Further, this study
suggest using other AI classification techniques such as,
Random Forest, Decision Tree, Naive Bayes, and Deep
learning. As AI techniques grow more sophisticated, it is
expected that AI approaches will remain interesting and
effective for detecting faults in rotating machinery.
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