
Detection of Typical Sentence Errors in Speech Recognition
Output

Bohan Wang1,†, Ke Wang1,†, Siran Li1,† and Mark Cieliebak2,∗

1Section of Electrical and Electronic Engineering, École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
2Centre for Artificial Intelligence, Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland

Abstract
This paper presents a deep learning based model to detect the completeness and correctness of a sentence. It’s designed
specifically for detecting errors in speech recognition systems and takes several typical recognition errors into account,
including false sentence boundary, missing words, repeating words and false word recognition. The model can be applied to
evaluate the quality of the recognized transcripts, and the optimal model reports over 90.5% accuracy on detecting whether
the system completely and correctly recognizes a sentence.

1. Introduction
Automatic Speech Recognition (ASR) systems develop
technologies to recognize and translate spoken language
into text by machines [1]. Sentence error detection on
ASR systems is important for the two reasons: a) This
can help to set proper punctuation marks; b) For multiple
speakers, speaker recognition often fails at the change
between two speakers, which results in single words at
beginning or end of an utterance being assigned to the
wrong person. A practical application domain of our
work is to detect complete and correct sentences in ASR
systems to mitigate the aforementioned problems.

In prior works, research focused mainly on grammati-
cal error detection [2, 3]. In this paper, we focus on deal-
ing with the specific errors emerging in speech recogni-
tion, such as missing words or incorrect sentence bound-
aries (detailed in Sec. 3.3). In addition, previous works
on enriching speech recognition emphasize on finding
correct sentence boundaries in whole transcripts [4, 5].
However, in real-time speech recognition, we have access
to only individual sentences instead of full transcripts,
and they don’t take other typical speech recognition er-
rors (apart from incorrect sentence boundaries) into ac-
count [6].

Recently, transformer models have shown state-of-art
performance in generating word embeddings and extract-
ing intrinsic features of word sequences. In specific, Bidi-
rectional Encoder Representations from Transformers
(BERT) [7], Generative Pre-trained Transformer (GPT)
[8] and BIG-BIRD [9] have achieved promising perfor-

SwissText 2022: Swiss Text Analytics Conference, June 08–10, 2022,
Lugano, Switzerland
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open bohan.wang@epfl.ch (B. Wang); k.wang@epfl.ch (K. Wang);
siran.li@epfl.ch (S. Li); ciel@zhaw.ch (M. Cieliebak)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mance to learn high quality language representations
from large amounts of raw text. The token represen-
tations produced by these transformers pre-trained on
unsupervised tasks also help improve the performance
of a supervised downstream task.

In this paper, we fine-tune the pre-trained transformers
(BERT, GPT2 and BIG-BIRD) on the speech recognition
error detection task, to build a binary classification model
detecting speech recognition errors. The performance of
sequentially linking BERT embedding and a down-stream
text classification network is also studied. We compare
and analyze the performances of several classification
models. The models are ensembled through a Random
Forest to further improve the performance. Finally, we
analyse the performance of BERT-based classifier on a
multi-label dataset.

The paper is structured as follows: In Sec. 2, we ex-
plain the models and experimental design. In Sec. 3, we
describe how the dataset is generated. We discuss the
experimental results in Sec. 4.

2. Methods

2.1. Models
In this section, we use three state-of-art transformer mod-
els BERT [7], GPT2 [8], BIG-BIRD [9] are considered.

Besides, we also test the performance of using BERT
embedding plus a downstream text classification net-
work. For the classification networks, we use either a
bi-direction LSTM and a TextCNN. We use a one-layer
TextCNN with kernels sizes to be 2, 3 and 4. For LSTM,
we use a one-layer bi-directional LSTM network [10], fol-
lowed by an attention layer and a fully connected layer.
The number of hidden states is 256. Specifically, the
attention layer is found to be essential.

mailto:bohan.wang@epfl.ch
mailto:k.wang@epfl.ch
mailto:siran.li@epfl.ch
mailto:ciel@zhaw.ch
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2.2. Ensemble learning
We ensemble the five trained classifiers with random
forest. Configuration and the final classification perfor-
mance are shown in Sec. 4.2.

3. Data preparation

3.1. Dataset sources
For the model to have better generalizing capacity, a
training set from diverse sources covering diverse topics
and occasions is necessary. The following corpora are
included in our proposed dataset:
News reports [11]: 143, 000 articles from 15 American

publications
Ted 2020 Parallel Sentences Corpus [12]: around 4000

TED Talk transcripts from July 2020
Wikipedia corpus [13]: over 10 million topics
Topical-Chat [14]: nearly 10 thousand human dialog

conversations spanning 8 broad topics

3.2. Dataset Creation
To make the selected datasets suit our speech recognition
model, we remove some non-English tokens, sentence
ending symbols (‘.’, ‘!’, ‘?’), duplicated sentences and also
short sentences (less or equal to 5 words) to avoid some
recognition errors. After pre-processing on the data from
the sources, we create the following two datasets:
Standard Dataset: contains 0.3 million sentences

from News reports, 0.3 million sentences from Ted cor-
pus, 0.3 million sentences from Wikipedia corpus, 0.2
million sentences from Topical-Chat, in total 1.1 million
sentences. We split the Standard Dataset randomly over
all data sources into train set, ablation set and test set,
with a proportion of 8:1:1.

Large Dataset: contains 2.3 million sentences from
News reports, 0.4 million sentences from Ted corpus,
2 million sentences from Wikipedia corpus, 0.2 million
sentences from Topical-Chat; in total 5 million sentences.
We split it into train and test set, with a proportion of
19:1.

We train and compare performances of various models
on the Standard Dataset. As a comparison, we evaluate
the performance of BERT trained on the large dataset to
see how an enlarged training set affects generalization
ability for this task.

3.3. Generate positive and negative
samples

For creating positive samples, punctuation is removed
(except abbreviations such as it’s, Mr., I’ve, etc.) and
words are converted to lower case.

For creating negative samples, we mimic typical errors
of the speak recognition system, which are detailed in
the following, and we propose corresponding methods
to create negative samples with respect to typical errors.
False sentence boundary: When a speech recogni-

tion system fails to correctly separate two sentences, the
first sentence would be cut off in the middle and part
of the sentence would be assigned to the next sentence
(illustrated in Fig. 1 (a)). For such negative samples, we
group the sentences by three, and randomly separate
the three sentences into 2-4 sentences (so that on aver-
age negative samples created in this way would have
equal length with positive samples). While choosing ran-
dom separating points, the genuine sentence separations
points, punctuation and typical words for starting sub-
sentences (e.g. that, which, because, etc.) are avoided,
and thus reduce the probability that a generated sample
is still a complete sentence by chance (e.g. ‘I like you
because you are beautiful’ to ‘I like you’.)

Missing words: A speech recognition system can fail
to recognize one or several words from a sentence, and
as a result some words may be missing in the produced
transcripts (Fig. 1 (b)). For such negative samples, we
randomly remove 1 word for sentences up to 3 words,
and 2-4 words from longer sentences.
Repeating words: The system can record speakers’

unintended repeated words (Fig. 1 (c)). For such negative
samples, we randomly repeat 1 word for sentences within
3 words, and 1-3 words from longer sentences.

False word recognition: The system can mistakenly
recognize one word as another word (Fig. 1 (d)). For
such negative samples, we randomly replace 1 word for
sentences within 3 words, and 1-3 words from a longer
sentences, by random words from another sentence.

Finally, the punctuation is removed and words are
converted to lower case.

Figure 1: Typical errors in speech recognition system

After creating the positive and negative samples, the
sentences longer than 100 words are removed, for they
are too long to appear in speech recognition. We create
the same number of negative samples as that of positive
samples, so that we have a balanced dataset. The ratio be-
tween different types of negative samples is 2:1:1:1. The
type False Sentence Boundary corresponds to two times



the number of other negative sample types since False
Sentence Boundary contains two types of false sentences,
those which are cut off and those which are assigned
with extra words.

4. Experiments and Discussion
In this section, we report the results of our experiments.
We describe below the setup, and then evaluate the dif-
ferent models in Sec. 4.1. In Sec. 4.2, based on the models,
we train a Random Forest classifier to further aggregate
the models and improve the performance. In Sec. 4.3, we
compare the performance of BERT trained on Standard
and Large Dataset. Finally, we show the result of BERT
trained on a Multi-Labeled Dataset in Sec. 4.4.
Training details: We train each model for 5 epochs

with batch size 64 using Adam optimizer. The initial
learning rate is set as 3𝑒 − 5 for fine-tuning transformer
models and 1𝑒−3 for downstream classification networks.
To prevent overfitting, we only save the model with opti-
mal performance on test set after each epoch.

4.1. Results on Standard Dataset
As explained in Sec. 2, we train five models on the Stan-
dard Dataset containing 1 million proper sentences and
1 million non-proper sentences to evaluate their perfor-
mances.

The results of this experiment are presented in Table 1.

Model Test Accuracy
BERT 89.27%
GPT-2 88.67%
BIG-BIRD 90.26%
BERT embedding + Bi-LSTM 86.33%
BERT embedding + TextCNN 81.40%

Table 1
Test accuracy of five models on Standard Dataset

From the results, we can see that the transformers
provide much better results than the models sequen-
tially linking BERT embedding and either a BiLSTM or
TextCNN. Specifically, BIG-BIRD provides the optimal
performance, with 90.26% test accuracy. BERT and GPT2
provide similar test accuracy, 89.27% and 88.67% respec-
tively.

4.2. Ensemble learning with Random
Forest

In this section, we combine the five trained models (in
Table 1) with random forest in order to produce one opti-
mal predictive model. The idea of the ensemble learning
is to train a random forest classifier with the combination
of the predicted classes from the models. The random

forest classifier can generate a final classification through
a majority vote mechanism.

To prevent random forest from overfitting the train
set, we use a separate ablation set, instead of the train set
which the models are trained on. The best parameters
after 10-fold cross-validation are 100 decision trees, and
a maximum depth of 3. The test accuracy of the random
forest reaches 90.51%, higher than the optimal accuracy
among the individual models (90.26%), but not to a large
extent. This is probably since the transformers (along
with their embedding) share similar structures and do
not diverge much on decisions.

4.3. Results on Large Dataset
In this section, we train BERT on the large dataset (5 times
the size of the Standard Dataset) with less epochs (1 epoch
in contrast to 5 epochs). Overall, the model is trained
with the same iterations as with Standard Dataset. With
the same training details described before (but only for
one epoch), results show that training with Large Dataset
provides a higher test accuracy (90.36%), compared with
the accuracy trained with Standard Dataset (89.27%).

The results suggest that, provided with enough com-
putational capacity, we can further improve our model’s
generalization ability by training on a larger dataset.

4.4. Result on multi-label dataset
In this section, we further create a Multi-Label Dataset,
which contains the same samples as the Standard Dataset,
whereas the negative samples are distinctively labeled
(including false sentence boundary, false word recognition,
missing words, and repeating words) instead of uniformly
labeled as negative.

We train a BERT model on this dataset, and it reached
85.01% classification test accuracy. The precision, recall
and F1-score of each class is given in Table 2.

Sample Class Precision Recall F1 Score Support
Complete Sentence 0.87 0.94 0.90 109857

False Sentence Boundary 0.83 0.81 0.82 42677
False Word Recognition 0.84 0.70 0.77 21897

Missing Words 0.64 0.50 0.56 21711
Repeating Words 0.96 0.99 0.98 21781

Table 2
Precision, Recall and F1-Score of each sample class

From the result, we can see that the simplest task is to
identify repeated words in the sentences (F1-score near
0.98). Identifying complete sentences is also a relatively
easy task, with a F1-score of 0.90. The hardest task for
the model is detecting whether there are missing words
in the sentence. It achieves only 64% precision and 50%
recall on this task.

The confusion matrix is drawn in Fig. 2. From this fig-
ure, we can further see that the classifier finds it difficult
to classify between complete sentences and sentences



Figure 2: Confusion matrix for BERT trained on Multi-Label
Dataset

with missing words, even though in most of the cases
more than one word is missing in the erroneous sen-
tences. This is understandable because in most cases, not
every word is indispensable, even we lose some words,
and maybe the meaning is not exactly the same but the
sentence still makes sense grammatically.

4.5. Result on real-world ASR outputs
Finally we test our trained multi-modal BERT model on
the real-world ASR outputs fromCEASR corpus [15]. The
predictions are shown in Fig. 3, where we can see the
model is able to capture real-world ASR errors correctly,
while we also provide an example where the model fails.

Figure 3: Prediction on real-world ASR outputs

5. Conclusion
In this paper, a dataset for detecting speech recognition
errors was created, where four different types of typi-
cal speech recognition errors were taken into account.
Experimental results show that transformer models are
capable of providing good performance on classification
of the constructed dataset for speech recognition error,
reporting approximately 90% accuracy for BERT, GPT2
and BIG-BIRD. A Random Forest was trained based on
the five models, and further improved the test accuracy

to over 90.51%. Overall, the results suggest that using
state-of-art transformer models can provide good quality
for detecting the errors in speech recognition systems,
and provide feedback on further improvements of speech
recognition systems. In our future works, special adjust-
ments might be needed to better cope with identifying
missing words in recognized sentences.

References
[1] D. Yu, L. Deng, Automatic speech recognition, vol-

ume 1, Springer, 2016.
[2] N. Agarwal, M. A. Wani, P. Bours, Lex-pos feature-

based grammar error detection system for the En-
glish language, Electronics 9 (2020) 1686.

[3] Z. He, English grammar error detection using re-
current neural networks, Scientific Programming
2021 (2021).

[4] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Os-
tendorf, M. Harper, Enriching speech recogni-
tion with automatic detection of sentence bound-
aries and disfluencies, IEEE Transactions on Au-
dio, Speech, and Language Processing 14 (2006)
1526–1540. doi:10.1109/TASL.2006.878255.

[5] Y. Liu, A. Stolcke, E. Shriberg, M. Harper, Using
conditional random fields for sentence boundary
detection in speech, in: Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), 2005, pp. 451–458.

[6] D. Tuggener, A. Aghaebrahimian, The Sentence
End and Punctuation Prediction in NLG text (SEPP-
NLG) shared task 2021, in: Swiss Text Analyt-
ics Conference–SwissText 2021, Online, 14-16 June
2021, CEUR Workshop Proceedings, 2021.

[7] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
Bert: Pre-training of deep bidirectional transform-
ers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al., Language models are unsuper-
vised multitask learners, OpenAI blog 1 (2019) 9.

[9] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie,
C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q.Wang,
L. Yang, et al., Big Bird: Transformers for Longer
Sequences., in: NeurIPS, 2020.

[10] F. A. Gers, J. Schmidhuber, F. Cummins, Learning
to forget: Continual prediction with lstm, Neural
computation 12 (2000) 2451–2471.

[11] A. Thompson, All the news: 143,000 articles
from 15 American publications, =https://www.kag-
gle.com/snapcrack/all-the-news, 2017.

[12] N. Reimers, I. Gurevych, Making monolingual sen-
tence embeddings multilingual using knowledge
distillation, arXiv preprint arXiv:2004.09813 (2020).

http://dx.doi.org/10.1109/TASL.2006.878255
=


[13] W. Foundation, Wikimedia downloads, ???? URL:
https://dumps.wikimedia.org.

[14] K. Gopalakrishnan, B. Hedayatnia, Q. Chen,
A. Gottardi, S. Kwatra, A. Venkatesh, R. Gabriel,
D. Hakkani-Tür, A. A. AI, Topical-chat: Towards
knowledge-grounded open-domain conversations.,
in: INTERSPEECH, 2019, pp. 1891–1895.

[15] M. A. Ulasik, M. Hürlimann, F. Germann, E. Gedik,
F. Benites de Azevedo e Souza, M. Cieliebak, Ceasr:
a corpus for evaluating automatic speech recogni-
tion, in: 12th Language Resources and Evaluation
Conference (LREC) 2020, European Language Re-
sources Association, 2020, pp. 6477–6485.

https://dumps.wikimedia.org

	1 Introduction
	2 Methods
	2.1 Models
	2.2 Ensemble learning

	3 Data preparation
	3.1 Dataset sources
	3.2 Dataset Creation
	3.3 Generate positive and negative samples

	4 Experiments and Discussion
	4.1 Results on Standard Dataset
	4.2 Ensemble learning with Random Forest
	4.3 Results on Large Dataset
	4.4 Result on multi-label dataset
	4.5 Result on real-world ASR outputs

	5 Conclusion

