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Abstract
Reranking the 𝑘 best hypothesis parse trees from an existing parser allows to take into account more information that the
model has gathered during training than simply decoding the most likely dependency tree. In this paper, we first investigate
whether state-of-the-art dependency parsers can still benefit from reranking in low-resource languages. As part of this
analysis, we deliver new insights concerning rerankability. Second, we propose a reranker reject option, which paves the way
for designing interpretable reranking-based parsing systems in the future.

1. Introduction
Dependency parse trees model the structural relation-
ships in sentences [1]. They are relevant for many down-
stream applications like natural language understanding
tasks [2] or information extraction [3].
State-of-the-art dependency parsers predict the most

likely dependency parse tree for a given sentence based
on large neural network architectures [4]. By acting
greedily with respect to the prediction, these models
disregard information that was gathered during training.
In particular, the best dependency tree might not have
been assigned the highest probability, for example due to
unusual training sentences [5]. A technique that tries to
remedy this problem is 𝑘-best reranking. It is based on
decoding the 𝑘 best predictions from the base parser and
reranking these using an additional machine learning
model [6].
In this paper, we are investigating whether inter-

pretable rerankers can improve current state-of-the-art
dependency parsers. We challenge previous conclusions
in which situations base parsers can be reranked and
propose a novel approach to combining the base parser
and the reranker.

2. Background
Many state-of-the-art dependency parsing systems are
graph-based parsers, which are based on an edge-factored
model (e.g. 4 and 7). The underlying assumption of an
edge-factored model is that the score of a dependency
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tree can be factored across the edges of the graph [1]. In
this work, we define the set of edges of a dependency
tree 𝑇 as 𝐸𝑇. The edges consist of a relation label 𝑟 ∈ 𝑅
(where 𝑅 is the set of all possible relation labels) and
two tokens 𝑤𝑖 and 𝑤𝑗, i.e. (𝑤𝑖, 𝑟 , 𝑤𝑗) ∈ 𝐸𝑇. If we use the
conditional probability of a dependency tree (given a
particular sentence 𝑆) as a scoring function, we can write
the model as

𝑝(𝑇 |𝑆; 𝜃) = 1
𝑍

∏
(𝑤𝑖,𝑟 ,𝑤𝑗)∈𝐸𝑇

exp{𝑠(𝑤𝑖, 𝑟 , 𝑤𝑗; 𝜃)} (1)

𝑍 = ∑
𝑇 ′∈𝒯full(𝑆)

∏
(𝑤𝑖,𝑟 ,𝑤𝑗)∈𝐸𝑇 ′

exp{𝑠(𝑤𝑖, 𝑟 , 𝑤𝑗; 𝜃)}

where 𝒯full(𝑆) is the set of all dependency trees for
sentence 𝑆. 𝑠 is the edge scoring function and 𝜃 is the
parameter vector.
From the model definition, we can see that any edge-

factored model learns 𝑛 × 𝑛 edge scores for a sentence
𝑆, where 𝑛 is the number of tokens in the sentence aug-
mented by an artificial 𝑟𝑜𝑜𝑡 token at the beginning of the
sentence. Decoding the 𝑘 best dependency trees from
such a score matrix after training is not possible naively,
since the search space is exponential [8].
Recently, Zmigrod et al. [9] provided an algorithm

which allows to decode the 𝑘 best dependency trees from
an adjacency matrix induced by an edge-factored model,
which we will use in this work to construct the list of
hypothesis trees.
Often, building a reranking model on top of the base

parser is not yet enough for state-of-the-art performance.
A popular strategy to improve a reranking model is mix-
ture reranking (MR), i.e. combining the scores of the base
parser and the reranker with a trade-off parameter that
is tuned on the development set [10, 11]:

𝑠𝑓 = 𝛼 𝑠𝑅𝑅(𝑇 , 𝜃𝑅𝑅) + (1 − 𝛼) 𝑠𝐵(𝑇 , 𝜃𝐵) (2)

where 𝛼 ∈ [0, 1] is the mixing parameter. 𝑠𝑅𝑅 is the score
of the reranker and 𝑠𝐵 is the score of the base parser given
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a tree 𝑇. 𝜃 are the respective parameter vectors and 𝑠𝑓 is
the final score of the tree 𝑇.

3. K-best list
Recently, Do and Rehbein [5] emphasized that, apart
from the oracle parsing accuracy [6], the quality of the
𝑘-best lists of a dataset can be indicated by the gold tree
ratio and the unlabeled attachment scores (UAS) standard
deviation in the 𝑘-best list. The gold tree ratio refers to
the number of times a correct tree is in the 𝑘-best list
relative to the number of sentences in the respective
dataset. The oracle parsing accuracy is a similar metric
introduced by Hall [6], referring to the maximum score
possible by always choosing the closest tree to the gold
tree in the 𝑘-best list.

4. Reranker reject option
In this work, we reframe mixture reranking by using a
reject option for the reranker. A reject option is a concept
from decision theory; it refers to the idea of rejecting
a classification decision if the associated probability is
lower than a certain threshold 𝜏 [12]. In the context of
reranking, the reject option works as follows:

𝑇 ∗ = {
argmax
𝑇 ′∈𝒯𝑘

𝑝 (𝑇 ′|𝑆) if max
𝑇 ′∈𝒯𝑘

𝑝 (𝑇 ′|𝑆) > 𝜏

𝑇1 else
(3)

where 𝒯𝑘 is the set of candidate parses for sentence
𝑆 and 𝜏 is the confidence threshold. If the confidence of
the reranker is less than or equal to 𝜏, the prediction of
the base parser 𝑇1 is used.
Compared to mixture reranking, our method offers

a more interpretable way of trading off reranker and
base parser. When using mixture reranking, it is not
clear how much relative weight the reranker and the
base parser get in the final decision of a parsing system
if the base parser’s score is not a probability (unless 𝛼 ∈
{0, 1}). Indeed, the base parser score of Qi et al. [7] is not
normalized over all valid dependency trees. By using a
reranker reject option, we do not rely on the score of the
base parser: We tune a threshold of minimum certainty
that implicitly trades off reranker and base parser, but
always leads to a clear decision whether the reranker or
the base parser takes the final decision of the parsing
system.

5. Experimental Setup

5.1. Training
We ran our experiments on four low-resource lan-
guages using data from the Universal Dependencies v2.5

Table 1
Dataset Lengths

Treebank Train Dev Test
Lithuanian HSE 153 55 55
Belarussian HSE 319 65 253
Marathi UFAL 373 46 47
Tamil TTB 400 80 120

treebanks [13], since our chosen base parser’s perfor-
mance offers most potential for improvement in the low-
resource domain [14]. In particular, we decided to use
Lithuanian, Belarussian, Marathi, and Tamil. The data
split is indicated in Table 1.
We use the base parser of Qi et al. [7] and decode the

𝑘-best list by using the algorithm of Zmigrod et al. [9].
As reranking models, we train structured support vector
machine (SVM) and Gaussian process (GP) classification
models on each of the four languages. All models are
kernelized with the kernel of Collins et al. [15], which
measures the similarity of two dependency trees in terms
of the number of subtrees that they have in common.
Thus, the kernel takes structural overlap as a measure of
similarity between the trees [15]. Except for the kernel,
no other features are used. We refrain from using neural-
network-based rerankers to avoid the construction of
black-box features.

We fix the random seeds to guarantee reproducibility
of our models. The implementation of the GPs (in partic-
ular the computation of the GP posterior) does not allow
full reproducibility of the fitting procedure. To account
for this randomness, we train the GP models over five
different seeds.
We tune the inverse regularization parameter 𝑐 (only

in case of the SVM), 𝑘 (the number of candidate trees
at prediction time) and 𝛼 or 𝜏 simultaneously on the de-
velopment set. In case of ties, we take the parameter
combination corresponding to maximum regularization
with the highest number of candidates. That corresponds
to making a conservative decision while maximizing the
diversity of the candidate parses, where the latter has
been suggested to be useful by Do and Rehbein [5]. We
choose the hyperparameter combination that achieves
the highest (average) labeled attachment score (LAS) on
the development set.

5.2. Evaluation
The baseline performance is generated by feeding the pre-
tokenized sentences into the base parser and evaluating
the predictions with the official CoNLL 2018 shared task
evaluation script. That leads to considerably higher LAS
scores than reported by Qi et al. [14]. We hypothesize
that this is the result of the fixed tokenization and the
fixed sentence split, given that the CoNLL 2018 shared



Figure 1: Growth of oracle LAS and gold tree ratio

task required a prediction from raw text.
All trained models are evaluated in terms of the la-

beled attachment score (LAS), whichmeasures howmany
words were assigned the correct head with the correct
dependency label. In particular, it is an F1 score, i.e. the
harmonic mean of labeled precision and labeled recall
[16].

6. Results

6.1. K-best list
Figure 1 shows the relative growth of the oracle LAS
for different 𝑘. All values are with respect to the base
parser score, which explains why the curve is weakly
increasing for every language. The growth for Lithuanian
is the largest with more than 10%, whereas the oracle
LAS grows less than 5% for Belarussian. Marathi and
Tamil are in between with a growth of approximately 8%.

The gold tree ratio is also weakly increasing, given
that more candidate trees can never lead to fewer gold
trees in the set of candidate parses. The gold tree ratio is
constantly at zero for Lithuanian. For Tamil, it is always
near 5%, while for Marathi it is stable at 15%. The only
gold tree ratio that shows significant improvement is for
Belarussian, from approximately 10% to approximately
20%.

6.2. Reranking performance
The performance in terms of the LAS of the different
parsing systems is indicated in Table 2. We can see that
augmenting the base parser by an interpretable reranker
does not improve parsing performance drastically.

Looking at the chosen hyperparameters in Table 3, we
can see that both methods are highly sensitive to the
reranking model.

For all investigated languages, the SVM-based system
with the reranker reject option trusts the reranker. This
is indicated by 𝜏 = 0. The corresponding system with
mixture reranking reproduces this decision for Lithua-
nian and Marathi (i.e. 𝛼 = 1), while it involves the base
parser in the classification decision for Belarussian and
Tamil. Still, 𝛼 is also close to 1 in these cases, indicating
the proximity to the reranker reject option. Interestingly,
we can see in Belarussian and Tamil that the system with
the reranker reject option is more regularized (i.e. smaller
optimal 𝑐 and 𝑘) than the system with mixture reranking
(which involves the base parser). Both SVM-based sys-
tems slightly outperform the base parser in Lithuanian.
The GP-based systems trust the reranker less. For

Tamil, both systems fully commit to the base parser (i.e.
𝛼 = 0 and 𝜏 = 1). Note that in these situations, based on
the principles by which we choose the hyperparameters
(see Section 5.1), the chosen 𝑘 always equals 15. Both GP-
based systems take related decisions for Marathi, where
both involve base parser and reranker in the final de-
cision. This leads to a slight average outperformance.
Interestingly, the system with the reranker reject option
generally chooses a smaller optimal 𝑘 (also for the SVM-
based systems). The decisions of both GP-based systems
are almost contrary for Lithuanian and Belarussian. None
is clearly better than the other based on the results.

7. Discussion
Based on Figure 1, we generally see that even the strong
base parser of Qi et al. [7] can benefit from 𝑘-best rerank-
ing. We hypothesize that the gains in oracle LAS of ad-
ditional candidates are crucial for reranking since those
were the highest for Lithuanian and Marathi (the only
languages where the base parser could be reranked on
average).
Do and Rehbein [5] state that a prerequisite for suc-

cessful neural reranking is a high gold tree ratio. In
our opinion, this is not necessarily the case, given that
we were able to realize small improvements on a lan-
guage without a single gold tree in the 𝑘-best lists (i.e.
Lithuanian) with non-neural models. In Belarussian, the
language with the highest gold tree ratio, on the other
hand, the reranker did not bring any benefit. The rea-
son why Belarussian is hard to rerank might be that the
base parser’s predictions are on average already close
to the true trees. This is indicated by a steeply rising
gold tree ratio but only marginal gains in oracle LAS
scores. Additional similar trees result in a high variance
of the reranker. As a result, the reranker uses strong
regularization. Still, the reranker performs worse than
the base parser, supposedly because the kernel function
is not ideal for capturing the fine-grained differences be-
tween these highly similar candidate trees [15]. In the



Table 2
LAS of different reranking-based parsing systems

Lithuanian HSE Belarussian HSE Marathi UFAL Tamil TTB
Mean Median Std Mean Median Std Mean Median Std Mean Median Std

Base Parser 42.08 42.08 0 81.55 81.55 0 60.44 60.44 0 67.67 67.67 0
SVM MR 42.17 42.17 0 81.55 81.55 0 59.95 59.95 0 67.57 67.57 0

SVM Reject 42.17 42.17 0 81.53 81.53 0 59.95 59.95 0 67.67 67.67 0
GP MR 42.08 42.08 0 81.56 81.55 0.04 60.49 60.44 0.11 67.67 67.67 0

GP Reject 41.87 41.98 0.29 81.55 81.55 0 60.53 60.68 0.22 67.67 67.67 0

Table 3
Optimized hyperparameters of different reranking-based parsing systems

Lithuanian HSE Belarussian HSE Marathi UFAL Tamil TTB
SVM MR 𝛼 = 1, 𝑘 = 6, 𝑐 = 199 𝛼 = 0.89, 𝑘 = 15, 𝑐 = 199 𝛼 = 1, 𝑘 = 2, 𝑐 = 199 𝛼 = 0.95, 𝑘 = 15, 𝑐 = 199

SVM Reject 𝜏 = 0, 𝑘 = 6, 𝑐 = 199 𝜏 = 0, 𝑘 = 8, 𝑐 = 0.003 𝜏 = 0, 𝑘 = 2, 𝑐 = 199 𝜏 = 0, 𝑘 = 2, 𝑐 = 0.003
GP MR 𝛼 = 0, 𝑘 = 15 𝛼 = 0.89, 𝑘 = 7 𝛼 = 0.95, 𝑘 = 15 𝛼 = 0, 𝑘 = 15

GP Reject 𝜏 = 0.3, 𝑘 = 3 𝜏 = 1, 𝑘 = 15 𝜏 = 0.3, 𝑘 = 2 𝜏 = 1, 𝑘 = 15

case of Tamil, we see a similar pattern. The higher ora-
cle LAS growth and the less steep increase in the gold
tree ratio however lead to less similar candidate trees. In
this situation, a strongly regularized reranker can repro-
duce the base parser performance, whereas biasing the
reranker towards the base parser seems to rather distort
the predictions.
Based on the performance in Table 2 and the hyper-

parameter selection in Table 3, we see that both mixing
methods choose similar hyperparameters and perform
almost the same. Generally, the reranker reject option
works better if the classifier outputs well-calibrated prob-
abilities. Tuning the hyperparameter 𝜏 might thus be
harder than tuning 𝛼, since it is dependent on the quality
of the reranker’s predictions.

8. Conclusion
All in all, we can observe from Table 2 that the gains of
interpretable rerankers (with the kernel of 15) are not
enough to justify their computational cost. This is in
line with the recent literature on 𝑘-best reranking [5].
Our experiments with the 𝑘-best list show a positive
growth of the oracle LAS, meaning that 𝑘-best reranking
provides possibilities to improve on strong base parsers.
However, the tested models cannot consistently leverage
this potential.

By proposing a reranker reject option, we pave the way
for fully interpretable parsing systems. Similar in per-
formance to mixture reranking [10, 11], it allows a more
fine-grained analysis of rerankers and base parsers, since
every parsing decision can be traced back to either of
the parsing system’s components. Future work towards
interpretable reranking could involve more sophisticated
kernel functions that are able to better measure the subtle
differences between the candidate trees.
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A. Appendix

A.1. Implementation Details
We construct the training set for each of the chosen lan-
guages by decoding up to 9 trees from the weighted graph
learned by the base parser with the algorithm of Zmigrod
et al. [9]. Next, we add the corresponding true parse tree
to the list. The 𝑘 is viewed as a hyperparameter and is
thus not fixed a priori.

We used the implementation of the SVMs from sklearn
[17] and the GP implementation of GPy [18]. We set
the hyperparameter 𝜆 of the Collins et al. [15] kernel to
0.7 based on preliminary experiments on the Lithuanian
training set.
The hyperparameters 𝑐, 𝑘, 𝛼 and 𝜏 are tuned si-

multaneously on the development set. The search
space for the inverse regularization parameter c is
(0.0001, 0.0027, 0.7356, 199.5262).

The search space for 𝑘 is 0 < 𝑘 < 16 for SVMs and
1 < 𝑘 < 16 for GPs. The latter is motivated by empirical
reasons, i.e. the tendency of the GPs to always stick to
the base parser unless they are forced not to. With both
methods, the models can always fall back to the base
parser if that is considered optimal.
For the search space for 𝛼, we generated 20 evenly

spaced values in the interval 0 ≤ 𝑥 ≤ 1.
Finally, the search space for 𝜏 is (0, 0.3, 0.7, 1). Note

that none of the values is too close to 0.5, since we expect
high variance in the results if values near 0.5 are used as
a cutoff.
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