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Abstract
Eye-hand coordination is a challenging skill to measure objectively, especially in children with motor
disabilities such as Cerebral Palsy (CP). The recent development of robotic technology provides non-
invasive tools for the simultaneous acquisition of eye and hand movement data. One such technology is
the remote eye-tracking and virtual-reality systems namely the Kinarm Gaze-TrackerTM installed in the
Kinarm ExoskeletonTM. Unfortunately, no standard software interface exists to extract the data contained
in the Kinarm proprietary files for an efficient further analysis in common programming languages
such as Python. Additionally, in the standard Kinarm reports only hand movements parameters are
available, while eye movements are only stored as raw data files. These limitations lead to difficulties in
performing a complete analysis of eye-hand coordination in research settings. Additional problems can
arise in the case of missing data (due to loss of tracking). The software described in this paper allows
the extraction of the hands and eye-gaze time series for efficient further analysis directly from the raw
data. Furthermore, a study of the distribution of missing data is presented. Finally, this paper describes a
revised median filter application to deal with large windows of missing data.
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1. Introduction

Cerebral Palsy (CP) describes, based on an international consensus, ”a group of permanent
disorders of movement and posture, causing activity limitations, that are attributed to non-
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progressive disturbances that occurred in the developing foetal or immature brain. The motor
disorders of CP are often accompanied by disturbances of sensation, perception, cognition,
communication, and behavior, by epilepsy, and by secondary musculoskeletal problems” [1].
The development of movement capacity in addition to muscle tone and posture [1, 2] is affected
by brain injury in the prenatal, perinatal, and postnatal phase up to the age of two years [3]. CP
is a neurological disorder recognized as the leading cause of childhood motor disability and its
appearance is estimated from 1 to nearly 4 per 1,000 live births [1]. Children with CP develop a
wide range of conditions that may affect their functional abilities [4]. The clinical variability
of children with CP can be explained by the heterogeneity of the underlying brain injury [5],
which also affects the nonmotor pathways of the developing brain. Among these, the visual
network is often affected in children with CP [6]. This leads to impairments in visual function
[7] which is a prerequisite for typical eye-hand coordination [8] since it is crucial for planning
and performing movements [9, 10]. Therefore, children with CP also suffer from difficulty in
grasping objects [11].

Accurate reaching develops in children between 5 to 13 months of age [12] and is fine-tuned
over a longer period of several years (often more than 8) [12, 13]. In this process, eye-hand
coordination plays a fundamental role. Despite a large amount of research in this area, several
aspects of the development of eye-hand coordination remain unsolved in children with CP.
In addition to motor problems, 60 to 75% of children with CP also have visual deficits [14, 7].
Eye-tracker systems, which allow quantification of looking behaviour, nowadays are considered
a valid tool for investigating visuomotor coordination in CP children [15, 16]. Furthermore, their
implementation with robotic technology can provide an in-depth quantification of eye-hand
movement impairments in the pediatric neurological population. Previous studies [15, 16, 17]
attempted to quantify eye-hand coordination in children with CP using different methodologies.
Results showed that children with CP have increased visual attention towards the impaired
limb during object grasping and reaching [18, 17] and impaired anticipatory visual control in
eye-hand coordination when compared to typically developing children [15, 19].
One novel application is the use of the Kinarm Exoskeleton [20] which allows an in-depth

quantification of bimanual motor control during symmetrical and asymmetrical tasks and
the simultaneously recording of eye movements via the Kinarm Gaze-Tracker [21]. With
this technology, both motor and gaze measures can be seamlessly integrated for effective
experimental control and data analysis. To our knowledge, no previous work fully evaluated eye-
hand coordination in children with CP with the use of such a technology, although investigating
this relationship would provide a better understanding of the complex function of the visual
motor system. In addition, such results would provide useful information for clinicians and
researchers to be applied in diagnosis and possible rehabilitation settings.
The first step for such an analysis is the extraction of information, such as gaze and hands

parameters over the time course of a movement, from the Kinarm saved files. This is not a trivial
task as the data is stored in proprietary file formats, making the desired analysis very difficult.
This work addresses this problem and describes a possible solution. The contributions of this
paper are fourfold. First, it describes a software framework able to extract hands and eye-gaze
coordinates with time from the Kinarm Exoskeleton files as time series (a time series is, in its
most common occurrence, a sequence of points taken at successive equally spaced points in
time). Secondly, this work describes and discusses a variation of the median filter for data with
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large windows of missing values. Thirdly, this paper analyses missing data windows in terms
of distributions of width and frequency of the gaps in the data in two separate cases. Finally,
it demonstrates the median filter variation described in this paper applied to two different
examples with very different distributions of missing data windows.
The paper is organised as follows. In Section 2, the Kinarm Exoskeleton and the eye-gaze

module are briefly described. The data and the median filter are also discussed and defined
respectively. In Section 2.4, the different tasks possible with the Kinarm exoskeleton are
described. In Section 2.6, the monitored parameters are listed. In Section 3, the Software is
described. In Section 4, the results are presented and in Section 5, the conclusions are discussed.

2. Methodology and Data

2.1. The Kinarm Exoskeleton

Data collection was carried out with the Kinarm Exoskeleton Lab (BKIN Technologies, Kingston,
ON, Canada) [20] combined with an integrated EyeLink 1000 Plus eye tracking system (SR
Research, Ottawa, ON, Canada) [21]. The Kinarm Exoskeleton can be seen in Figure 1. The
Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) allows movement of the
arm in the horizontal plane such as flexion and extension of the shoulder and elbow joints
[20]. The hands are free to interact with objects in the environment surrounding the subject.
Patterns of joint motion are recorded and the system computes muscular torques, allowing the
study of upper limb movement and coordination. The use of Kinarm Lab’s operating system
and its control software, Dexterit-ETM [20], allows data collection in a user-friendly way. At
the end of each experimental task, reports can be extracted from the Dexterit-ETM software in a
Comma-Separated Values format (CSV) where a division in LEFT and RIGHT-hand parameters
is available.

2.2. Eye-Gaze tracking system and parameters

Eye tracking and gaze estimation systems are well-established techniques used to study eye
movements and position, both in clinical and research settings [22]. In eye tracking systems, the
eye position is calculated through different sequential steps (detection of the eyes, interpretation
of eye positions, and frame-to-frame tracking) with the help of the pupil or the iris centre [23].
Gaze estimation, that is, the process made to estimate and track the 3D line of sight, is calculated
from the analysis of eye movements through a device called gaze tracker [23]. A gaze tracker
simultaneously records the location of the eye position and its motion to determine the direction
of the gaze [24]. The EyeLink 1000 Plus system (SR Research, Ottawa, ON, Canada) integrated
into the Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) allows recording
binocular eye movements at up to 2000 frames per second. Camera images are processed using
a real-time operating system from which gaze data is recorded. More information on the eye
gaze estimation system can be found in the work of A. Kar et al. [25]. Eye tracking systems
allow the quantification of different types of eye movements such as fixations, saccades, and
smooth pursuit.
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Figure 1: Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) [20] with integrated
EyeLink 1000 Plus system (SR Research, Ottawa, ON, Canada) [21].

This paper will specifically focus on the data used to estimate fixations and saccades [26].
A visual fixation is the maintenance of gaze in a single location or area [27]. Fixations phases
are defined as moments where the eyes are stationary between movements while the visual
input occurs. A saccade is a quick and simultaneous movement of the eyes between phases of
fixation in the same direction [27]. Saccades are mainly used for orienting the gaze towards an
object of interest. They can be triggered voluntarily or involuntarily, with both eyes moving in
the same direction.

Fixations and saccades can be quantified in terms of different parameters which can be used
for further analysis (i.e., eye-hand coordination). The mathematical algorithms to compute
them are not discussed in the present paper. For further information, the interested reader can
refer to the following papers [28, 25].
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The data output from Kinarm software includes gaze position (𝑥 and 𝑦 positions), gaze
direction, pupil position (𝑥, 𝑦 and 𝑧 positions) and area, time stamps, and events such as start
and end of fixations and saccades. The Kinarm software automatically saves these features in
stored files, making them available to researchers. If necessary, averages and other statistical
analyses of the available metrics are then possible. Additionally, by adding the formerly listed
features, the parameters mentioned below can be calculated.
Fixations and saccade parameters include:

• Fixation Duration - total duration of a fixation in seconds.
• Fixation Area - position where the fixation is recorded in meters.
• Saccadic Peak velocity - the highest velocity recorded during the saccade in metres per
second.

• Saccadic amplitude - the horizontal displacement during eye movement in meters.
• Saccade Duration - total duration of a saccade in seconds.
• Gaze latency - time taken from the appearance of a target to the beginning of a saccade
in response to that target in seconds.

• Gaze Accuracy - the average distance between the target and the participant’s eye position
in meters.

2.3. Data

In the present paper, data from two subjects, namely A and B, are discussed. Both participants
have been diagnosed with unilateral CP (mean age: 11y4m). Test subjects are chosen only if they
have minimal ability to actively grasp and hold an object and sufficient cooperation to perform
the assessments. None of the participants received botulinum toxin injections six months before
testing or had a history of arm surgery two years prior to the assessment. Each experimental
session lasted about one hour. After the experimental session, the data were anonymised and
extracted from Dexterit-ETM software in a Comma Separated Values (CSV) format where a
division in the left and right upper limbs and the left and right eye gaze parameters is available.
The available records for this study consist of two separate file groups: group A is defined

as the group that contains the first cohort of experiments, and group B is the second group.
Both groups contain eight files for the three different tasks studied: Ball On Bar task (2 files),
Object Hit task (2 files), and Visually Guided Reaching task (4 files). The files of the second group
contain incomplete and damaged data: missing values are detected for the Gaze X and Gaze Y
positions. In addition, the remaining values translate into a different gaze behaviour.

A comparative view of the gaze behavior in the three tasks can be seen in Figure 4. Due to the
individual differences in the task protocol and the numerous rows that make up the experiment
dataframes, the CSV files are of various sizes. In Table 1, the average total lines and the size of
the CSV files related to subjects A and B are reported.
Size differences are directly correlated with the duration of recorded trials ( number of

attempts) on tasks (i.e., exercise type).
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Table 1
Time series length from groups A and B. The Average file size is the total length of the CSV file, the
Average total lines represents the average line count of a type of task, and the Maximum size is the
maximum line count.

Exercise type Average file size Average total lines Maximum size

Ball On Bar 81 032 79 918 130 621
Object Hit 15 274 10 427 28 080
Visually Guided Reach. 49 787 46 002 107 427

2.4. Experiment tasks and datasets differences

In this paper, the focus is on three custom experimental tasks (i.e., Kinarm standard test-KST),
namely, the Ball On Bar, Object Hit, and Visually Guided Reaching task. Each task is standardised
and performed with the Kinarm Exoskeleton, allowing the assessment of upper limbs’ motor
control and the simultaneous acquisition of eye-movements data [29]. A description of the KST
taken from the Kinarm manual is provided below.

Ball On Bar The Ball on Bar task assesses the ability of subjects to perform a motor activity
that requires coordination of the two arms. [30] A virtual bar is presented between the
subject’s hands, and a virtual ball is placed on the bar. The objective of the task is to move
the virtual ball on the bar to successively presented targets as quickly and accurately as
possible.

Object Hit The Object Hit task [31] assesses rapid motor skills throughout the workspace. It
is developed to assess the ability of a subject to select and engage in motor actions with
both hands over a range of speeds and a large workspace. Good performance requires the
ability to generate a goal-directed motor action on a moving target, bimanual planning to
select which arm to use to hit each object, and spatial awareness across the workspace.

Visually Guided Reaching The purpose of the Visually Guided Reaching task is to quantify
voluntary control directed toward the goal [32]. This task assesses visuomotor response
time and arm motor coordination. During this task, a central target is presented, and the
subject must move a cursor (white circle) representing hand position to this target.

For each task, the Kinarm software can automatically compute a standard report (SR), as
well as a CSV file [33]. CSV files contain a metadata header with calibration and experimental
set-up information such as the Kinarm experiment instructions, the accessories used and the
calibration values. The file header also includes the definition of all recorded channels that
measure features with their unit of measurement. For each task, a different number of trials
are presented, namely an attempt to accomplish the exercise. Note that the number of trials
varies depending on the task exercise in both groups (A and B). For the Object Hit task, there
is a single trial in each file. A total of 1 to 3 trials are presented for the Ball On Bar, and 1 to
24 for the Visually Guided Reaching task. In the trial information, the different time series are
provided in terms of a dataframe where each row contains the data measured at a given time in
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milliseconds. Rows are separated by 1 ms intervals. The individual trials also include a trial
header with several lines regarding metadata that needs to be removed in pre-processing.

2.5. Files processing

The experiment files are presented as CSV files containing dataframes. In this case, the columns
are the measured kinematics features, and the rows are the individual values of each frame
saved. The extraction process allows the reading of the dataframes contained as raw content.
Furthermore, the goal is to obtain the experiment data as time series. In the files, each trial
is represented as a separate dataframe. The pre-processing algorithm allows us to extract
these dataframes by splicing the CSV files and removing the general metadata header and the
individual trial headers. This is done for each of the four possible tasks. The methods involved
can be used for new experiment files to automate the analysis.

Table 2
Parameters of interest selected from the list of features.

Parameter (measurement unit) Definition

Sample duration (s) Interval between each data sample taken

Sample count Total number of data points for each measurement

Frame number Individual identifier of each row in the dataframe

Frame time(s) Unique timestamp to each row.
Starts at 0 for each trial

Event name Name of the event, automatically given by Kinarm

Event time (s) Frame time of the detected event

Right and left hand
position (m) Position of each hand, X and Y component

Gaze position (m) Gaze position in global coordinates, X and Y component

Right and left hand
speed (m/s) Individual speed of each hand

Right and left hand
acceleration (m/s2) Individual acceleration of each hand

Ball position (m) Only for Ball-On-Bar exercises, ball X and Y position on screen

Ball relative position (m) Only for Ball-On-Bar exercises, ball relative position on the bar

2.6. Monitored parameters

The features of interest used for visualisation and analysis are listed in Table 2. Note: the total
real time of each trial is equal to sample count multiplied by sample duration. It can also be
retrieved by looking at frame time in the last row of the selected trial. All tasks from both file
groups are saved in a single trial (that is, in one dataframe). Some files contain more than one
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trial: in the first group of files, the two Ball-On-Bar tasks include, respectively, 3 and 2 trials,
and the two Visually Guided tasks include 3 (for the child practise set) and 24 (for the complete
exercise) trials. And in the second group, two out of four Visually Guided tasks contain 9 trials.

2.7. Analysis of Missing Data in the Eye-Gaze Measurements

As mentioned in Section 2.3, some of the experiment data lines contained in the CSV files of the
second group of files appear incomplete. The features presented previously require continuous
data to study the detailed actions of gaze and hands. In practise, the missing values detected
in the files make a complete analysis and visualisations impossible; since both gaze and hands
position data in multiple time windows are missing. Indeed, events like fixations and saccades
cannot be entirely detected and understood when positions are only partially saved during a
given time window. As a first step, the number of extended regions of continuous missing data,
or gaps, are counted and their respective lengths measured. Depending on the type of trial,
the complete length of recorded experimental data changes, but it is possible to estimate the
percentage of missing data for each trial to quickly quantify the impact on the final analysis.
And this is possible for each experiment regardless of the length. This result is represented in
Table 3.

Table 3
List of the nine trials contained in the CSV report file of a Visually Guided Reaching task for group B.
The Average gap size column shows the rounded averages over all the detected gap sizes of size 1 and
more. The amount of gaps detected in a trial is noted in the Gaps count column. Max gap size contains
the size of the largest gap in the trial. Not a Number values (NaN values) column contains the total
amount of NaN values in each trial, the Total length column contains the time series entire length.

Trial ID Average gap size Gaps count Max gap size NaNs values Total length NaNs %

0 181 3 281 543 3353 16.2
1 98 10 318 980 8414 11.7
2 60 9 192 539 5857 9.2
3 126 9 576 1132 4838 23.4
4 41 32 228 1299 8258 15.7
5 65 10 222 654 6665 9.8
6 65 36 1051 2355 8880 26.5
7 200 1 200 200 1269 15.8
8 210 1 210 210 2586 8.1
Mean 116 12.3 364.2 879.1 5569 15.2
Std Dev 62 12.1 267.7 633.9 2591 6.0
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The selected example file from a task of Visually Guided Reaching in group B contains 9
separate trials, all of which are made of a large amount of NaN values. The minimum value of
missing values is 8.1% (in trial 8) of the total data points, while the maximum is 26.5% (in trial 6).
The mean proportion of missing values over the 9 trials is 15.2%. The example is representative
of group B, where each file contains randomly placed NaNs gaps of various sizes.

Table 4
List of trials containing gaps from a CSV report file of a Visually Guided Reaching task from group A.
The file contains 24 trials, of which only 4 contain NaN values represented in the table. The remaining
20 trials do not contain gaps or a single NaN value. The Average gap size column shows the rounded
averages over all the detected gap sizes of size 1 and more. The amount of gaps detected in a trial is
noted in the Gaps count column. Max gap size contains the size of the largest gap in the trial. NaNs
values column contains the total number of NaN values in each trial, the Total length column contains
the time series entire length.

Trial ID Average gap size Gaps count Max gap size NaNs values Total length NaNs %

4 24 1 24 24 5559 0.4
10 104 1 104 104 4941 2.1
20 144 1 144 144 5303 2.7
21 83 1 83 83 4312 1.9
Mean 14.8 1 14.8 88.7 4177 1.8
Std Dev 43.3 0 43.3 43.3 1340 0.8

2.8. Median Filter

To preserve the recorded data saved in the incomplete files and to reduce noise, a median filtering
technique is applied. The method is compatible with missing data. Due to the noise reduction
obtained, the local trend can be preserved by replacing incorrect data. The median filter
eliminates extreme or empty values without having to do a mean averaging of the neighbour
values, which would heavily impact the correct values. Although typically used for image
pre-processing [34], the algorithm can be applied to one-dimensional signals [35] as is the case
here. When used on one-dimensional input, the process is simplified : the neighbourhood
includes values before and after the index.

Definition 1. Given an array of 𝑀 values (𝑋1, ..., 𝑋𝑀), the median filter (MF) of size 𝑄 (in this
paper 𝑄 is taken to be odd for simplicity of notation) is a mapping ℝ𝑀 → ℝ𝑀. By defining
𝑄 = 2𝑛 + 1, the output of the MF will be an array with elements 𝑋 𝑓

𝑖 given by

𝑋 𝑓
𝑖 = median({𝑋𝑖 − 𝑛, ..., 𝑋𝑖 + 𝑛}) (1)

The median filter algorithm replaces each individual value 𝑋𝑖 (starting from 𝑖 = 𝑛) of the original
array by the median of the following and previous 𝑛 values. The window or filter size of total
size 𝑄 defines the amount of neighbour values considered to compute the new filtered signal 𝑋 𝑓.
Since there are no values preceding the first and last elements of the signal, the first and last values
are repeated until enough values are reached to fill the window.
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Figure 2 shows an example of the median filter applied to a hypothetical data set with some
quantity (𝑥𝑖) measured at specific time points 𝑡𝑛. In Step 1, a time window is selected (in Figure 2
the selected time window includes the time points 𝑡2 to 𝑡6). In Step 2, the values are sorted, and
the median value is selected (Step 3). The time window then moves along the entire data set.

Figure 2: Diagram of an example application of the median filter to a hypothetical dataset. A hypo-
thetical dataset with some quantity (𝑥𝑖) measured at specific time points 𝑡𝑛 is considered. In Step 1, a
time window is selected (in this example the selected time window includes the time points 𝑡2 until 𝑡6).
In Step 2, the values are ordered, and the median value is selected in Step 3.

The median filtering is applied to the experimental data in Figure 5, with two filter sizes
presented. Fixations and saccades rely on specific windows of gaze position. It is important to
note, as a downside, the risk of losing short movement detections as the filter size selected gets
larger. Movements shorter than the filter window might be lost. This is a risk in the time series
containing gaze positions if the filter is longer than some of the actual events happening within
the task. The window size choice is an important parameter further developed in the article.

2.9. The Median Filter for Large Windows of Missing Data (MFLWMD)

A statistical analysis of the features of saccades and fixations is made difficult, if not impossible,
when large windows of missing data are present. The most appropriate solution is to split the
time series each time a gap larger than a specific size is encountered. As a possible solution
to the presence of large windows of missing data, the following median filter application is
presented. Given a certain measurement of a generic quantity 𝑥𝑖 (for example, the 𝑥 coordinate
of the eye-gaze) at various 𝑡𝑖 time points (for 𝑖 = 1, ..., 𝑀). A median filter of size 𝑛 can be applied
by sliding a window of size 𝑛 on the measured data. Let us also suppose that 𝑀 ∈ ℕ windows
of missing data, in which gaps of size 𝑠𝑖 are present at various positions along the array 𝑥𝑖. If
a missing data window is encountered, there are two possible scenarios. Let us indicate with
𝑔 ∈ ℕ an integer that can be called threshold.
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1. 𝑠𝑖≥𝑔: the array 𝑥𝑖 is split at that point and every calculation of the statistical estimators is
stopped. The two parts are considered for all purposes as separate files.

2. 𝑠𝑖 < 𝑔: the median filter can be applied simply by removing the missing data and consid-
ering only the available values.

The best choice of 𝑔 is, of course, related to the median filter window size. 𝑔 should be larger
than 𝑛 to make this proposed variation of the median filter meaningful. From the available
missing values files and experiments, and since the filters span across windows of size 𝑛, the
authors propose that a good choice is 𝑔 ≳ 2𝑛 to 3𝑛. If the threshold is less than 𝑛, complete
missing value gaps are never considered since the filter size will cover all possible cases. On the
other hand, if the threshold is greater than 3𝑛 the starting and end points are considered too far
apart for the filter to sufficiently fill the gap considered.

3. Software Functionalities

The KinarmPython extraction library presented in this article, called KiPy, can read CSV files
generated from the Kinarm Dexterit-ETM software [33] and support their analysis. The software
provides the user with the ability to parse all accessible kinematics logs. Concerning the research
questions previously mentioned in Section 2.3, the software extracts relevant information and
can create visualisations which can also be easily changed by the user. The tool currently uses
command-line scripts and Python functions; the goal is to keep it simple, configurable, and
performant. The application is written in Python 3.8 and requires the additional Pandas, NumPy,
Pickle, and Matplotlib libraries. It is open source and is available on GitHub [36]. Once the files
are read, all metadata are excluded, and the remaining data are read as a Pandas DataFrame. The
Pandas DataFrame is an efficient data structure to store structured data and provides powerful
functions to filter and search for specific rows of columns.

Figure 3: Software Component Diagram. The main components of the software package KiPy are
depicted in this Figure. The different parts (sub-packages, notebooks, functions and classes) are repre-
sented with different colors explained in the legend. Further documentation is available online [36].

From the extracted dataframes, the algorithm accesses the visual data events. For each trial,
the duration and count of all the events are given. This information can be further used to
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analyse the frequency of the events over a single trial, a complete experiment, or a group of
experiments (e.g., the events statistics for a given type of experimental task).

4. Results
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Figure 4: Gaze comparison: group A and B. Group A and group B tasks are represented on the left and
right sides, respectively. Numbers 1 to 2 represent X and Y movements of the gaze on the Ball On Bar
tasks. The ball position is shown in dotted grey lines. Numbers 3 to 4 correspond to an Object Hit task,
and numbers 5 to 6 correspond to the Visually Guided Reaching task.

4.1. Eye-gaze and Hand Position Data

The central idea behind the software tool is to give the user the ability to read the CSV files and
visualise and analyse the Kinarm experiments. The software makes it possible to first, given
any task input, visualise the movements of the gaze and hands. The visualisation can be done
with both static plots and animations. Animations are short videos that the user can produce at
a chosen speed. Examples of visualisations can be seen in Figure 4 for gaze movements and in
Figure 6 for hands movements over the duration of the task in the three different tasks. The
figures display the differences between the two groups of files. One can identify gaps of missing
values, saved as NaNs in files, and numerous peaks, hence the name of noisy flickering data.
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4.2. Median Filter Application

Examples of the distribution of NaN gaps in gaze time series are presented in Tables 3 and 4.
The examples selected are described with a precise description of the impact of the missing
values. The difference is comparably significant over all the tasks and trials. In group A of the
files, only 17 of 65 total trials contain missing values, and the average proportion of missing
values within the 17 affected trials is 2.8%. However, 29 of the 29 trials in group B have missing
values, which represent 18.8% of the total trial values on average. Due to the high variation
rates and missing values in group B, the median filter technique was developed and applied to
gaze X and Y time series of this group. An example of a median filter application is shown in
Figure 5. In each of the three panels, missing data points are not replaced by the median filter.
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Figure 5: Median filter application: two different filter sizes applied to a Ball On Bar task result file. In
this example application, extreme flickering values are effectively removed. On the left panel are the
original Gaze X and Y over time. On the center panel a filter of size 140 is applied. On the right panel
the filter is of size 500. The filter is centered on the current value if this value is not a NaN, as presented
in Section (2.8).

Two different filter sizes are applied: 140 and 500, respectively, on the centre and right panels,
with the filter centred on the replaced value. On the gaze Y, the range of values went from
0.0-0.83, to 0.17-0.61 in the 140-filtered time series, and to 0.22-0.46 in the 500-filtered time series.
A similar result is obtained for the Gaze X values. Although some flickering outliers remain
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in the 140-filtered time series, they are all smoothed in the 500-filtered time series. In this
example, the smoothing appears to be effective. In practice, a 500-sized filter may be damaging
for some tasks since it represents half a second of gaze movements; ruling out the gaze events
with shorter durations. The filter of 500ms is used here as a display example of a high value.
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Figure 6: Hands movements comparison: group A and B. Group A and B tasks are represented on the
left and right sides, respectively. Number 1 to 2 represent X and Y movements of the hands on the Ball
On Bar tasks. The ball position is not plotted for visibility. Numbers 3 to 4 correspond to an Object Hit
task, and numbers 5 to 6 correspond to the Visually Guided Reaching task. In black: left hand position,
gray: right hand position.

5. Conclusions

Eye movement tracking combined with bimanual motor movement recording allows a com-
plete experimental analysis during symmetrical and asymmetric tasks. From the combined
measurements, precise parameters can be extracted and analysed. In this paper data extracted
from measurements obtained with the experimental setup described in Section 2.1 and 2.2, is
used to highlight the possible applications of the KiPy software analysis library. For each task,
it is possible to extract the recorded parameters, including the gaze and hands positions with
the timestamp, thanks to various automated functions. Additionally, statistics of ranges of
movements and speeds can be individually calculated. If files with flickering and missing values

14 



are present, the software can smooth the flickering signals, detect the size of missing value gaps,
and effectively count the number of consecutive data sections. The visualisations and statistics
on incomplete experimental data are therefore possible, allowing the analysis of all datasets,
including those that present a high percentage of missing data. In the available data, half of the
files displayed such problems.
The ability to obtain as much information as possible from the experiments is crucial. The

variation of the median filter described in this paper can be applied to all kinds of datasets. To
derive an optimal strategy for the choice of the parameter 𝑄, more experimental and different
data will be needed. This analysis is planned for a future publication.

To the best knowledge of the authors, no previous work has looked at the automatic detection
and filtering of missing data in Kinarm report files. With access to more statistical samples, the
KiPy software can be confidently used to extract the desired features and make the analysis
much more robust. The authors plan to use and apply the KiPy software to the analysis of a
larger dataset to study the eye-hand coordination in a group of children with unilateral cerebral
palsy.
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