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Abstract
Neurodevelopmental disorders (NDD) including cognitive impairments, motor disabilities, and psychoso-
cial disorders are common among infants that are born prematurely, but the molecular mechanisms
behind them are still not clear. Nevertheless, recent studies have shown that there are some shared
molecular pathways driving NDDs and neurodegenerative diseases with sncRNAs having a significant
role in their manifestation. It is important to study and reveal the mechanism behind the development of
these disorders to predict them as soon as possible, using biomarkers and allowing medical doctors to
intervene early on, while neuroplasticity in newborns still allows for recovery to some extent. In this
work, we examine the role of sncRNAs and some of the shared pathways in NDDs, but most importantly,
we present some of the existing computational tools and databases for predicting target interactions, and
tools to perform network analysis and visualization.
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1. Introduction

Preterm babies are considered those who have been born before the 37th week of gesta-
tion, while births given before the 32nd week, are considered very preterm [1, 2]. Premature
deliveries have an average rate of more than 10% of total labors with an upward tendency
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worldwide [3]. From the clinical point of view, preterm infants with low birth weight have
higher chances of experiencing short- or long-term neurodevelopmental disorders (NDDs) and
related comorbidities [4]. Common NDDs are related to motor deficits such as cerebral palsy
(CP), cognitive and speech delays, visual and hearing impairments, and some psychosocial
and behavioral disorders such as Autism Spectrum Disorder (ASD) and Schizophrenia. The
most common methods of assessment of the developing brains in infants are using magnetic
resonance imaging (MRI), ultra-sound wave imaging, and Neuropsychological battery tests [5].
But this is a way of seeing the phenotype itself or predicting the outcome rather than finding
the source of the problem. Previous works have shown that genetic factors such as copy number
variations (CNVs) - which are repeated segments of DNA with higher (duplications) or lower
(deletions) abundance than the reference genome - are linked to both intellectual disabilities
[6] and motor impairments [7], and have a statistically significant relationship with NDDs and
psychiatric comorbidities [4, 8, 9].

It is well known that even though most of the human genome (>76%) can be transcribed
into RNA products, only a small fraction (∼3%) of it encodes for proteins [10]. These RNA
molecules that do not follow the central dogma of molecular biology [11], are called non-coding
RNAs (ncRNAs) and for many years were considered byproducts with low biological meaning.
This perspective started to change, and scientists began to unravel the ncRNA mystery over
the last decades with the help of advancements in sequencing methods and computational
tools. Projects such as The Human Genome Project and The Encyclopedia of DNA Elements
(ENCODE) [12], promoted the discovery of novel genes and shed light on functional elements
encoded in the human genome, especially in non-coding areas, expanding our knowledge of
their importance and their regulatory mechanisms. Studies and computational predictions
suggest that even though NDDs and neuropsychiatric diseases are highly heterogenous, there
are common enriched pathways and genetic factors between some of them [13, 14, 15]. As an
example, ASD, Tourette syndrome (TS), and Schizophrenia share some genetic modifications
that may lead to dysregulation of gene expression related to micro RNAs (miRNAs); a specific
regulatory group of short non-coding RNA molecules [10].

According to their average size, ncRNAs can be categorized into two general groups: long
non-coding (lncRNA) and small or short non-coding (sncRNA). LncRNAs extend to over 200
nucleotides (nt) and usually have a similar size to messenger RNAs which is more than 1000nt
[16], while sncRNAs typically have a length below 200nt and they are separated into two
groups based on their role in the cell; Housekeeping and Regulatory [10]. Except for other
important functional roles in the cell, lncRNAs such as pseudogenes and circular RNAs can
interact with some classes of sncRNAs, lowering their abundance in the free form through
complementarity sequences. Housekeeping sncRNAs were discovered relatively early and are
well studied, due to their abundance and their fundamental roles in the function of the cell. For
example, their roles can be the amino acid transfer (tRNAs) at protein synthesis or being involved
in RNA processing and splicing in the nucleus (snRNAs). Regulatory sncRNAs have drawn
the attention of scientists only in the last decades when technological advancements allowed
for it. Since then, their important role started to unravel and it was found that they actively
interact and interfere with other molecules, regulate gene expression, and involve in important
molecular pathways [17, 18, 19, 20, 21]. This control over the gene expression of the regulatory
sncRNAs is important because, in many diseases dysregulation of sncRNAs sequentially causes
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dysregulation of functional elements that then lead to pathological phenotypes [22, 23]. Because
of the great importance of these molecules, bioinformatics tools and dedicated databases have
been developed in the last decades to explore their role as biomarkers and their potential in
medicine. A visual taxonomy of the classification of RNA molecules can be seen in figure 1.

Figure 1: Classification of RNAs. The first split is based on the transcript product (coding/non-coding),
followed by a discrimination on the general role of the non-coding RNAs and further on the size of these
molecules. This is a modified version of the Figure 1 in the work of Gomes et al. (2020) [24].

After the systematic studies of sncRNAs, biologists clustered them by similarity and function
with the most common ones being: microRNAs (miRNA) and small interfering RNA (siRNA)
which regulate gene expression, small nuclear (snRNAs) that involve in RNA splicing, and
piwi-interacting RNA (piRNA) that mainly interfere with transposable elements (or transposons)
[10]. It is well established that sncRNAs hold a significant role also in many diseases in humans,
and they can be used as biomarkers for diagnosis or prognosis, as drug targets, and as potential
therapeutic methods [25]. Special attention has been given to miRNAs due to their high
theoretical and experimental total number, the number of their interactions, and the role they
have in both defending the homeostasis in the cell, but also related to diseases like cancer if
they are dysregulated [26].

Because of the numerous interactions of sncRNAs and other molecules in the manifestation of
diseases, a common approach is to handle this complexity with the use of interaction networks.
Since our understanding of the underlying mechanisms is still unclear for the majority of these
diseases, studying individual relationships is not enough to unravel and understand the dynamic
of these pathologies. Rather than this, a more holistic view is needed with the help of multi-layer
networks integrating instances belonging to different levels of complexity and domains (RNAs,
proteins, diseases, functions, etc.) [27]. In this context, computational modeling can help in
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reconciling the advancements in high throughput technologies with studies under the scope of
systems and also explore the pathogenesis of diseases by understanding the molecular relations
driving them, promoting treatments, drug discoveries, and precision medicine [28].

There are multiple tools nowadays that have been developed to predict the interactions
of sncRNAs and especially miRNAs. Computational methods try to predict targets of these
molecules [29, 30], pathways, and mechanisms involved in multiple diseases and disorders. Due
to their interesting nature, ncRNAs have been systematically studied and there are multiple
databases available where one can find experimental and computational information about
them, based on their categorization. Most of these databases are open-access and publicly
available. This makes the contained information accessible to everyone, helping scientists to
build predictive models for diseases, discover potential biomarkers, and even design potential
therapeutic targets.

Relevant studies were identified in PubMed, Scopus, ScienceDirect, and IEEE Xplore with no
language restrictions. The first search from these databases was performed by the first author
of this review and double-checked by the other corresponding authors. The following keywords
were used: (sncRNAs OR miRNA OR siRNA OR piRNA OR RNAi), (neurodevelopmental co-
morbidities OR co-occurrence of neurodevelopmental disorders ), non-coding RNA Databases,
(bioinformatics tools AND target prediction of sncRNA). We included only papers from January
2000 up to August 2022. Older papers were excluded, with the exception of papers explaining
concepts or statistical and mathematical techniques

In this article, we review some of the most widely used molecular biology-related databases
for the characterization and functionality of sncRNAs, and the state-of-the-art of computational
tools for the analysis of these RNA molecules in various comorbidities, such as NDDs observed
in some preterm infants [31, 32]. The main objective is to comprehensively collect in one article
information on the effectiveness and usability of biological databases and databanks, as well as
some computational tools for different types of bioinformatics analysis that are considered or
could be considered in the future for research in the field of neurodevelopmental disorders, also
considering preterm infants.

2. Features of sncRNAs

Regulatory sncRNAs can derive usually from individual genes or introns of other genes, but
it is known that by the procedure of alternative splicing they may also contain some exon
sequences. The most studied categories are miRNAs and siRNAs which have been found to
involve in many pathologies [33] and the developmental processes [34]. The biogenesis of
miRNAs has five main steps: transcription into a primary (pri-miRNA) form of a stem-loop,
cleavage into a shorter stem-loop precursor (pre-miRNA) known as hairpin, transportation
of the hairpin out of the nucleus, and a second cleavage followed by the unstranding of the
two counterparts to produce the mature miRNA. These molecules are typically 20-24nt long
[20, 35] and bind to their targets through partial complementarity -not necessarily perfect- of
their seed (nucleotides 2-8), and their mRNA target sequences in the 3’ untranslated region
(3’UTR) which are called miRNA response elements (MREs). This leads to degradation of the
mRNA molecule, or the disruption of translation by preventing the binding of ribosomes on

107



the mRNA. In both cases, translational inhibition results in the silencing of the target gene, a
process also called RNA interference (RNAi). MREs can be found also in other types of RNAs
like in lncRNAs and pseudogenes, which increases the number of targets for miRNAs since
they are not strictly target-specific. This lower specificity gave rise to the idea of competitive
endogenous RNAs (ceRNA). In the ceRNA field, miRNAs become the target of other competing
molecules which based on their concentration, affinity, and the number of MREs regulate the
abundance of available miRNAs resulting in an indirect regulation of their own expression.

Similarly, siRNAs regulate the gene expression of their target. These molecules by structure,
are almost identical to miRNAs, but with the difference of having very high specificity to their
target since they usually have perfect complementarity of base pairing with them [36]. The
function of siRNAs lies in the interference with gene expression by degrading their transcript-
targets which are far fewer targets than those of miRNAs. piRNAs on the other hand, follow
a different biogenesis process which remains unclear to some extent, and also have different
mechanisms of action. They are produced by a process related to the P-element induced wimpy
testis or PIWI subfamily members, and recently they have been associated with cancer biology.
The structure of piRNAs is single-stranded molecules of length range 26-31nt and they are
known for epigenetic regulation through histone modification, but mostly for interfering with
transposable elements or “genomic parasites”, protecting the genome of the host [37].

The biogenesis and the mechanism of interaction of regulatory sncRNAs are important
since this knowledge is also implemented in the computational tools that predict their targets.
Common features on which the majority of target prediction tools are based are: the seed match,
conservation sequences, free energy, and site accessibility [38].

2.1. sncRNAs in neurological disorders

sncRNAs are crucial in the maintenance of homeostasis since they coordinate the expression
of genes through the RNAi process. It has been reported by many studies that sncRNAs
have a linked role in neurodegenerative diseases, various types of cancers [26, 37] where the
expression of sncRNAs is heavily dysregulated due to mutations, and neurodevelopmental
disorders [20, 39, 40]. Specifically, sncRNAs have been found to be part of enriched molecular
pathways in numerous neurodevelopmental disorders and comorbidities like Rett syndrome,
ASD, Down syndrome, and others [7, 10, 39, 40]. In fact, a known commonly altered pathway in
neurodevelopmental and psychiatric disorders is the mTOR pathway [41, 42]. This may indicate
that there are similar mechanisms between these disorders that lead to higher probabilities of
comorbidity. The role of sncRNAs in pathologies makes these molecules perfect candidates
for biomarkers for early detection of diseases and mechanisms of diagnosis [43], as they
are also highly ranked as therapeutic targets and in drug discovery research [44, 45]. From
what is known, although there are some sncRNAs that have been identified to have different
expression levels and to involve in the manifestation of NDDs, they do not show specific
characteristics or significant features compared to other sncRNAs. However, mutations in
the genes of the regulatory ncRNAs may be responsible for the occurrence of specific NDDs [46].
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3. Computational tools to investigate molecular mechanisms
and characteristics of sncRNAs

With the emergence of clinical and biological databases, as well as with the new technologies
in sequencing (micro-arrays, next generation sequencing (NGS), tiling arrays, etc.), new oppor-
tunities arose for computational biology and the exploration of microscopic and macroscopic
processes. Methods and tools started developing to tackle the challenges of massive amounts
of data and the complication of biological systems. Results of multiple focused experiments
started gathering and the findings were made easily accessible for further analysis. Addition-
ally, databases started implementing online tools for processing information, predicting, and
storing multiple-level entities because of the interoperability between different databases [47].
The ever-increasing number of databases along with the availability of data due to the new
technologies of high throughput techniques led to the development of new tools, methods, and
pipelines for handling the amount of available data and the extraction of new knowledge.

3.1. Biological Databases

The need for databases comes from the scattered information in literature. Having a com-
prehensive dataset helps researchers -especially in the clinical industry- to use the obtained
knowledge from multiple and different experiments easily and find associations between in-
stances leading to a better understanding of some conditions and processes. Biological databases
can be manually or automatically curated, which means that they are constantly updated with
new knowledge coming either from experiments or computational predictions. Additional to
databases of linked information, there are databanks where raw data from experiments are
stored. This, except for being a source of information for the databases, allows for meta-analysis
of the data and merging of experiments to increase the amount of data in individual studies.

In the last decades, many efforts have been done to summarize the information about
ncRNAs, as it is a game-changer in the study of cellular processes and gene regulation. Two
commonly used sources of raw data are the Gene Expression Omnibus (GEO) [48] and the
Sequence Read Archive (SRA) [49]. Both are from the National Institutes of Health (NIH),
a part of the United States Department of Health and Human Services. In GEO, one can
find collections of genomic data grouped by studies for multiple instances, and information
about the protocols followed in the conducted studies. Genome browsers such as Ensembl,
UCSC, and NCBI, provide interactive and comprehensive annotations of the genes on the
human genome, as well as multiple tools for further bioinformatics analysis such as variant
predictors and sequence comparison tools. The sequences they contain for ncRNAs are usually
imported from other sources that have been created for storing information. GeneCards and
HUGO Gene Nomenclature Committee (HGNC) are examples of generic databases containing
information about both coding and non-coding genes. Location, aliases, description, and links
to other databases can be found here, but still they only host the information contained in
the sncRNA-specific databases. There are also multiple browser-based available tools for the
analysis of the datasets such as gene identification tools for differential expression analysis on
two or more groups. SRA is a repository of high throughput sequencing data, containing the
raw sequences and alignment information, promoting reproducibility and new discoveries
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through data analysis. Similar to GEO and still from the NIH is the database of Genotypes and
Phenotypes (dbGaP), which provides also a controlled access space, meaning that some of the
datasets stored needs authorization to get access. Finally, ArrayExpress [50] supported by the
European Bioinformatics Institute (EMBL-EBI), stores high-throughput data from functional
genomics experiments. The difference with the previous databanks is that ArrayExpress
contains both the processed data and the raw sequences as well as links to the European
Nucleotide Archive (ENA). All of these repositories contain both coding and non-coding
sequences which are the building blocks for the biological databases holding information about
the structure, attributes, and interactions of molecules.

General Biological Databases
A large number of biological databases for sncRNAs have been created through the years

with diverse purposes such as annotation, structural information, function, interactions,
location, sequence, and others. There is a large part of overlapping and redundant results
contained in the databases, because of the interoperability and the information exchange
between different providers. For many years now, there have been efforts to map and annotate
all genes and transcripts, especially in the ever-increasing field of non-coding RNAs. The
reason for non-coding-specific databases is that knowing the sequence of these molecules is the
most crucial information for finding their interactions and developing computational tools for
their analysis.

sncRNA sources
miRBase. The miRBase founded in 2003 [51] is among the most significant databases for

miRNA sequences storage and annotation, with the latest version v22.1 (2019) containing 1917
hairpin instances and 2500 mature miRNAs for the human species alone. miRbase integrated
multiple tools for sequence annotation, target prediction, and new sequence registration [52].
Additionally, it includes both experimentally verified and computationally predicted active
sites and targets, and it is one of the main sources of miRNA information for other databases.
Currently, there is an effort to synchronize the miRbase with Rfam; a collection of RNA families
including sncRNAs with additional information about secondary structures. Both of these
databases contain classifications for microRNA families but so far obtained with different
methods and have a consensus of only 28% between them.

miRTarBase is a biological database that mainly provides generally validated experimentally
miRNA-Target Interactions (MTI) collected in a manual way [53]. miRTarBase contains more
than 4.4M interactions of about 3000 miRNAs for humans and has search filters based on specific
miRNA names, their targets, and diseases.

miRCarta [54] implements the information of precursor and mature miRNAs coming from
miRBase as well as predicted ones resulted from the online pipeline miRMaster [55]. The
import of these predicted miRNAs which are based on the sequence of the sample data, results
in a huge number of miRNAs in the database which is around 25k mature miRNAs and 15k
precursors for the human species alone.

An interesting and recently published comprehensive database for circulating sncRNAs is
EVAtlas [56]. It contains information for multiple families of non-coding RNAs from disease
and control datasets originated from different tissues and sources. Data collection for EVAtlas is
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made from 57 GEO and SRA manually reviewed registries, making it a great tool for circulating
biomarker studies.

Interactions and Targets databases
miRNet [57] visualization of miRNA and other molecule interactions, can be used for

multilayer network construction and ceRNA networks. It links miRNAs to coding and
non-coding molecules, transcription factors, and diseases. These features make miRNet a great
tool for multi-layer network reconstruction.

Pathways and enrichment analysis databases
Other than databases with structural details and interactions for ncRNAs, there are databases

containing information on the involvement of ncRNAs in molecular pathways and processes,
linking them in a functional role beyond their immediate first-degree interactions. The Kyoto
Encyclopedia of Genes and Genome (KEGG) is among the most used databases for pathways,
storing genomic and pathway information, and providing manually drawn maps of interactions,
regulations, and signal cascading. Despite the fact that it is so well organized, KEGG has
a limited amount of information about sncRNAs, and most of them are related to cancers.
Reactome, is another generic human curated biological pathway database, that cross-references
its information with NCBI, Ensebml, KEGG and others [58]. It implements online tools for
analyzing and interpreting interactions and visualization of networks, but it also has relatively
limited information about ncRNAs. For this reason, miRPathDB [59] has been created to
indirectly link the regulatory information of miRNAs to the molecular pathways. Although
miRPathDB [59] does not calculate the interactions, it uses context mining techniques to
gather information from different enrichment analysis and pathway generic sources (KEGG,
GO), linking them to information of ncRNA databases as miRBase or miRCarta.
RISE is a repository for RNA-RNA interactions coming mainly from transcriptome-wide

studies [60]. Although RISE contains information about interactions between sncRNAs and
other RNA molecules, it mostly focuses on lncRNA interactions. Thus, the use in sncRNA
studies can be used in a validation step of a ceRNA network. NPinter [61] contains interactions
between ncRNAs (except tRNAs and rRNAs) and biomolecules (proteins, RNAs, and DNAs)
with the additional feature of visualizing the network of first-degree interactions between the
query and the target. The drawback of this database is the limitation to interactions.

Lastly, a broader open-source RNA interaction database is starBase or ENCORI [62] which
integrates information for 23 species from which it has more than 4.1 million miRNA-ncRNA
interactions and 2.9 million miRNA-mRNA interactions. The data for ENCORI comes from
the analysis of high throughput datasets, gene co-expression analysis, and signaling pathways
sources [62]. ENCORI offers the option of searching for interactions based on the type of
interaction (miRNA-Target, RNA-RNA) as well as ceRNA-Network and pathways based on
KEGG terms.

3.2. Bioinformatics Tools

Bioinformatics tools are used to make the analysis of complex biological systems possible,
fast and reliable. Once the sequence of sncRNAs is known through experiments and/or
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prediction techniques (e.g. miRMaster), and the information of interactions is available in
databases, the analysis usually proceeds with the creation of networks. Networks of single or
multiple-level instances such as molecules, diseases, and pathways coexist and interact in one
graph. In the case of novel transcripts, where there is no experimental evidence or previous
knowledge of the targets of ncRNAs, computational tools try to predict the most probable
interactions of these molecules in various ways. A list of the databases and tools discussed in
this work can be found in Table 1

Target prediction tools
Binding site prediction for sncRNAs is usually referred to miRNAs and siRNA targets

which are calculated based on thermodynamic criteria, anti-correlation of target genes, and
miRNA/siRNA expression, but most significantly by nucleotide sequences in the target’s
3’UTR MREs. Many tools developed in the last decades for this difficult task, with the most
popular one being the TargetScan. An online computational tool for target prediction of
miRNAs, based on the complementarity between the query gene transcript and the seed of the
miRNA along with other multiple features related to the nucleotide sequence of the targets
[63]. DIANA is a set of tools with the microT algorithm predicting miRNA targets in canonical
(3’UTR) regions and the microT-CDS [64] algorithm for the non-canonical (coding) regions.
DIANA implements also the LncBase and TarBase [65] databases for experimentally verified
miRNA-target interactions with non-coding and coding transcripts respectively, and mirPath
tool for identifying potential altered pathways based on miRNA expression profiles. There is a
plethora of other tools and databases related to target prediction such as miRecords [66] or
miR2Disease [67] which contains information about miRNAs related to specific diseases, but
they are not as comprehensive or updated as the previously mentioned ones even though they
are holding valuable information and are sources for databases.

Network reconstruction and visualization
The use of networks in molecular interactions is crucial to depict and tackle the complexity

of biological systems. One of the uses of biological networks is the visualization of interactions,
which in small networks is easy to interpret but when there are hundreds or thousands of nodes
and edges it gets overwhelming for a human to handle. So, a more useful application for these
systems is the analysis based on the graph theory. Metrics of centrality and affinity can be
used to evaluate significant nodes and pathways, leading to important conclusions such as
potential therapeutic targets [68]. Moreover, instances belonging to different categories (e.g.
genes, variations, and phenotypes) can be integrated into an interactive network and help to
draw conclusions about difficult problems. Tools that are used in bioinformatics for visualization
of networks and analysis derive from generic network-reconstruction tools that are based on
maths and the graph-theory. Functionality related to the field of biology was added through
the years, mostly in the form of add-on modules that extend the basic metrics and enrich them
with biological information through the available databases.

Pajek [69] is a generic, more than 20 years old, Microsoft Windows-based network visualiza-
tion tool, initially implemented for social network analysis. It is also considered an immensely
powerful application for analysis and visualization of massive networks because it can easily
visualize a million nodes with billion connections in an average computer. For Pajek there
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are available implementations that are optimized to handle faster and with a lower need for
memory larger structures (Pajek-XXL or Pajek-3XL). It also implements numerous features such
as Graph layout, node merging, neighborhood detection, identification of strongly connected
components, clustering, and many other network analysis metrics and tools. This feature makes
it a great tool for massive networks but with lower quality visualization potential.

Gephi [70] is a free offline open-source, leading visualization and exploration software and
runs on all main operating systems. It is not designed specifically for biological networks,
rather it is a general-purpose tool for exploratory data analysis, social networks, and biological
network analysis. In Gephi there are multiple plugin modules designed for clustering of nodes
and statistical analysis. It is user-friendly, allowing for customization in the visualization and
due to its flexible multi-task architecture is very fast even for large datasets.

Cytoscape [71] is probably the most popular open-source desktop application for 2D network
visualization in biology and health sciences. It supports all kinds of networks (e.g. weighted,
unweighted, bipartite, directed, undirected, and multi-edged) and comes with an enormous
library of plugins with more than 250 modules. It was initially designed for research related to
biology, as its first aim was to analyze molecular interaction networks and biological pathways,
integrating them with other state data such as gene expression profiles. It can handle big
networks, but it requires more memory and time for clustering and layout routines than other
tools which makes it less scalable, and it is recommended to run such processes in the command
line and then load the results as node/edge attributes. It is a good compromise between analysis
and visualization, and it comes with a great plethora of layout, clustering, and topological
network analysis algorithms, such as AutoSOME, Eisen’s hierarchical and k-Means clustering
(in the ClusterMaker plugin), and the basic network metrics of average connectivity betweenness
centrality and others. Finally, plugins for the connection of biological databases of functional
enrichment, GO annotations, data retrieval, and others have been developed making it very
convenient to work with.

Other solutions for network analysis may include market products or whole pipelines of
processing. These solutions are usually less customizable but require less knowledge of the
underlying methods and fewer resources of computational power from the user. One such
example is InSyBio’s suite, which implements multiple tools from the level of RNA-sequence
analysis up to the network analysis by InSyBio BioNets [72] for identifying important nodes
and potential biomarkers using machine learning approaches.

4. Conclusion

Since their discovery, the importance of non-coding transcripts has become clear, and they
stop being considered as “Junk” DNA regions. With the advancements in technology allowing
for the detection of these molecules and especially sncRNAs, a huge number of ncRNAs were
discovered and got annotated. Even though some of their mechanisms of action have been
decoded, their full functionality still remains to be discovered. Despite what is unknown, the
focus on regulatory sncRNAs, led to significant improvements in our understanding of the
molecular mechanisms driving certain diseases, and the prognosis of pathologies. It is not
known if there are specific characteristics and features of the sncRNAs that are involved in
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Name URL

B
io

D
at
ab
as
es

Genome Browsers
Ensembl http://www.ensembl.org/index.html
NCBI https://www.ncbi.nlm.nih.gov/genome/51
UCSC https://genome.ucsc.edu/
Non-codingRNA related
miRBase https://www.mirbase.org
miRTarBase https://mirtarbase.cuhk.edu.cn
miRCarta https://mircarta.cs.uni-saarland.de
EVAtlas http://bioinfo.life.hust.edu.cn/EVAtlas
miRNet https://www.mirnet.ca
Molecular Pathways
KEGG https://www.genome.jp/kegg
REACTOM https://reactome.org
miRPathDB https://mpd.bioinf.uni-sb.de
RISE http://rise.life.tsinghua.edu.cn
NPinter http://bigdata.ibp.ac.cn/npinter4
ENCORI https://starbase.sysu.edu.cn

B
io
in
fo
rm

at
ic
s
To
ol
s

Target prediction
miRMaster https://ccb-compute.cs.uni-saarland.de/mirmaster2
TargetScan https://www.targetscan.org/vert_80
DIANA https://diana.e-ce.uth.gr/home
miRecords http://c1.accurascience.com/miRecords
miR2Disease http://www.mir2disease.org
Network Visualization
Pejek http://mrvar.fdv.uni-lj.si/pajek
Gephi https://gephi.org
Cytoscape https://cytoscape.org

Table 1
List of databases and tools discussed in the present work and the uniform resource locator (URL) for
each of these sources

NDDs, so further studies are needed to understand and unravel the sources of these disorders.
Computer science and Bioinformatics have a tremendous impact on systems biology, with the
ever-improving development of tools helping scientists draw important conclusions from the
massive amounts of available data. And this is why it is so important to have comprehensive,
curated, open-source, and well-organized databases as the ones presented in this work.

The availability of datasets stored in databanks along with the interoperability and the
organization of information in databases has dramatically shifted the nature of biological studies
from small- to large-scale and gave rise to data-driven methods. This alternation of viewing
multiple interactions and functions brought the use of multi-layer networks into the foreground
as an important tool. This allowed for broader and more holistic computational approaches,
which model much better the real biological systems.

To date, none of the presented tools is specific to neurodevelopmental disorders. In fact, these
tools are of general use, but there is an interesting potential for application in various fields,
including neurological and neurodevelopmental disorders. This derives from the fact that RNA
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molecules and specifically sncRNAs have simple structures, with no particular biochemical
features. Thus, the individual tools that analyse these molecules are general. Despite that, their
combination -depending on the question every time- can lead to pathology-specific methods
which are related to the emerged properties of more complex structures such as tissues, organs,
diseases etc. The purpose of this paper is to collect the most well-known and important tools
and to give an insight into their functionality and effectiveness. This is an important step
towards understanding their potential in specific fields such as neurodevelopmental disorders.

Of course, except for the presented tools and databases in the current work, there are numerous
others online and offline tools that could not be included because of their high number and
redundancy of information. In bioinformatics, there is a continuous need for new tools and
additional functionality which makes the review of new tools a hard task. As one can see,
information is shared between platforms, databases, and databanks in the spirit of scientific
collaboration and the pursuit of new knowledge.

In this review, we introduced tools that are needed for starting an analysis of genomic
data from a high level (disease or phenotype), ending with the reconstruction of networks
of interactions for ncRNAs and specifically short non-coding molecules. We did not get into
methodologies of analysis of the data which is a whole field of study alone and needs special
focus. The presented tools, even though not oriented only in NDDs, can be used to identify the
common molecular pathways in these disorders and the comorbidity that is often present in
preterm babies with NDDs.

A. Abbreviations

• NDD : neurodevelopmental disorder
• CP : ceribral palsy
• MRI : magnetic resonance imaging
• 3’UTR : 3’ (prime) untranslated region
• ADS : autism disorder spectrum
• NGS : next generation sequencing
• PIWI : P-element induced wimpy testis
• mRNA : messenger RNA
• ncRNA : non-coding RNA
• sncRNA : short/small non-coding RNA
• miRNA : micro RNA
• siRNA : small interference RNA
• piRNA : P-element-induced wimpy testis-interacting RNA (piwi RNA)
• RNAi : RNA interference
• ceRNA : competitive endogenous RNA
• MRE : miRNA response element
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