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Abstract
In information retrieval, query performance prediction aims to predict whether a search engine is likely
to succeed in retrieving potentially relevant documents to a user’s query. This problem is usually cast
into a regression problem where a machine should predict the effectiveness (in terms of an information
retrieval measure) of the search engine on a given query. The solutions range from simple unsupervised
approaches where a single source of information (e.g., the variance of the retrieval similarity scores in
NQC), predicts the search engine effectiveness for a given query, to more involved ones that rely on
supervised machine learning making use of several sources of information, e.g., the learning to rank
(LETOR) features, word embedding similarities etc. In this paper, we investigate the combination of two
different types of evidences into a single neural network model. While our first source of information
corresponds to the semantic interaction between the terms in queries and their top-retrieved documents,
our second source of information corresponds to that of LETOR features.
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1. Introduction

Query performance and query difficulty predictions are two sides of the same coin. For both,
the objective is to predict whether the search engine is likely to succeed in the task of retrieving
relevant documents to the user’s query. More precisely, for query difficulty prediction, the
problem is generally cast into a classification problem. A difficult query is then a query for which
the search engine is poorly performing considering an effectiveness measure. The notion of
difficult or hard queries as opposed to easy queries is used in [1, 2]. More than two classes were
also used in related work [3, 4] where different definitions of query difficulty are introduced.
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On the other hand, query performance prediction (QPP) aims at estimating the effectiveness of a
search performed on a query by a search engine without document relevance judgement [5, 6, 7, 8].
It is usually cast into a regression problem where a machine should predict the effectiveness (in
terms of a measure) of the search engine on a given query. The solutions go from very simple
machines where a single feature predicts the search engine effectiveness, to very sophisticated
machine relying on supervised machine learning [9, 10, 11] and implying many criteria. For
single features, Hauff et al. [12] surveyed 22 pre-retrieval features from the literature at that time,
from which some are computed considering the query itself only, other use information from
the indexed collection. As opposed to pre-retrieval features, post-retrieval features imply that a
first document retrieval is run using the query before the feature can be calculated; post-retrieval
features make use of the document scores [13, 14, 15, 16, 17, 18]. Several features were combined
in more complex predictive models such as SVM and Decision trees [19], Genetic algorithms [20],
Feature selection models [8], Linear combination [21, 22] or Neural networks [18, 23].

Queries can also be ordered in terms of the predicted effectiveness of the search engine, or it is
possible to know among two queries which of the two is predicted as easier that the other. Datta
et al. [23] defined a neural model that learns this relationship. It captures term semantics and
interactions at the query and top/bottom-retrieved document levels. Their model also includes
the prediction of effectiveness for a given query. On the other hand, Chifu et al. [21] have
shown that LETOR features that were initially defined for learning to rank documents [24] are
good indicators for QPP. Examples of LETOR features are the BM25 score of the document
with regards to the query, the frequency of the query terms appearing in the document, and the
PageRank score of the document [24]. In this paper, we investigate the combination of the two
types of evidences into a single model. The network input in Datta et al. [23] is a flattened 3D
matrix of term embeddings for (query, document) pairs while LETOR features can be calculated
for (query, document) pairs or can be aggregated at the query level [21].

2. Model

2.1. Query representation

Following the model presented in [23], as a first step, the idea is to calculate the cosine similarities
between the embedded representation of terms of the query 𝑄𝑎 and embedded representation
of terms of the document 𝐷𝑎

𝑖 : 𝐷𝑎
𝑖 ∈ 𝑅(𝑄𝑎) where 𝑅(𝑄𝑎) is the set of retrieved documents

considered for the interaction with 𝑄𝑎 consisting of 𝑡 top and 𝑏 bottom retrieved documents.
Similar to [25], the distribution of similarities between the 𝑗th query term 𝑞𝑗 and the 𝐷𝑎

𝑖 terms is
then transformed into a vector of fixed length 𝑝 by computing a histogram of the similarity values
over a partition of 𝑝 equi-spaced intervals defined over the range of these values (i.e., the interval
[−1, 1)) (see [23] for details). For each query, we obtain a matrix of (𝑡+𝑏) vectors of dimension 𝑝
which model the semantic interaction between a query and the retrieved documents for that query.
This results into a 3𝑟𝑑 order interaction tensor that we denote 𝑄𝑎 ⊕𝑅(𝑄𝑎) ∈ R(𝑡+𝑏)×𝑘×𝑝.

Here, we consider both word embedding information and the LETOR post-retrieval features
as in [21]. In learning to rank documents, LETOR features indicate how relevant or important
the document is with respect to the query [24]. Similar to semantic interaction vectors, LETOR
features are associated with a query-document pair. We thus can concatenate this 3𝑟𝑑 order
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Figure 1: The end-to-end QPP model consists of a siamese network of shared parameters of layered
convolutional feature extraction, followed by a linear activation layer with pairwise hinge loss for pointwise
testing yielding a score for a given query.

LETOR tensor with the previous interaction tensor which then operates at the early stage.

2.2. Deep Model for QPP

To extract convolutional features from the 3𝑟𝑑 order interaction tensor, 𝑄𝑎 ⊕ 𝑅(𝑄𝑎), we first
need to slice the 3𝑟𝑑 order tensor into separate matrices (2𝑛𝑑 order tensors), on each of which, 2D
convolution can be applied to extract distinguishing features from the raw data of query-document
interactions. Here, we choose to adapt the SDMQ model from [23] which stands for Separate
Documents Merged Query-terms. It considers every interaction vector between the 𝑗th query term
and 𝑖th document (see Equation 1) as a separate candidate for convolutional feature extraction.
Each such interaction vector between a query-term and a document is of dimension 𝑝 and there
are a total of (𝑡+ 𝑏)× 𝑘 such vectors. We apply 2D convolution on these vectors (See Figure 1).

The 𝛽th component (𝛽 = 1, . . . , 𝑝) of this interaction vector is given by the count of how many
terms yield similarities that lie within the 𝛽th partition of [−1, 1) [23], i.e.,

(𝑞𝑗 ⊕𝐷𝑎
𝑖 )𝛽 = log(

𝑁0

𝑛(𝑞𝑗)
)
∑︁
𝑤∈𝐷𝑎

𝑖

I
[︀2(𝛽 − 1)

𝑝
− 1 ≤

𝑞⃗𝑗 · 𝑤⃗
|𝑞⃗𝑗 ||𝑤⃗|

<
2𝛽

𝑝
− 1

]︀
, (1)

where 𝑛(𝑞𝑗) denotes the number of documents in the collection where the 𝑗th query term 𝑞𝑗
occurs, and 𝑁0 denotes the total number of documents in the collection.

We then cast the QPP problem into a two-step one: first considering two queries, the model
should predict which one is easier than the other one; then considering the partial order that
results from the first step, it should predict the performance of any of the queries. To solve this
problem, we consider an end-to-end model which consists of a siamese network: two networks
as presented in Figure 1 are used to process two queries, followed by a linear activation layer.

The network in Figure 1 is trained with instances of query pairs and their labels. Given a
training set of queries 𝒬 = {𝑄1, . . . , 𝑄𝑚}, we construct the set of all unordered pairs of the



form (𝑄𝑎, 𝑄𝑏), where ∀𝑎, 𝑏 ≤ 𝑚 and 𝑏 > 𝑎. The reference label, 𝑦(𝑄𝑖, 𝑄𝑗), of a paired instance
is determined by a relative comparison of the retrieval effectiveness obtained by a system with
a target evaluation measure (e.g., average precision). The ground truth is computed using the
relevance assessments. It is calculated as 𝑦(𝑄𝑎, 𝑄𝑏) = sgn(ℳ(𝑄𝑎;ℛ(𝑄𝑎))−ℳ(𝑄𝑏;ℛ(𝑄𝑏))),
where ℳ is an evaluation measure which depends on a set of relevant documents - ℛ(𝑄) for a
query 𝑄 ∈ 𝒬 and the set of retrieved documents 𝒜, sgn(𝑥) = 0 if 𝑥 ≤ 0 or 1 otherwise.

With pairwise hinge loss for pointwise testing yielding a score for a given query as in [23]:
ℒ(𝑄𝑎, 𝑄𝑏) = max(0, 1 − sgn(𝑦(𝑄𝑎, 𝑄𝑏) · (𝑦(𝑄𝑎; Θ) − 𝑦(𝑄𝑏; Θ)))) where 𝑦(𝑄; Θ) is a real-
valued score predicted by a linear activation unit from the output of the shared layer of parameters.
It is a function of one query rather than a pair.

3. Evaluation framework

3.1. Dataset

To evaluate our proposed model, we would consider TREC6,7,8 and Robust collections, which
include 250 topics. As train-test splits, we would consider TREC6,8 and Robust collections
as the training set (200 topics), and TREC7 (50 topics) as the testing set. Indeed, the pairwise
combination of topics generates 39,402 training and 2,450 testing instances.

3.2. LETOR Features

We rely on [21] regarding LETOR features extraction and aggregation. LETOR fea-
ture were extracted from the initial documents retrieved based on the reference config-
uration using the BM25 model [26]. The query-document features (Terrier’s weighting
model1) are: WMODEL:Tf, WMODEL:TF_IDF, WMODEL:LemurTF_IDF, WMODEL:BM25,
WMODEL:Js_KLs, WMODEL:In_expC2, WMODEL:InB2, WMODEL:DLH, WMODEL:ML2,
WMODEL:BB2, WMODEL:DFIC, WMODEL:IFB2, WMODEL:InL2, WMODEL:PL2,
WMODEL:LGD, WMODEL:MDL2, WMODEL:DirichletLM, WMODEL:DFRee, and
WMODEL:Hiemstra_LM.

For aggregated LETOR features, the mean, standard deviation, and maximum summary
functions were used to obtain the feature vectors that represent each query-configuration pair.
Chifu et al. showed that the features obtained with these aggregation functions are complementary
for query performance prediction [21].

3.3. Baselines

Our approach should be compared with several unsupervised QPP approaches such as WIG [27],
NQC [28], and UEF [29].
WIG [27] As its specificity measure, weighted information gain (WIG) uses the aggregated value
of the information gain with each document (with respect to the collection) in the top-retrieved
set. The more topically distinct a document is from the collection, the higher its gain will be.
Hence, the average of these gains characterizes how topically distinct is top-retrieved set.

1http://terrier.org/docs/v5.2/javadoc/org/terrier/matching/models/WeightingModel.html

http://terrier.org/docs/v5.2/javadoc/org/terrier/matching/models/WeightingModel.html


NQC [28] Normalized query commitment (NQC) estimates the specificity of a query as the
standard deviation of the RSV’s of the top-retrieved documents with the assumption that a lower
deviation from the average (indicative of a flat distribution of scores) is likely to represent a
situation where the documents at the very top ranks are significantly different from the rest.
UEF [29] The UEF method assumes that information from some top-retrieved set of documents
are more reliable than others. As a first step, the UEF method estimates how robust is a set
of top-retrieved documents by checking the relative stability in the rank order before and after
relevance feedback (by RLM). The higher the perturbation of a ranked list post-feedback for a
query, the greater is the likelihood that the retrieval effectiveness of the initial list was poor.

3.4. Evaluation metric

Pearson’s-𝑟 and Kendall’s-𝜏 that measure the correlation between the predicted effectiveness
value and the ground-truth effectiveness are commonly used for QPP evaluation [18, 23]. To
measure the ground-truth effectiveness of the system, AP@100 and nDCG@20 are commonly
adopted in related works [18, 23].

3.5. Experimental setting

We could follow the pairwise training and pointwise testing framework. The following combina-
tions of interaction and LETOR features with the Neural network model could be experimented:

• EXP 1 (LETOR): Making use of LETOR features only for query-document pairs.
• EXP 2 (SDMQ): Only interaction features for query-document pairs.
• EXP 3 (SDMQ + LETOR): Early combination of interaction and LETOR features for

query-document pairs.

4. Discussion and Conclusion

In this paper, we suggest the combination of two approaches that have been developed in two
different IR groups. We presented the model as well as the way it could be evaluated. Our
preliminary results show that the combination could be effective. For example, when considering
the NQC, WIG and UEF baselines, the correlation measures are in the range of 0.21 to 0.34.
When considering the proposed combined models, the correlation is up to 0.70 (AP@100 Pairwise
accuracy, SDMQ+LETOR).

In future work, we would like to complete the evaluation and analyse the results deeper. We
also would like to compare early fusion and late fusion of LETOR feature based model [21] and
the one from Datta et al. [23].
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