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Abstract
Performance prediction is an important aspect of Information Retrieval (IR), as determining the effective-
ness of search results without human relevance judgments has many important applications. We propose
a novel Query Performance Prediction (QPP) method to predict the effectiveness of neural reranking
models. Our approach uses the retrieval score distribution for a query and a set of highest-scoring
documents to estimate the likelihood of effectiveness. This method is both efficient and unsupervised,
making it possible to use in production retrieval systems. The new method uses entropy, which is the key
measure in information theory. The core idea is simple but novel – measure the entropy of the retrieval
scores for a reranking model while using no training data or corpus related statistics. Our empirical
experiments show the effectiveness of our proposed method, which is comparable with traditional
state-of-the-art QPP methods in terms of both prediction quality and computational efficiency.
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1. Introduction

Query Performance Prediction (QPP) has been an important open problem in Information
Retrieval (IR) research for many years [1, 2, 3, 4, 5]. Various methods have been proposed
to predict the performance of a search result without relying on user interaction or human
relevance judgments. Existing QPP methods are often divided into two categories: pre-retrieval
and post-retrieval predictors. Pre-retrieval methods are generally retrieval system agnostic,
but require access to various corpus statistics, and their prediction quality is usually lower
than post-retrieval methods. Conversely, post-retrieval methods use a set of initial ranked
results produced by a specific retrieval system. These methods are often computationally
expensive [1, 6], and must be tuned for specific retrieval system [7].

More recently, neural Language Models (LMs) and neural re-ranking models have become
increasingly popular in modern IR systems. However, Datta et al. [8] and Faggioli et al. [9],
demonstrated that existing QPP methods are less effective for performance prediction when
using neural ranking models. In this work, we propose a novel QPP method which leverages
information induced from a neural reranking Retrieval Status Values (RSVs) to estimate the
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likelihood of effectiveness. In previous work, other properties such as the Standard Deviation
(SD), mean, and magnitude of the RSVs have been shown to be correlated with retrieval
effectiveness measures such as Average Precision (AP) [6, 7, 10]. In particular, SD, which
is a standard measure of statistical dispersion, has received attention in prior work (for example
see [7, 11, 12, 13, 14]).

Our work is based on the hypothesis that score distributions differ for highly and poorly
ranked search results. In contrast to prior work on score dispersion, which focused on finding
the number of top documents required to compute SD, we propose the use of entropy to capture
the dispersion.

2. Related Work

A common type of post-retrieval QPP methods is score-based predictors. Score-based predictors
use the retrieval scores (RSVs) generated by the retrieval system to estimate the success of the
search. The simplicity and low computational cost of these methods make them an appealing
choice in real-world applications as they do not require access to collection statistics, which can
be computationally expensive. Additionally, they can be easily integrated into existing retrieval
systems, and their predictions can be made in real-time.

A number of prior QPP methods estimate retrieval result effectiveness by measuring the
dispersion of the RSVs with SD [11, 12, 13, 14]. One of the most widely used approaches is the
Normalized Query Commitment (NQC) [7] method, which measures the SD of the retrieval
scores, and includes additional corpus and query length normalization. One hypothesis in this
work is that low dispersion of RSVs is likely to be evidence of query drift (the presence and
dominance of documents not relevant to the information need). While SD based QPP methods
have shown promising results, they are sensitive to the number of documents used in their
estimation. This hypothesis inspires our approach – using entropy as a measure of dispersion
and centrality. Our empirical analysis show that unlike SD, entropy is not sensitive to the
number of documents being returned, and consistently improves the result as the number of
top-k documents included increases.

Zendel et al. [15] propose a framework which includes additional reference queries in order to
improve the estimate of the retrieval result effectiveness, using a linear combination of reference
queries. This approach is extended by [8] to use a ratio instead, yielding better results for
neural re-ranking models, and further improving the framework by generating query variants
automatically. Both approaches enhance QPP estimators by incorporating information from
additional reference queries, and depend on existing QPP predictors. Our new method can be
used as a base predictor within these frameworks to further improve the effectiveness prediction
of neural reranking models.

3. Experimental Setup

Retrieval methods. We test our proposed QPP approach using two probabilistic retrieval
models: Query Likelihood (QL) [16]1 and NeuralRanker. Both models estimate the probability
1Using the Lemur-Indri toolkit.



Table 1
Average retrieval effectiveness scores measured with AP.

QL NeuralRanker

Robust04 0.248 0.284

P (d|q) of document d being relevant to query q. NeuralRanker, based on the method originally
described by Liu et al. [17], is trained by fine-tuning a Transformer-based LM on the MSMARCO
passage ranking task, which has been shown to generalize well to other tasks and datasets –
including document reranking [18]. At inference time, the model uses query-document pairs as
input, and yields a relevance ranking score.

Evaluation methods. We report experimental results on an ad hoc retrieval TREC collection,
the Robust04 [19] documents retrieval collection. We have tested our approach using other
common collections, but due to space limitations, we do not include them here. The results
were similar to the results shown for Robust04. Retrieval effectiveness is measured using AP,
which is consistent with prior work on QPP. The AP values from QL and NeuralRanker are
shown in Table 1.

To evaluate our approach, we employ both correlation measures, as was reported in prior
work, as well as the recently proposed sARE and sMARE measures [20, 21]. Correlation measures
used are Pearson’s r and Kendall’s τ . For hyperparameter tuning, we use repeated two-fold
cross-validation with 30 repetitions. For each repetition, we report the evaluation measure as
the average over the folds, and the final reported value is the average for all 30 repetitions.

Score-based QPP. Given the extensive and successful use of SD as a QPP method, and given
that it is the method most similar to ours, we adopt it as the baseline for our comparisons. Our
method is based on the entropy of the scores, normalized by softmax. Figure 1 illustrates the
score differences observed for both good and bad queries. Each boxplot in the figure represents
the distribution of the RSVs for the five best (worst) queries, measured by AP, on the Robust04
collection using NerualRanker. Additional measures of dispersion, such as kurtosis, may also be
useful; we leave such exploration for future work.
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Figure 1: Boxplots of the RSVs distributions for best and worst queries.



Table 2
Prediction quality for SD and entropy as QPP measures. The more effective approach for each measure
(column) is highlighted in bold. Note that sMARE is an error measure, hence lower is better. A * indicates
a statistically significant difference between entropy and SD, as determined by Tukey’s Honestly
Significant Difference (HSD) test with a Family-wise Error Rate (FWER) of 0.05.

QL NeuralRanker

sMARE P-r K-τ sMARE P-r K-τ

Robust04 SD 0.224 0.481 0.345 0.220 0.526 0.359
Entropy 0.221 0.385* 0.349 0.214* 0.529 0.388*

Entropy for QPP. The entropy of a query q is calculated based on the relevance probability
distribution of a set of documents Dq :

H(q) = −
∑
d∈Dq

P (d|q) logP (d|q) (1)

where P (d|q) is the normalized probability of document d being relevant to the query q. The raw
scores of QL and neural rankers, represented by S(q, d), must be normalized to be interpreted
as probabilities. The normalization is achieved using the softmax function:

P (d|q) = exp(S(q, d))∑
d′∈Dq

exp(S(q, d′))
(2)

Entropy is maximized when the probabilities are uniform and indicates that the retrieval
model was unable to effectively discriminate between good and bad documents. Conversely,
lower entropy implies a more successful retrieval result. For convenience, in our experiments
we use negative entropy, −H(q), as our QPP method.

4. Experimental Results

A comprehensive evaluation on a benchmark dataset compares our method to the baseline
SD method in terms of prediction quality, robustness, and similarity. Table 2 presents the
prediction quality for both retrieval methods. It can be seen that for the task of document
retrieval with the Robust04 collection, entropy performed comparably to SD, and was superior
for the NeuralRanker. In terms of prediction quality, both methods produced similar results
with only minor performance differences.

Hyperparameter analysis. Both the SD- and entropy-based QPP approaches make use of a
hyperparameter, k, which represents the number of top-ranked documents that are included in
the prediction calculation. Figure 2 shows the performance of the entropy and SD approaches,
applied to predict the NeuralRanker results, with prediction quality measured using sMARE. It
is clear that entropy is much more robust to variations in k than SD. The prediction quality of
entropy remains consistent once it reaches k ≈400, after which it shows diminishing returns.



SD, on the other hand, reaches the minimal error using a much narrower range of documents,
which varies between collections and retrieval methods [7].
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Figure 2: A comparison between entropy and SD as QPP methods, over a range of k values [10, 1000]
with steps of 10, representing the number of top-ranked document scores used by the method. Prediction
quality is measured with sMARE (lower is better) for NeuralRanker and AP.

Similarity of the predictions. In Figure 3, we evaluate both methods for the NeuralRanker
results on the Robust04 collection by calculating the sARE (error) values per query, plotting
them as a categorical scatter plot. The methods have a correlation of Pearson’s r=0.5. It can be
seen that while some queries receive similar sARE values, the majority of query values vary,
implying that the predictors succeed and fail based on the query.
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Figure 3: sARE values per query for the NeuralRanker. The queries (x-axis) are sorted by the difference
in sARE between entropy and SD. In the middle are queries that were predicted similarly by both QPPs,
and on each side are queries that were predicted well by one predictor and poorly by the other. Each
QPP method was applied with the optimal k.

Discussion: Entropy in neural networks. Cross-entropy loss is one of the most common
optimization objectives used in neural networks. Neural LMs (e.g., BERT) are trained to minimize
cross-entropy loss during pre-training. Many learning-to-rank losses, such as the pointwise
binary cross-entropy loss, pairwise RankNet loss [22], and listwise ListNet loss [23], are derived
from cross-entropy loss. In short, neural networks are likely to be naturally entropy-aware as
they are optimized to minimize entropy. During training, the smaller the entropy is, the better
the model is believed to be trained. This should be reflected at inference time as well, and we
conjecture that the entropy of the predictions correlates to the model prediction performance.
The smaller the inference entropy is, the more robust the model is, and thus it is more likely to
be more effective.
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Figure 4: Left: shows the value ranges of entropy and SD with respect to k. Right: shows the
actual value spread of entropy and SD when k =1000 for 250 queries. The plots were generated for the
NerualRanker RSVs on Robust04.

Discussion: entropy vs SD. Figure 2 shows that the optimal value of the hyperparameter k
for SD is relatively small, whereas the optimal k for entropy is large in comparison. This could
be related to their mathematical properties. Given k scored documents, the entropy (of the
normalized probabilities) reaches the minimum (zero) when one document has a probability of 1.0
and others have probabilities of 0.0, and reaches the maximum (log(k)) when all the documents
have the same probability; SD reaches the minimum of zero when all of the documents have
the same score, and has no theoretical upper limit. However, if we know the upper bound b
and lower bound a of the scores, Popoviciu’s inequality on variances shows that the upper limit
of SD is b−a

2 . That is, if we collect a and b for a large number of query-document pairs, we
can derive a fixed empirical upper bound of SD. As depicted in Figure 4 (left), the upper SD is
fixed and independent of k. Consequently, information is lost by SD as k grows. This can be
empirically observed in Figure 4 (right), which shows how a less discriminative SD compares to
entropy when k =1000. Conversely, the maximum entropy increases as k is increased, which
suggests that it retains information better than SD for large k. Finally, we note that the notion
of entropy capturing more information than SD has been observed in other fields [24, 25].

5. Conclusion

This study evaluates the effectiveness of a new QPP method, entropy, and compares it to a similar
baseline, SD, using a commonly used document retrieval collection Robust04. For Robust04,
entropy performs similarly to SD when using QL, and outperforms it when using a NeuralRanker
retrieval approach. The sensitivity of entropy to changes in the hyperparameter k (the number
of top-ranked documents that are used in the prediction calculation) is also analyzed, and found
to be more robust for entropy than for SD. Additional experiments demonstrate that SD and
entropy typically succeed (or fail) for different queries, suggesting that the methods capture
different properties of the distribution of the retrieval scores. Using entropy as a feature or in an
ensemble model may offer further improvements and would be interesting to explore in future
work. Overall, our study provides evidence that entropy is a simple and promising method for
QPP, and is more robust than currently used methods.
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