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Abstract
Artificial intelligence can be used in a variety of ways to mitigate the cognitive and psychophysical
decline that accompanies ageing. However, it is not always easy to assess this decline. Several laboratory
tests have been developed, but ecological assessment is still an open problem in many areas. Driving is
one of these areas. Evaluating driving behaviour in a real-world environment raises ethical, practical,
and economic issues. Virtual reality (VR), on the other hand, is already being used in several areas as a
diagnostic and therapeutic aid. There are previous attempts to assess attention while driving using VR,
but they are less than ecological. In this work, we propose a protocol to assess and quantify attention
while driving and its effect on driving behavior. The protocol does not require expensive instruments and
is easy to apply. Since its main goal is to assess age-related cognitive decline, it can be used to evaluate
possible intervention areas for artificial intelligence and to quantify the effectiveness of these techniques.
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1. Introduction

Nowadays, Artificial Intelligence (AI) is able to provide a great help in mitigating cognitive and
psychophysiological declines due to aging. AI techniques are used to personalize drug-based
treatments, to maximize the beneficial effects, while, at the same time, reducing side-effects,
for example in dementia [1]. AI can be used in conjunction with data from assisted living
environments to prevent or detect age-related accidents, especially falls [2]. Moreover, AI can
be used to predict, detect and mitigate the effects of cognitive decline [3, 4, 5]. Lastly, while
robotic assistants are definitely not yet widespread, they are nevertheless promising and can
provide a great help in assisting the elderly [6].
However, while mitigating or preventing decline is important, we believe it is also crucial

to recognise it: to solve a problem, we need to know that it exists. Moreover, detecting the
problem is not enough: quantifying it is essential. Indeed, quantifying the problem is necessary
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to evaluate the mitigation techniques, that is, to detect whether the treatment (of whatever
type) reduce the entity of the problem. Furthermore, quantifying the entity of the problem can
be essential in designing the best treatment, or in deciding whether it is really necessary, a
fundamental characteristic if the treatment has adverse effects, and necessary as a cost reduction
strategy in public health.
While some declines associated to ageing are commonly recognized, they still need to be

assessed in a scientific and quantitative way. One of such example is driving. Driving is a very
complex activity, which requires a complex set of cognitive abilities, such as attention, memory
and motor coordination. While driving, we are presented with a huge amount of stimuli. Some
of them are not relevant to the activity, e.g. advertising, and must therefore be ignored. On the
other hand, others are very relevant, such as signs or the presence of incoming traffic. Since the
reduction of the ability to drive is associated with a decrease of the daily autonomy and quality
of life, and with an increase of the danger for other road users, assessing it and developing
mitigating strategies is desirable, especially considering the continued aging of the population.
This is especially true for people living in rural areas, with less access to an efficient public
transportation system.

AI is already being widely used to improve driving safety, e.g. with the widespread adoption
of Advanced Driver-Assistance Systems (ADAS) that help drivers with various tasks, such as
lane keeping or emergency braking, even tough they are not specifically targeted at the elderly
population.
Unfortunately, assessing the driving ability of a person involves practical, technical and

ethical issues. On the one hand, the assessment should be as realistic as possible; on the other
hand, an open world is a continuously changing environment, with stimuli that are substantially
impossible to predict. Hence, developing a testing protocol that takes place in an open street
and, at the same time, is reproducible, is almost impossible. We think that reproducibility is an
essential requirement of any scientific assessment protocol. Testing the driving capabilities on
a private track could be an option, but it has relevant drawbacks. First of all, it lacks realism.
While some kind of stimulus could be reproduced, e.g. signs, recreating traffic is impractical.
Moreover, it is a very costly option and not widely applicable.

Technical problems arise from the difficulty in accurately detecting stimuli in the real world
and in measuring the driving behaviour, which indirectly involves measuring the trajectory
and speed of the vehicle. While these operations are technically feasible, they are nevertheless
hard, not always accurate, and require specific instrumentation installed on the vehicle.
Besides practical and technical issues, we think that ethical ones are as much important.

Testing the driving capability of a person and, specifically, how they react to stimuli, involves
presenting distractors. These could, and probably would, lead to unsafe driving behaviours and,
hence, to crashes. We think that this is not ethically acceptable.

We think that, while these issues are not total impediment in the development of an assessing
protocol in the real world, they all contribute to make it hard, tedious, costly and not widely
applicable. On the other hand, we think that virtual reality (VR) is of great help in this field.
VR has already been used extensively both as a diagnostic and therapeutic tool in the fields
of neuroscience and psychology. For example, it has been used as a rehabilitation tool after a
stroke [7, 8] or for patients with gait imbalance due to Parkinson diseases [9]. Simulators have
also been used to study the effects of ageing on driving behaviour [10, 11, 12, 13, 14, 15].



Driving is a complex and multifaceted task that involves multiple cognitive domains, such
as visuospatial attention, visuomotor and auditory skills, and multisensory processing of the
environment [16]. One of the main sources of traffic accidents are distractions during driving,
i.e., performing a secondary task that diverts attentional resources from the main task. Despite
the relevance and pervasiveness of auditory distractions, visual distractions have been shown
to have a greater impact on driving behaviour [17]. This is due to the fact that most relevant
stimuli while driving are visual. To improve driving safety and avoid distraction-related crashes,
it is critical to suppress relevant and irrelevant attention-grabbing stimuli, a cognitive function
known as visual selective attention [18, 19, 20, 21]. Consistently,there is consistent evidence
that performance on tests of selective attention predicts better overall performance in safe
driving [22].
With this work we propose a quantitative and easy to reproduce assessment of the driving

behaviours with a specific focus on reaction times and distractor suppression, two characteristics
essential in avoiding crashes. In particular, the protocol was developed in the context of a
neuroscience experiment and is based on those of Karthaus et al. [15, 14]. The experiment was
aimed at evaluating the effect of conventional transcranial Direct Current Stimulation (tDCS) or
focal High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the Frontal Eye
Fields (FEF) on driving performance. However, it can be used to evaluate the effect on driving
of different techniques and to assess driving-related cognitive declines.

Numerous functional imaging studies show that the dorsal frontoparietal attention network,
whose core regions include the frontal eye field (FEF) and posterior parietal cortex (PPC),
supports attention in the presence of distractors [23, 24, 25, 26, 21]. In addition, human brain
imaging studies reported a correlation between neuronal activity in the frontal region and the
extent of interference by distractors, indicating a prominent role of frontal regions in actively
avoiding interference by irrelevant distractors [27, 28, 21]. Consistent evidence suggests that
HD-tDCS, by optimising currents to the brain, improves focus on areas of interest by 80% and
increases the precision of the cortical region to which the current is delivered [29, 30, 31, 32,
33, 34]. Using this approach, Choe et al. demonstrated that HD-tDCS improved performance
during a flight simulation task [35].

Based on this premise, two groups of participants, one composed of younger (age< 30) people,
the other of elderly (age> 65), attended three sessions of simulated driving. Before each session,
they underwent a brain stimulation session, with either conventional tDCS, focal HD-tDCS or
sham (placebo) stimulation. During the simulated driving, they had to respond to stimuli, while
suppressing distractors and keeping the car in the center of the lane.Driving performances were
measured in terms of the quality of the lane keeping, reaction times to stimuli and how many
distractors were not correctly suppressed.
Results show that there is a great discrepancy between the driving capabilities of the elder

and younger group. For the younger group, the task was probably easy. On the other hand, the
performances of the elder group were very dishomogeneus. While some elder people performed
very similarly to the mean of the younger group, others performed very badly. This difference
is noticeable with every kind of stimulation, including no stimulation.



2. Materials and Methods

2.1. Hardware and Software

The hardware of the simulation environment consists of a computer, three screens, a chair,
driving pedals and a steering wheel.
The screens have been arranged to replicate as realistically as possible the field of view

perceived while driving a real car. The arrangement of the displays is shown in figure 1. As
can be seen, we were also able to realistically simulate the lateral field of view. We believe that,
although the crucial part of the simulation is almost always seen in the centre of the screen,
this is essential to give a realistic feel to the simulation.

The pedals, steering wheel, and gearshift of a car have been recreated using standard gaming
equipment. Finally, for the seat, we simply used a standard chair. To enhance the participants’
sense of immersion in the environment, a curtain panel separated them from the researcher
conducting the session, and the lights were turned off while driving.

Before deciding on this setup, we carefully considered several alternatives. We are aware that
the setup is relatively simple and not the most realistic given today’s alternatives. Nevertheless,
it has a very important advantage: it is cheap and easy to reproduce, and at the same time
realistic enough for our purposes. We believe that these properties are essential to ensure that
the protocol is reproducible and that the proposed approach is therefore generally applicable.
Since our goal was to develop an assessment protocol, reproducibility is a fundamental property.
Regarding realism, the weakest component of our experimental setup is the seat, which is

a standard fixed chair (without wheels and armrests). While there are much more realistic

Figure 1: The arrangement of the displays used for the simulation environment.



Figure 2: A schematic of the path followed by the participants.

solutions that replicate a real car seat (although they are often sports car seats), our proposal is
much cheaper and widely available. However, if a more realistic seat, it can be used without
any changes to the protocol or software.

Another component whose use we evaluated are the monitors. We could use a head mounted
display, that is, a virtual reality visor, instead. While this type of device provides a very
immersive experience, it can be, nevertheless, problematic. Specifically, motion sickness is
not uncommon for first-time users [36]. Since our setup is aimed at testing elderly people, we
cannot realistically expect them to have any prior experience with this kind of device, which is
uncommon even among younger people. For this reason, we decided to use standard monitors
arranged in a semi-circular way.

As simulation software, we used the CarnetSoft driving simulator. It is a well-known simulator
that has already been used for several experiments in the field of neuroscience [15, 14].

2.2. The simulated environment

The simulation takes place on a highway surrounded by a countryside environment. The user
has to drive along a predetermined path, which runs across a highway, takes an exit, and then
reenters the highway again (figure 2). It is therefore a loop that, during a single session, is
traveled several times. The path, therefore, includes large radius turns, sharp turns, and almost
straight sections. The path is never exactly straight, however, for long sections, the curvature is
not perceivable. The usage of a relatively complex path and environment differentiates us from
previous attempts [15, 14], which mainly used long straight paths.
The simulation includes vehicular traffics, composed of cars, lorries, and motorbikes. Since

we are driving in a highway environment, there is no pedestrian, bicycle, or crossing roads.
The composition of the traffic, as well as its behavior, such as driving behind or overtaking the
user, is randomized. The presence of traffic with realistic behavior is another characteristic that
differentiates us from previous experiments [15, 14], which did not use any kind of traffic at all.



2.3. Methodology

The participant cannot drive the car freely. To keep the variability in the simulation low and
thus ensure reproducibility, the path of the car is forced. Specifically, the participant’s car
automatically follows a car ahead and regulates its speed to keep the distance between the two
cars constant. The participant has control of the steering wheel and therefore must keep the
car in the middle of its lane. In addition to keeping the car in its lane, the participant must
respond to certain stimuli while suppressing others. There are two types of stimuli: the braking
of the vehicle ahead (figure 3) and signs. The participant must respond to the brake lights of
the vehicle ahead by using the brake pedal. The road signs were designed to mimic those on
a highway and can represent either cities or countries. The participant must respond to only
one of the two types of signs; the type is randomly selected before the simulation begins. The
participant reacts to signs by activating a lever on the steering wheel. Signs and brake light
stimuli can also occur simultaneously (figure 4).
A single simulation session lasts approximately 25 minutes, plus 5 minutes for practicing

before the first session. During the simulation, the participant is presented with:

• 72 braking stimuli;
• 72 sign stimuli, of which 50% are “go” stimuli (i.e., the participant must respond to them),
and 50% are “no-go”;

• 72 complex stimuli consisting of a braking and a sign; the signs are divided into 50%
“go”and 50% “no-go”.

Figure 3: An example of braking stimulus. Notice the braking lights of the car ahead.



Figure 4: An example of combined stimulus: the car ahead is braking while a sign is shown.

The time interval between two stimuli is drawn from a random uniform distribution between
6 and 8 seconds.
Participants in the younger group had ages between 21 and 30, with a mean of 24.7 and

a standard deviation of 2.6. Furthermore, it was composed of 14 females and 13 males. The
inclusion criteria were:

• age between 20 and 35 years old;
• having a driving license for at least two years;
• normal or corrected-to-normal vision and normal hearing;

Participants with a present or history of neurological or psychiatric disorders, epileptic seizures,
intracranial metallic implants, cardiac diseases, substance abuse, or dependence had been
excluded. The exclusion criteria are due to the usage of brain stimulation and are not related to
the simulation.

The experimentation with the older group is still going on, therefore complete statistics are
not available yet. Anyway, the inclusion criteria are the same of the younger group, besides
the age, which has to be equal to or greater than 65. Moreover we administered the Montreal
Cognitive Assessment (MoCA) test to exclude participants with possible cognitive impairments
[37].
Participants underwent three sessions of simulations that took place on different days. The

three sessions correspond to the two different kinds of tDCS and one to sham stimulation.
We use three different indicators to measure driving performances: task accuracy, response

time, and lane keeping accuracy. Task accuracy measures how the participant responds to the



stimuli. In particular, we measure the number of missed stimuli for the three different kinds,
that is, braking, road signs, and braking combined with road signs. Response times are strictly
related to the previous measure since they represent the time interval between a stimulus and
the corresponding response (if it took place). Lane keeping, instead, measure how much the
participant’s car diverged from the center of the lane, while they were subject to stimuli and
distractors. It is measured using two different average lateral deviations, called SLDP1 and
SLDP2. SLDP1 is the average distance from the center of the lane, measured in the time interval
between a stimulus and the corresponding response (after a maximum of 2.5 seconds). SLDP2,
instead, is measured between the response and 1.5 seconds after.

3. Results

The data collection is not yet completed. Therefore, we present only partial results, which,
however, we believe are relevant. In particular, the experiment with the younger group has
been completed, while with the elderly we have tested only 11 participants out of 27.

The focus of this paper is on comparing the performance of young and elder participants, not
on comparing the effect of different types of tDCS. Therefore, we present only the results of the
“sham” sessions, i.e., without any type of stimulation. Tables 1 and 2 show descriptive statistics
of task accuracy scores for the young and elderly groups. We can see that there is a large
difference in performance between the two groups in terms of braking accuracy. On average,
an older participant missed 45 brakings per session (a session contains 144 braking stimuli
composed of 72 braking stimuli solely and 72 braking stimuli combined with a sign), which
is a large difference from the young average of 6.14. However, we can see that the standard
deviation for the elder group is also very high; thus, there is a large variability in performance.
This becomes even more apparent when we look at the best and worst participants in the
elder group: the best participant missed 4 brakings, while the worst participant missed 129,
i.e., almost every braking. In contrast, there is much less variability between participants in
the young group. As expected, the combined task, i.e., responding to a braking and to a sign,
is much more difficult than the single task. With an average of 1.29 missed brakings solely,
the young group performed almost perfectly on the task. The performance on the combined
task is worse, but still quite good. On the other hand, the combined task seems to be very
difficult for the elder group, with an average missing rate of 38.27 and a median of 45 over
72 combined stimuli. The results related to missed signs seems to be not relevant, as the two
groups performed very similarly, missing on average less than one stimulus per session. This is
probably due to the fact that the ”sign stimulus” is much larger on the screen compared to the
stop lights and is therefore easier to see.

The statistics for reaction times show no significant difference between the two groups. The
sign response times are almost identical, while there is a difference of 0.1 seconds between the
braking response times. This difference is too small to be relevant, especially considering the
standard deviation of the two groups. The same is true for the lane keeping capabilities too. In
summary, we found a large difference in driving performance between the groups of young
and elder participants. This difference mainly concerns the ability to respond to the braking of
another car. As expected, participants missed more brakings when the stimulus was presented



in conjunction with another stimulus or distractor. This is significant because in real-world
road traffic there is a large number of visual stimuli, many of which should be suppressed to
maintain attention on the main task. In addition, timely braking is essential for safe driving.
Therefore, it should be used as a measure of a person’s driving ability.

Table 1
Task accuracy of the young group: number of missed brakings (br) during braking only stimuli (br.
solely), combined stimuli (br. comb,) and total. The same nomenclature is used for sign stimuli (si) too.

Missed br. Missed br. solely Missed br comb. Missed si. Missed si. solely Missed si. comb.

mean 6.14 1.29 4.86 0.79 0.39 0.39
std 7.22 1.94 5.87 0.99 0.69 0.63
min 0.00 0.00 0.00 0.00 0.00 0.00
median 3.50 1.00 3.00 0.50 0.00 0.00
max 23.00 8.00 21.00 3.00 2.00 2.00

Table 2
Task accuracy of the elder group: number of missed brakings (br) during braking only stimuli (br. solely),
combined stimuli (br. comb,) and total. The same nomenclature is used for sign stimuli (si) too.

Missed br. Missed br. solely Missed br. comb. Missed si. Missed si. solely Missed si. comb.

mean 45.00 6.73 38.27 0.91 0.27 0.64
std 34.53 18.47 21.83 1.22 0.47 0.92
min 4.00 0.00 4.00 0.00 0.00 0.00
median 49.00 0.00 45.00 1.00 0.00 0.00
max 129.00 62.00 67.00 4.00 1.00 3.00

Table 3
Response times (rt) and lane keeping performances of the young group.

Braking rt (s) Secondary rt (s) sdlp1 (m) sdlp2 (m)

mean 0.73 0.89 0.06 0.06
std 0.22 0.19 0.09 0.08
min 0.35 0.49 0.00 0.00
median 0.69 0.86 0.03 0.05
max 1.95 2.49 1.75 1.75

4. Conclusions

We propose a protocol for assessing driving capabilities using a simulator. The protocol is
designed to be widely applicable, easily reproducible, and cost-effective. Given these require-
ments, we believe that the use of virtual reality is essential and offers several advantages over
a real driving activity. We used the protocol to quantify age-related differences in driving



Table 4
Response times (rt) and lane keeping performances of the elder group.

Braking rt (s) Secondary rt (s) sdlp1 (m) sdlp2 (m)

mean 0.83 0.91 0.07 0.07
std 0.30 0.21 0.11 0.10
min 0.41 0.62 0.00 0.00
median 0.75 0.86 0.04 0.05
max 2.32 2.35 1.73 1.82

performance and to test the effectiveness of different types of non-invasive neuromodulation.
The number of missed responses to stimuli appears to be the main performance affected by
aging. In contrast, we found no relevant difference in reaction times. Nevertheless, within
our framework, additional measures can be easily implemented if needed. Moreover, different
types of environments and traffic models can be used, as well as different types of distractors,
e.g. auditory distractors. With this work, we aim to show the effectiveness of virtual reality
environments in assessing age-related differences in driving behavior. Assessing a decline is
the first step towards mitigating it, an area where AI techniques have achieved great success in
recent years. However, real-life assessment can be problematic for some activities and therefore
may hinder progress in this area. For this reason, we believe that virtual reality can be of
great help in this context. On the other hand, we recognize that there may be differences in
driver behavior between virtual reality and real-world driving activities. We believe that this
difference needs to be assessed and quantified to further advance the use of virtual reality in
the assessment of real-life activities.
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