
The History, Present, and Future of ETL Technology
[Test-of-Time Award - Invited Talk]

Alkis Simitsis
Athena Research Center

Athens, Greece
alkis@athenarc.gr

Spiros Skiadopoulos
University of the Peloponnese

Tripolis, Greece
spiros@uop.gr

Panos Vassiliadis
University of Ioannina

Ioannina, Greece
pvassil@cs.uoi.gr

ABSTRACT
There is an abundance of data, but a large volume of it is unusable.
Data may be noisy, unstructured, stored in incompatible for direct
analysis medium or format, and often expensive to access. In most
practical cases, the data needs to be processed before it can be
used to extract valuable business insights. We refer to the non-
trivial, end-to-end operation of extracting intelligence from raw
data as an ETL process. In this paper, we review how the ETL
technology has been evolved in the last 25 years, from a rather
neglected engineering challenge to a first-class citizen in analytics
and data processing. We present a brief historical overview of
ETL, discuss its various applications and incarnations in modern
data processing environments, and argue about exciting, feasible
or wishful, potential future directions.

KEYWORDS
ETL, Analytics, Business Intelligence, Data Science, Data Engi-
neering, Data Warehouses, Data lakes, User-Defined Functions

1 THE HISTORY
With the advent of database technology in the ’80s and ’90s,
enterprises employed online transactional processing systems
(OLTP) that offered efficient ways to storing, querying, and up-
dating transactional and operational data. In most practical cases,
a relational database management system (RDBMS) was used to
manage OLTP. OLTP systems have been designed for application-
oriented collection and recording of data, and for keeping the
most current state of the enterprise. Therefore, they were opti-
mized for multiple, concurrent, and fast writes and reads, ensur-
ing the four primary and essential properties of a transaction:
atomicity, consistency, isolation, and durability (a.k.a. ACID prop-
erties).

Having solved the data housekeeping and data logistics prob-
lem, the inevitable following necessity for enterprises was to
put their data into a profitable use by getting insights into their
data and operations. To this end, a new family of data systems
designed to handle analytical processes started becoming popular
around the mid ’90s. These systems were called online analytical
processing systems (OLAP) and have been the cornerstone of
business intelligence and decision support making. Under the
hood, OLAP employs a data warehouse (DW) or enterprise data
warehouse (EDW) specifically designed to store and manipulate
the data for analytical processes. The data warehouse serves as an
information system that maintains historical and commutative
data, essentially comprising the full analytical history of an en-
terprise. It is generally optimized for read-only, complex queries

Copyright © 2023 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

typically performing heavy operations such as user-defined func-
tions, aggregates, and multiple complicated joins, aiming at what-
if scenarios and business analysis.

Table 1 lists core characteristics of OLTP and OLAP systems.
Clearly, the two classes of systems share little commonalities.
Still, the data needs to flow from OLTP (the recent state of the
enterprise) to OLAP (the history of the enterprise); a task that is
neither trivial nor obvious. This design gap is filled by dedicated
processes that govern the data movement from one system to the
other. These processes are collectively known as ETL processes.

OLTP OLAP
Recent operational data Historical data
Size in GBs, TBs Size in TBs, PBs
Simple queries Complex queries
Low latency High latency
Read/write operations Read operations
Row-store Column-store
Day-to-day operations Analytics, decision-making

Table 1: OLTP vs. OLAP

1.1 What is ETL?
In their original form,which is still inherent until today, Extraction-
Transformation-Loading (ETL) processes describe (a) the identifi-
cation and extraction of (relevant) data from various operational
sources, (b) the transformations needed to cleanse and customize
this data, and finally, (c) the loading of the data into a data ware-
house. Figure 1 illustrates an abstract ETL process. The process
starts with data collection from data providers, such as relational
databases and files, and extracts either complete snapshots or
differentials of the data sources. This data is propagated next to
a Data Staging Area (DSA), where the data transformation (e.g.,
customization, integration, computation of new values and/or
records, isolation of problematic records) and cleansing takes
place, before it is loaded to a target data warehouse that com-
prises fact and dimension tables.

Figure 1: An abstract ETL process (source: [124])

1.2 Challenges
In the early days, this conceptually straightforward process came
with several research and engineering challenges.

Schema mapping. At the schema level, we need to map one
or more source schemas to one or more target schemas. This
problem has been studied extensively in various flavors. From a
formal point of view, schema mappings are specifications, typi-
cally expressed as a logical formalism, describing at a high level
the relationships among schemas, without dealing with imple-
mentation details at the physical level. Schema mappings are
building blocks for data integration and data exchange. Data in-
tegration focuses on the problem of querying across autonomous
and heterogeneous data sources and aims at synthesizing data
from different sources into a unified view under a global schema
(mediated schema). The initial works are classified as (a) Local-
as-View, where a source is described as a view expression over a
mediated schema, (b) Global-as-View, where a mediated schema
is described as a view over the data sources, and (c) as various
combinations of these (see also [56, 92]). Data exchange aims at
transforming a source instance to a target instance (materialized
instance) in a way that satisfies the specifications of the schema
mapping and accurately represents the source data [41, 42, 81].

Data cleansing and quality. Data quality is a major concern for
ETL. Dirty or erroneous data could lead to suboptimal decisions
and unreliable analysis. There has been a significant amount of
work on this topic, which still remains an open problem. Exam-
ple approaches proposed for data cleaning include rule-based
techniques where integrity constraints are used to express data
quality rules, qualitative techniques that employ machine learn-
ing to improve accuracy and efficiency of cleaning tasks, duplicate
detection, automated or user-based error detection, and so on.
See also [27, 40, 66, 85, 86] for more details, and [48, 104, 114] for
a few early data cleaning tools.

Complex transformations. Such schema changing and data
cleansing transformations typically cannot be expressed with
traditional relational operators and require extra care. Similarly,
other frequently used ETL transformations include data pivot-
ing [29, 167], one-to-many mappings [26], data lineage [28], gen-
erating surrogate keys and slowly changing dimensions [80],
schema changes such as removing fields, splitting a record across
multiple tables, deriving entirely new data from existing values
(e.g., ranking items based on the frequency of their values, com-
puting the interval between a given moment and a timestamp
withing the data), etc. Although researchers have investigated
such transformations in isolation focusing mainly on efficiency
and semantics enrichment, dealing with pipelines of such trans-
formations increases significantly the complexity of the problem.

Quality of ETL processes. ETL design lacks a rigorous method-
ology and standardization. Typically, ETL processes are designed
based on experience, good practices, and common sense. Several
techniques have been proposed to measure the quality of the
design by looking into metrics such as data freshness and con-
sistency, resilience to failures, maintainability (e.g., complexity,
modularity, coupling), and so on [102, 131, 149, 153, 171].

Engineering aspects. There are also several research challenges
at the physical level concerning practical issues such as orches-
trating, scheduling, optimizing, and tuning ETL processes. A
non-exhaustive list includes: (a) Deciding cadence: the ETL pro-
cess runs periodically as it may affect the efficiency of the opera-
tional sources and also is generally computationally expensive.
(b) Data types: there may be a multiplicity of types at the source
side ranging from structured or semi-structured to completely
unstructured, e.g., relational, flexible schema (xml, avro, json),
graph, text, spatial, images, etc. (c) Variety of sources: they can be
heterogeneous, federated, distributed, etc. (d) Configuration: an

Figure 2: Papers containing ETL in their titles [source: DBLP]

Figure 3: ETL and DW papers vs. all (top) and ETL vs. DW
papers (bottom) - reference period 1999-2007 [source: DBLP]

ETL process may involve multiple systems and thus, its tuning
may have many knobs. (e) Programming heterogeneity: an ETL
process may be implemented in parts or as a whole either as
custom-made scripts in a scripting language, or may employ SQL
constructs such as COPY statements or dedicated connectors,
user-defined functions, lambda functionality, or may be designed
using one of the manyworkflow/ETL tools. (f) Determining batch
size: an ETL process may work with either batches of data or data
in a finer granularity (e.g., micro-batches, streaming, real-time).

1.3 Early solutions
Typically, production follows research –but this did not happen
in the case of ETL. ETL tools in one form (e.g., custom scripts)
or in another (e.g., specialized tools) exist in production for over
40 years. For example, as early as in 2003 there were 200+ ETL
tools in the market [123]. Interestingly, there was a much slower
adoption of the problem by the research community, where the
first research approaches appeared in the early ’00s. Figure 2 illus-
trates the distribution of peer-reviewed research papers related
to ETL over the course of the last 20 years. Our research shows
that in the period 1999-2007, on average, ETL papers comprised
approximately the 10% of the total papers related to the data
warehouse technology and less than 1% of the total papers in
the same reference period (see also Figure 3 for publications in
popular venues of the data management research community).

ETL design. A significant number of the initial works focused
on ETL design, mostly at the conceptual and logical (or physi-
ological) levels. This is a direct consequence of a very practical
problem that enterprises and practitioners had to face in a data
warehouse project, especially at its early stages. In most cases,
the schemas of the OLTP and the OLAP systems were already
in place and the task at hand was to develop an efficient and
scalable design to propagate data from the former to the latter.
Beside the inherent complexity of the task, an extra challenge
was imposed by the lack of any kind of methodology, formalism,
standard, or even recorded collective experience in designing and
developing ETL processes. The majority of the solutions were ad
hoc, in-house built solutions that naturally were hard to maintain
and more importantly, difficult to reuse.

The first research attempts to methodological ETL design ap-
peared in the context of conceptual ETL design. The first such
workwe know of, introduced a graph-theoretical approach to ETL
conceptual modeling, representing transformations as ETL activi-
ties and formally defining the inter-attribute relationships among
them [170]. It also introduced a palette of frequently used ETL
activities –the first ever attempt to classify ETL transformations–
argued (correctly, as the history has shown) that defining a
closed set of transformations is both infeasible and impractical,
and instead proposed a customizable, extensible, and principled
method to allow designers enrich it further with custom-made, re-
occurring ETL activities. Later attempts to conceptual modeling
covered a large variety of aspects, including stricter formalism
through: (a) UML modeling enabling nested processes, swim-
lanes, and multiple levels of zooming [97, 161]; (b) BPMN and
BPEL modeling [2, 3, 14]; (c) business process models [33, 175];
(d) hypercubes [174]; (e) semantic web technologies employ-
ing ontologies to automate the construction of ETL design [144,
146, 147, 160]; and (e) web services technology to describe the
ETL design [120]. Other approaches studied methods to ETL
design driven by functional/non-functional requirements [68–
70, 118, 145, 150]. Graph-based modeling has also been pro-
posed to capture the data flow at the logical level from source
schemas to a target data warehouse, including the metadata in-
volved, direct and derived relationships among the various data
flow constructs, and template mechanisms to enable reusable
ETL macros [134, 168–170, 172]. There is also work describ-
ing the automated mapping from conceptual to logical mod-
els [13, 125, 130].

Optimization. Another line of research work has dealt with
the optimization of ETL processes, focusing either on optimizing
the end-to-end ETL process [121], or on optimizing challenging
ETL transformations and functionalities.

A first approach to ETL optimization modeled the problem
as a state-space problem, where given an ETL process the op-
timizer returned a semantically equivalent process having the
best execution time possible [132, 133]. Each state is an ETL
process represented as an acyclic directed graph with relations
and operations as nodes and data flow relationships as edges. A
transition applied to a state produces a new state. Transitions
considered include: swap, factorize, distribute, merge and split.
Later approaches studied the data flow optimization problem
from several angles, including: (a) optimizing data flows for fault-
tolerance [138, 176]; (b) identifying strategies for intermediate re-
sults materialization [101]; (c) parallelization and partition-based
workload scheduling [6, 126, 154, 158]; (d) physical design and
scheduling [74, 163]; (e) cost-based optimization with missing or
incomplete statistics [55]; (f) optimization of data flow programs

with MapReduce-style UDFs [62, 63, 117]; (g) multi-objective
data flow optimization, considering for example in tandem objec-
tives such as performance, maintainability, fault-tolerance, and
so on [32, 33, 135]; and (h) multi-engine data flow optimization,
following an engine-agnostic approach [36, 71, 72, 136, 137, 139,
148]. More details on data flow optimization can be found in
research surveys [5, 61, 87, 165].

Example approaches to optimizing individual ETL related tasks
include snapshot difference as an efficient extraction of delta
values [88, 90], data mappers [26], pivot/unpivot [29], efficient
data cubes [142, 143], lineage of data transformations [28], data
cleansing [48, 104, 114], efficient resumption of interrupted data
flows [89], change-table techniques for incremental view mainte-
nance [53], cardinality estimation [155], ETL tasks in the context
of Map-Reduce [94, 95], and real-time processing of ETL opera-
tions [23, 67, 75, 98, 110, 111, 127, 159, 166].

ETL lifecycle. Several research approaches investigate adminis-
tration aspects in ETL technology, such as monitoring and testing
through regression tests [156], explaining ETL processes/tasks
with natural language descriptions [128, 129, 156], and managing
evolution in ETL processes [68, 105–107]. Researchers have also
worked on standardization efforts, either through the identifica-
tion of frequent ETL patterns [152, 167] or the specification of
ETL related benchmarks [21, 131]. In addition to these efforts,
a handful of research ETL prototypes has appeared in the last
20+ years [e.g., 9, 48, 70, 104, 114, 140, 151, 157, 172]. There is
also a curated list of popular ETL frameworks, libraries, and
software [24].

1.4 Impact
As the research thread started well beyond the time the market
has been awashwith commercial ETL tools, it was challenging for
the research results to influence significantly the existing industry
of traditional ETL offerings. With the exception of numerous
consulting engagements [135] where several of the early ETL
design approaches have been put to the test, only about a dozen
leading commercial ETL offerings have adopted several of the
optimization techniques described earlier. (Although the actual
number of tech transfers could indeed be larger, as the majority
of the commercial tools does not disclose how they operate.)
Nonetheless, research has undoubtedly helped shape the next
generation of ETL technology, which comprises the Present.

2 THE PRESENT
2.1 Evolution of the ETL architecture
Early approaches revolve around the traditional ETL architecture
shown in Figure 1. In the pre-cloud era, when resources were
expensive and scarce, this architecture was the only option as the
three phases, extract, transform, and load, were run in concert as
a pipeline, and a breakdown in one would frequently impact the
others. Traditional ETL has been realized mainly in two ways:
custom ETL and batch ETL. Custom ETL is built in-house using a
combination of SQL and scripts in Python, Hive, etc. for bespoke
target data warehouse settings. It provides great compatibility
and usability at the cost of being time-consuming, labor-intensive,
and error-prone. Batch ETL comes with the following characteris-
tics: data processing in batches, periodic execution (once per day
or per week), high latency, disk-based transformations, initially
designed for databases, multiple copies of the data from sources
to DSA then to DW. This is still a great solution for an enter-
prise affording to wait to collect and analyze data. However, as

nowadays this is not the most popular scenario, later efforts have
relaxed all these parameters either individually or in tandem.

To satisfy the need of collecting and processing the data as
soon as data changes happen, a family of real-time data integra-
tion solutions was formed. The first approach was the so-called
change data capture (CDC), which is also known as logical repli-
cation. CDC detects (usually via database logs) and moves in
real-time only the changed data, as opposed to moving complete
data snapshots. This solution offers a near real-time data move,
has low latency, but it has limited transformation capabilities
and it supports mainly database sources. Because of the rather
simple transformations typically met in CDC schenarios, CDC
could also be characterized as a type of an ELT solution.

The ELT approach1 moves the transformation phase from
the integration platform, which now would simply collect and
deliver the data, to the target data platform. Hence, ELT loads
the data directly into the eventual host system and performs
the transformations in-situ. In many practical cases, ‘EL’ now
effectively means data replication and the challenge is to perform
it efficiently, securely, and with high fidelity. ELT has become
increasingly popular due to a number of factors. Data is being
generated in ever-larger volumes, often without human input.
Storage’s cost is getting cheaper either on-prem or in cloud. Com-
pute’s cost has decreased over time with the plurality of open
source tools (e.g., Apache Spark, Apache Hadoop, Apache Beam)
and cloud offerings (e.g., AWS, Microsoft Azure, and Google
Cloud). Modern cloud data platforms offer low cost solutions to
analyze heterogeneous, remote, and distributed data sources in
a single environment. In combination with real-time data inte-
gration that allows transforming and processing streaming data
in-flight, the data can be ready for analysis the moment it arrives
to the target platform. A definite shift to ELT technology has
happened when enterprises started moving from on-prem data
warehouses built on relational databases to Map-Reduce deploy-
ments (with Hadoop being the most popular at the time), NoSQL
environments, and streaming data platforms (e.g., Kafka, Apache
Flink, Apache Storm), and especially when all these increased
their footprint in the cloud.

2.2 Trends in ETL processing
Based on the evolution of the ETL technology, new types of ETL
(in its various forms, ETL/ELT etc.) solutions have emerged.

Streaming ETL. Modern ETL systems need to handle data
generated by various types of sources at high speeds and at
increasingly larger volumes [22, 166]. As an example, a recent
application collects streaming data from a blockchain accord-
ing to the lambda architecture and prepares it for further anal-
ysis [49]. At the same time, data sources and data consumers
should be able to register to or disconnect from the processing
system fast (horizontal scaling), without interrupting the con-
tinuity of the ETL process. Such requirements have led to the
rise of streaming data integration systems or simply, streaming
ETL [22, 23, 34, 51, 67, 75, 110, 111, 126, 166]. The data trans-
formations carry exactly-once semantics, and are performed in-
flight and usually, in-memory using state-of-the-art (distributed)
stream processing techniques. However, this is exactly one of the
current limitations: not all traditional ETL transformations can be
performed in a streaming fashion due to their pipeline-blocking

1The ELT can also be met in various incarnations such as ELTL, ETLT, etc.; the
main concept however does not change for the purposes of our analysis here.

nature. Enriching streaming ETL capabilities with additional
functionality is an open research challenge.

Cloud ELT. The proliferation of device connectivity (e.g., edge-
computing, internet-of-things), the cheaper storage, the many
and faster connectors have increased the enterprises’ demand for
data to retain their competitive advantage. As the data sets and
the number of available data sources grow larger, the concept of
centralized data centers is aging out. Recent studies corroborate
this, indicating that 81% of all enterprises have a multi-cloud
strategy already laid out or in the works [20]. Hence, ETL/ELT
processes are increasingly involving storage and/or processing
systems hosted partially or entirely in the cloud [50, 96, 179,
180]. Cloud ELT (or cloud native ELT) aims at leveraging the full
potential of the cloud technology: elastic scalability, massively
parallel processing jobs, ability of routinely spin up or tear down
jobs fast, horizontal/vertical autoscaling, run serverless pipelines,
dynamic work rebalancing, flexible resource scheduling, and so
on. Although several modern commercial offerings support some
of these to some extent, how to effectively integrate such features
into Cloud ELT is an excellent research direction for future work.

Reverse ETL. As the analytics technology has progressed, en-
terprises unlock insights from their data that were not available
before. Consequently, a recent trend indicates to treat the data
warehouse as another operational data store that pushes the data
generated by those insights back into the operational sources
the ETL process depends on [30]. For example, customer-related
business data could be used to launch a targeted email marketing
campaign or business insights on poor-performing advertising
data could be sent back to operational sources to help the mar-
keting team form an alternative customer engaging strategy. The
rationale of reverse ETL is simple: each operational source has
an isolated view of its domain, whereas the data warehouse has
a global view and acts as the central repository for the entire
enterprise. Hence, reverse ETL operationalizes business data
by pushing the global view back to each individual operational
source where it can be used in day-to-day business process. In a
sense, reverse ETL closes the loop ELT creates by updating the
systems it collected data in the first place. Still, further research
is required for several challenges, such as schema validation,
efficient sync of business and operational data, reducing the per-
formance overhead imposed to the sources, optimizing pipeline
performance, ensuring the accuracy and consistency of the data
being transferred to the operational sources, and ensuring that
data privacy is not violated.

2.3 Trends in ETL infrastructure
The evolution of ETL technology concurs with new directions
that have opened up in the ETL/DW infrastructure.

Data lakes. A data warehouse, typically, employs a relational
database to capture and store data, which implies the necessity of
a schema (tabular format) to enable SQL queries, and a process,
the ETL process, to implement the required schema mappings. A
significant mindset change that perfectly matches with ELT is the
loose interpretation of a schema and the respective schema map-
pings. Several applications such as analytics, machine learning,
data science, full text search could also work on less structured
data. Hence, another form of data repository has gained mo-
mentum in the recent years, namely the data lake (DL). A data
lake is a centralized repository for all data, including structured,
semi-structured, and unstructured. Data lakes have emerged to
handle raw data on cheap storage, primarily, for data science

Data warehouse Data lake
Schema Fixed, predefined,

schema-on-write
Defined at the analysis,
schema-on-read

Data Structured, processed All data
Data quality Curated, ground truth Raw data
Accessibility Changes: complicated

and expensive
Highly accessible, fast to
update

Applications BI, reporting,
dashboards,
visualizations

ML, data discovery, data
exploration, operational
analytics

Users Business analysts,
developers

Business analysts, data
scientists and engineers,
developers, architects

Table 2: Data warehouse vs. Data lake

Figure 4: The BI analytics andML evolving landscape, from
left to right: (a) traditional ETL/DW architecture, (b) two-
tier DW/DL architecture, (c) lakehouse architecture

and machine learning (ML). They follow a schema-on-read ar-
chitecture, which allows storing data at low cost, with popular
storage choices being HDFS in the first years and more recently,
the cloud data lakes (e.g., S3, ADLS, GCS) that nowadays offer
cheaper and more reliable archival storage.

On the flip side, generally DL does not offer typical database
features such as data quality, support for transactions, consis-
tency and isolation, whereas proper governance is essential to
avoid data lakes becoming data swamps. Research has dealt with
the problem of enriching data lakes with organizational function-
ality to assist user navigation and data exploration in various
ways, including (a) optimization over a graph-based organiza-
tional structure to maximize the expected likelihood of discov-
ering tables by navigating [103], or (b) search and management
solutions for data science platform operating on schema-agnostic
data repositories such as data lakes [181, 182].

Table 2 lists notable differences between data warehouses and
data lakes. Enterprises typically build a two-tier data architecture
that combines both systems, to enable BI on the data warehouse
and ML on the data lake (see also Figure 4). However, challenges
include increased storage needs for multiple data copies, extra
infrastructure and operational costs, lack of trail of past analytics
on the data, security and access control, and reliability, as keeping
DL and DW consistent is troublesome and expensive.

Data lakehouse. Recently, several efforts have attempted to
bring database and data warehouse capabilities to the data lake
storage, by developing open-source storage layers that work
seamlessly with popular compute engines such as Apache Spark,
Presto, Flink, Hive, etc. Notable approaches include Databricks’
Delta Lake [35], Netflix’s Apache Iceberg [65], and Uber’s Apache
Hudi [60]. Such efforts have led to the most recent architectural
shift, namely the data lakehouse, (LH) [11].

The lakehouse architecture aims at overcoming the challenges
of the two-tier, DW and DL design and providing the best of both

in a way that would be less complex to handle for users, reliable
through simpler ETL/ELT, enabling ML and advanced analytics,
and SQL-like performant (see Figure 4-right). Although the most
popular commercial cloud providers already host lakehouse ca-
pabilities, the landscape of lakehouses is yet developing. Still,
the various offerings converge to a clear set of characteristics. A
data lakehouse is a data management system that implements
the functionality of structured DW on top of unstructured DL. It
supports powerful management and query optimization on par
with DW, and operates on low-cost storage in an open format
(e.g., Apache Parquet) accessible by the various systems typically
operating in DL. This setup is an excellent fit for cloud with com-
pute and storage separation. For example, BI applications would
run on a compute cluster and ML applications would run on a
GPU cluster, while both directly accessing the same storage (i.e.,
data, metadata, catalog, indexing, caching), either on cloud or
on-premise storage systems such as HDFS. Early research work
presents blueprints for a lakehouse architecture [178] and Pho-
ton, a vectorized query engine with Apache Spark API designed
for lakehouses [17, 18].

Currently, early lakehouse offerings merely provide hooks
to ETL tools to enable moving data to their storage layer (e.g.,
Databricks’ Delta Lake). However, there is more work to be done
as ETL tasks need to be first-class citizens in a lakehouse archi-
tecture to orchestrate and govern data synchronization, meta-
data population, propagation of data to the applications through
appropriate APIs (e.g., SQL, DataFrame, etc.), index and view
maintenance, and so on. Example future directions include: (a) in-
tegrate ETL within a lakehouse platform, (b) devise strategies
to opportunistically offload physical level transformations to
ETL, (c) investigate real-time, streaming ETL capabilities and
reverse ETL logic for lakehouse, and (d) provide a holistic view
to tasks such as data replication, data discovery, event streaming,
workflow management, and so on, as part of a generalized ETL
process.

Multi-engine environment. With the plethora of databases mar-
keted either as relational databases, NoSQL, SQL-on-Hadoop,
or NewSQL, enterprises tend to employ multiple data systems,
inevitably creating multiple compute and storage silos within an
organization with each potentially having its own data model,
query syntax, metadata, catalog, and so on. And often BI and
advanced analytics require integrated access to all such data en-
gines of the enterprise. However, given the variety of available
systems, developing optimized software to query and manage
data across heterogeneous systems is complex and error-prone.
Although the general problem has been studied before in the con-
text of federated databases [e.g., 31, 38, 119] and mediators [e.g.,
57], in recent years, it has gained a renewed interest due to the
unprecedented complexity imposed by the numerous database
offerings routinely used in production.

The so-called polystore systems have been proposed to deal
with this problem. Although their architecture and functionality
differ, they all provide a means for mediation (either through an
intermediate language or inherently) to cope with the system
heterogeneity and also hooks to optimization and performant exe-
cution. Example such systems proposed include (listed in chrono-
logical order): HFMS [139], MISO [91], BigDAWG [39], IReS [37],
Musketeer [52], CloudMdsQL [82, 84], RHEEM [1], Muses [73],
Hybrid.Poly [108], and Polypheny-DB [173]. There have also
been proposed polystore benchmarks [76, 83] and recently, a
database operating system specifically designed for polystores
(DBOS) [25].

Most of the so far work has focused on query usability and
performance. There is little to none work regarding how to popu-
late polystores efficiently and keep them in sync. Previous work
has shown that optimizing data flows spanning multiple engines
is not a trivial task, as the optimal assignment of (sub)flows to
engines involves decisions on operations such as flow composi-
tion/decomposition, function shipping vs. data shipping, parallel
flow execution, flow workload management, and so on [e.g., 136].
Hence, a future direction would be to study ETL processes in the
context of multi-engine, multi-storage execution environments.

2.4 Alternatives to ETL
ETL technology is not the only means to enable extracting busi-
ness insights from operational data. Alternative emerging direc-
tions include HTAP systems and in-situ processing.

Hybrid systems. Recent advances in research and industry
related to OLTP and OLAP technologies, such as scalable transac-
tional management and scalable analytics, and also to in-memory
and cloud native database technologies, have enabled running
transactional processing and analytics on the same database. This
emerging architecture is collectively called HTAP or hybrid trans-
actional and analytical processing. In principle, HTAP reduces
latency in analytics by eliminating the needs for multiple copies
of the same data and for moving data from operational databases
to data warehouses via ETL processes. The main challenge in
HTAP is to efficiently accommodate two very different work-
loads, the operational (many small transactions, high fraction of
updates) and analytical (complex, long running, resource demand-
ing queries) on the same database system without the execution
of the one interfering with the execution of the other.

Initial efforts approached the problem with an orchestration
layer on top of two carefully inter-connected OLTP and OLAP
engines and showed the potential of the hybrid architecture
(e.g., see Vertex [7] and CuteDB [8]). Parallel efforts include
Hyper, which relies on optimistic multi-version concurrency
control (MVCC) to mediate access among transactional and an-
alytical queries [46, 78, 79]; Caldera, a prototype HTAP engine
that leverages emerging hardware to handle segregated work-
loads and in particular, it stores data in shared memory and
exploits GPGPUs to boost analytical workloads and CPUs for
transactional workloads [10]; WiSer, that performs lazy resolu-
tion of read-write conflicts and aggregation constrain violations
in the serialized data [16]; and commercial HTAP systems that
approach the problem by employing MVCC for snapshot isola-
tion and/or combining row-store with column-store capabilities
(DB2 [113], SAP HANA [43], TiDB [59]). Recent studies inves-
tigate techniques such as elastic resource scheduling toward
adaptive HTAP [115] and present a performance characteriza-
tion of HTAP workloads [141]. More details can be found in a
recent tutorial [93].

In-situ processing. Another direction is to perform in-situ query
processing to avoid the ETL process all together and thus, reduce
the data-to-query time. That is to avoid data loading while still
maintaining the whole feature set of a modern database system.
Toward this end, NoDB is a prototype that considers raw data files
a first-class citizen, fully integrated with the query engine [4].
The core limitations of this approach include the repeated parsing,
the tokenizing overhead, and the expensive data type conversion.
In-situ approaches utilize adaptive indexing that maintains po-
sitional information to provide efficient access to raw data files,
together with a flexible caching structure [4, 19, 99, 100].

3 THE FUTURE
One’s angle could be that the evolution of ETL technology seems
to have made a full circle from ‘a tedious engineering task’ to
‘a challenging research design and optimization problem’ and
back to ‘it has been absorbed by the data ecosystem evolution’.
Another view could be that ‘any data move from point A to point
B that involves a transformation constitutes an ETL process’
and in that sense, ETL is and will always be an integral part of
data technology. Our take is that the ETL technology remains
relevant as long as it adapts to the modern business needs and
data technology advancements. From a research point of view,
there are several potential directions for future work.

New ETL pipelines due to architectural shifts. The evolving data
ecosystem we briefly described in ‘The Present’ has created new
challenges for the ETL technology. We already mentioned several
potential improvements and current limitations of emerging ETL
flavors, namely streaming ETL, cloud native ELT, and reverse
ETL, along with the challenges imposed by the new architectures,
such as the lakehouse architecture and the multi-engine (poly-
store) environment (see Section 2). In particular, the lakehouse
architecture opens up engaging opportunities for a variety of
ETL use cases, which would leverage the combined functionality
of the analytics and the operational systems to feed business
intelligence, multimodal processing, and AI/ML ETL pipelines.
The first pipeline resembles traditional ETL and powers reports,
dashboards, and SQL-like analysis of structured data. The sec-
ond pipeline targets an emerging use case involving complex,
potentially streaming, analytics employing ML operations on
multiplicity of data types (text, images) using a variety of pro-
gramming languages and frameworks. The third pipeline brings
full-blown ML pipelines within the scope of ETL providing a
single pane of glass for data scientists and analysts to perform
their analytics tasks. Although admittedly a non trivial task, we
believe that adapting to the challenges of the new data stack will
constitute the immediate next directions for the ETL technology.

UDF-fueled in-engine ETL. Beside data connectors and a hand-
ful of SQL-like operations, most ETL functionality takes place
outside data engines, as the large majority of ETL operations
implement complex procedural logic that cannot be expressed
by means of declarative SQL. Most data engines support user-
defined functions (UDFs), which in principle could implement
many operations frequently encountered in ETL processes. How-
ever, UDF performance until recently was subpar due to the
impedance mismatch between UDF execution and SQL process-
ing. Recent research efforts and systems have presented signif-
icant, game-changing performance improvements in UDF exe-
cution in modern data engines, exploiting the various low-level
hooks and optimizations such engines support, including vector-
ization, JIT/LLVM compilation, tuple/vector-at-a-time execution,
function inlining, in/out-process execution, parallelization, and
so on [44]. Example research prototypes and systems supporting
performant UDFs include Froid [112], Mutable [54], ReSQL [47],
UDO [122], and YeSQL [45].

Having performant UDFs, a valid proposal would be to move
the ETL processing inside the data engine and exploit all the
nice properties and features it offers, such as query optimization,
ACID properties, out-of-the-box parallelization, optimal stor-
age layouts, etc. Still, UDFs should not necessarily be seen as a
competitor to ETL. On the contrary, they arise as a powerful com-
panion to ETL and especially, ELT approaches, as the entire ETL
process or part of it can now execute within the database. This

enables additional optimization opportunities as the database
query optimizer can participate in the ETL process and optimize
(part of) it. Optimization strategies such as operator fusion or
pushing down/up operators between ETL and the database form
interesting future directions. Another intriguing challenge would
be to determine how to split an ETL process to ETL and UDF op-
erations; for example, control flow logic and orchestration would
likely remain outside the data engine.

Learning ETL. Managing, tuning, and optimizing ETL pro-
cesses is an extremely complex task due to the plethora of ETL
operations, the plurality of inter-connected compute and storage
systems, the variety of processing modes (batch, streaming, on-
demand), the often conflicting objectives (e.g., performance vs.
maintainability vs. fault-tolerance), and the variability of the size,
structure, and complexity of ETL processes. Calibrating these fac-
tors to generate ‘good’ (as in not-too-bad) ETL designs is tough
–if not infeasible– to be performed manually. Early solutions to
ETL optimization have provided reasonable solutions, as long
as the assumed cost models are accurate (see Section 1.3); but,
unfortunately this is often not the case in practical applications.

Recent advances in learning query optimization aim at com-
plementing or even replacing a cost-based query optimizer with a
learning optimizer, which aims at learning the behavior of query
operators and query patterns over time and tends to learn also
from previous decisions (i.e., execution plans) [162]. The concept
could be explored in ETL optimization as well [58]. The various
factors that affect ETL execution, such as operators, configura-
tion parameters, data flow patterns, data sources, metadata, past
executions, etc. could be encoded appropriately and then used to
train a machine learning model. Techniques such as reinforce-
ment learning or a supervised approach that have been tested
in learning query optimization could be a good starting point
toward learning, self-managed ETL.

Private ETL. A long overdue and rather disregarded affair in
ETL technology is the issue of data privacy. To the best of our
knowledge, research has not dealt with this topic so far. ETL tools
have focused mostly on data protection and data security due
to the worldwide restrictive legislation such as GDPR, HIPAA,
CCPA, etc. Leading ETL tools provide hooks, such as encryption
and hashing personally identifying information (PII), to assist
ETL designers protect sensitive data and abide by regulatory
compliance. Cloud-based solutions allow designers choose where
their data is processed and the hosting provider to use in order
to meet regulatory or data residency requirements. Most ETL
tools provide also functionality to ensure data security, including
the usual practices such as monitoring https traffic, TLS 1.2+
external connections, multi-factor authentication, compliance
and regulatory assurances via SOC, PCI DSS, ISO/IEC 27001, etc.

However, providing private ETL computations is imperative
in privacy sensitive applications, e.g., medical or financial appli-
cations. A timely and practical, future research direction is to
explore privacy preserving ETL operations employing techniques
such as anonymization, differential privacy, homomorphic en-
cryption, secure multi-party computation, etc. typically used in
decentralized data and federated machine learning scenarios.

Self-service data preparation. From a usability perspective,
users need a single pane of glass and thus, they should be able to
instantly spin up customized dashboards to observe key metrics
in real-time, through on-demand reporting, dynamic graphical
interfaces, and low-code or no-code environments (e.g., with natu-
ral language descriptions processed by text-to-SQL systems [77]),
without depending on central analysis, a full-blown ETL process,

or complex programming. This form of personal ETL should pro-
cess data already transformed into an appropriate, standardized
format and operate at a significantly smaller scale than traditional
ETL. Challenges include reliably converting a data analysts’ data
to a standardized format, s.t. it would be joinable with their other
data, ideally in-situ. From a technical standpoint, personal ETL
could borrow techniques from incremental ETL or on-demand
ETL based on probabilistic query processing [15, 177].

It’s a new world –again. The operational and analytics ecosys-
tems, although evolving, they both continue to thrive and play
an integral role to the data stack. However, new applications
are gaining momentum and at a large extent drive the changes
in the data technology. Data and business teams use modern
tools to seamlessly generate insights and value from data, such
as data workspaces that provide an end-to-end view of the core
analytics workflow, reverse ETL that pushes insights back to
the operational sources and helps automate the insight-to-action
process, DataOps/MLOps to increase automation [12, 116, 164],
and various ML application frameworks. Along these lines, new
tasks have emerged as critical components to support key data
processes and workflows, such as data preparation, data explo-
ration, data discovery, data validation, data enrichment, feature
engineering, observability, ML model auditing [109]. Modern
ETL should be influenced by such tasks and provide functionality
beyond schema mappings, transformation, and cleansing.

For example, a 2010’s data analyst used ETL to map two ta-
bles company[name,address] and sales[product,amt] from an op-
erational source to a DW fact table to later perform sales fore-
casting. A 2023’s data scientist expects an ML-ETL tool, given
appropriate input, to (a) identify the relevant csv or json files
in a data lake containing lines as ‘Hewleet Pack|ProLiant DL380

Gen10|https://buy.hpe.com|2,723.54|95054’, (b) recognize that
the files contain information about a rich data type, namely
company, (c) clean erroneous entries ‘Hewleet Pack’ to ‘Hewlett
Packard Enterprise’, (d) identify key features in the data set,
(e) generate a model to forecast sales, and (f) present the right vi-
suals to the user. Each of these tasks could be modeled as an oper-
ation in a modern ETL tool that encapsulates functionality similar
to (or better, in synergy with) automated ML techniques [64].

4 CONCLUSIONS
The ETL technology and data integration in general has been the
cornerstone of business intelligence, decision making, and data
analytics for over 25 years. ETL thrives while at the same time it
evolves along with shifting business needs and data technology
advancements. As researchers and practitioners alike are explor-
ing ways to extract value from large collections of raw data, ETL
is the connecting glue to make this happen. In this paper, we
presented a brief overview of the ETL history, described recent
trends in the end-to-end data stack, and discussed some interest-
ing, in our opinion, future directions that will most likely impact
the next generation of ETL and data integration technology. The
past 20+ years have been educating, enjoyable, and productive in
devising and realizing efficient and effective ways to tame data
intricacies and peculiarities blending a multiplicity of technolo-
gies and applying them in the real world. We look forward to the
next 20 that will be even more exciting and fruitful.

Acknowledgements. We heartily thank the DOLAP 2023
Test-Of-Time Award Committee for the honor and our colleagues
with whom we shared a thrilling 20-year journey in the ETL-
land and beyond. This work has been partially supported by EU
Horizon 2020 programme INODE (grant agreement No 863410).

REFERENCES
[1] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed K. Elma-

garmid, Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour,
Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, Sar-
avanan Thirumuruganathan, and Anis Troudi. 2018. RHEEM: Enabling
Cross-Platform Data Processing - May The Big Data Be With You! -. Proc.
VLDB Endow. 11, 11 (2018), 1414–1427.

[2] Zineb El Akkaoui and Esteban Zimányi. 2009. Defining ETL worfklows using
BPMN and BPEL. In ACM DOLAP. 41–48.

[3] Zineb El Akkaoui, Esteban Zimányi, Jose-Norberto Mazón, and Juan Trujillo.
2013. A BPMN-Based Design andMaintenance Framework for ETL Processes.
Int. J. Data Warehous. Min. 9, 3 (2013), 46–72.

[4] Ioannis Alagiannis, Renata Borovica-Gajic, Miguel Branco, Stratos Idreos,
and Anastasia Ailamaki. 2015. NoDB: efficient query execution on raw data
files. Commun. ACM 58, 12 (2015), 112–121.

[5] Syed Muhammad Fawad Ali and Robert Wrembel. 2017. From conceptual de-
sign to performance optimization of ETL workflows: current state of research
and open problems. VLDB J. 26, 6 (2017), 777–801.

[6] Syed Muhammad Fawad Ali and Robert Wrembel. 2019. Towards a Cost
Model to Optimize User-Defined Functions in an ETL Workflow Based on
User-Defined Performance Metrics. In ADBIS (LNCS), Vol. 11695. 441–456.

[7] Kevin Wilkinson Alkis Simitsis. 2016. Vertex: A Hybrid Database System for
Mixed Workloads. Technical Report HPE-2016-91. Hewlett Packard Labs.
https://www.labs.hpe.com/techreports/2016/HPE-2016-91.pdf.

[8] Olga Poppe Alkis Simitsis, Kevin Wilkinson. 2016. Fast Analytics in Real-time
Operations Management. Technical Report HPE-2016-93. Hewlett Packard
Labs. https://www.labs.hpe.com/techreports/2016/HPE-2016-93.pdf.

[9] Ove Andersen, Christian Thomsen, and Kristian Torp. 2018. SimpleETL: ETL
Processing by Simple Specifications. In DOLAP, Vol. 2062. CEUR-WS.org.

[10] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia
Ailamaki. 2017. The Case For Heterogeneous HTAP. In CIDR.

[11] Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun,
Peter A. Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja
Luszczak, Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski,
Pieter Senster, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID
Table Storage over Cloud Object Stores. PVLDB 13, 12 (2020), 3411–3424.

[12] Anastasios Arvanitis, Shivnath Babu, Eric Chu, Adrian Popescu, Alkis Simit-
sis, and Kevin Wilkinson. 2019. Automated Performance Management for
the Big Data Stack. In CIDR.

[13] Judith Awiti, Alejandro A. Vaisman, and Esteban Zimányi. 2019. From Con-
ceptual to Logical ETLDesignUsing BPMNand Relational Algebra. InDaWaK
(LNCS), Vol. 11708. 299–309.

[14] Judith Awiti, Alejandro A. Vaisman, and Esteban Zimányi. 2020. Design and
implementation of ETL processes using BPMN and relational algebra. Data
Knowl. Eng. 129 (2020), 101837.

[15] Lorenzo Baldacci, Matteo Golfarelli, Simone Graziani, and Stefano Rizzi. 2017.
QETL: An approach to on-demand ETL from non-owned data sources. Data
Knowl. Eng. 112 (2017), 17–37.

[16] Ronald Barber, Adam J. Storm, Yuanyuan Tian, Pinar Tözün, Yingjun Wu,
Christian Garcia-Arellano, Ronen Grosman, Guy M. Lohman, C. Mohan,
René Müller, Hamid Pirahesh, Vijayshankar Raman, and Richard Sidle. 2019.
WiSer: A Highly Available HTAP DBMS for IoT Applications. In IEEE ICDE.
268–277.

[17] Alexander Behm and Shoumik Palkar. 2022. Photon: A High-Performance
Query Engine for the Lakehouse. In CIDR.

[18] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong,
David Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan
Johnson, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, PrashanthMenon,
Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel,
Tom van Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei
Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In ACM
SIGMOD. 2326–2339.

[19] Nikos Bikakis, Stavros Maroulis, George Papastefanatos, and Panos Vassil-
iadis. 2021. In-situ visual exploration over big raw data. Inf. Syst. 95 (2021).

[20] Bill Sorenson. 2020. 10 Cloud Computing Statistics You Need to Know.
Available at: https://netgaincloud.com/ 10-cloud-computing-statistics-you-
need-to-know.

[21] Christoph Boden, Andrea Spina, Tilmann Rabl, and Volker Markl. 2017.
Benchmarking Data Flow Systems for Scalable Machine Learning. In ACM
SIGMOD. 5:1–5:10.

[22] Michal Bodziony, Szymon Roszyk, and Robert Wrembel. 2020. On Evaluating
Performance of Balanced Optimization of ETL Processes for Streaming Data
Sources. In DOLAP, Vol. 2572. 74–78.

[23] Mihaela A. Bornea, Antonios Deligiannakis, Yannis Kotidis, and Vasilis Vas-
salos. 2011. Semi-Streamed Index Join for near-real time execution of ETL
transformations. In IEEE ICDE. 159–170.

[24] Paul Brown. 2023. awesome-etl - list of ETL tools (circa 2023). Available at:
https://github.com/pawl/awesome-etl.

[25] Michael J. Cafarella, David J. DeWitt, Vijay Gadepally, Jeremy Kepner, Chris-
tos Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia. 2020.
A Polystore Based Database Operating System (DBOS). In DMAH@PVLDB
(LNCS), Vol. 12633. 3–24.

[26] Paulo Carreira, Helena Galhardas, Antónia Lopes, and João Pereira. 2007.
One-to-many data transformations through data mappers. Data Knowl. Eng.
62, 3 (2007), 483–503.

[27] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data
Cleaning: Overview and Emerging Challenges. In ACM SIGMOD. 2201–2206.

[28] Yingwei Cui and Jennifer Widom. 2003. Lineage tracing for general data
warehouse transformations. VLDB J. 12, 1 (2003), 41–58.

[29] Conor Cunningham, Goetz Graefe, and César A. Galindo-Legaria. 2004.
PIVOT and UNPIVOT: Optimization and Execution Strategies in an RDBMS.
In VLDB. 998–1009.

[30] Bibhu Dash and Swati Swayamsiddha. 2022. Reverse ETL for Improved
Scalability, Observability, and Performance of Modern Operational Analytics
- A Comparative Review. In IEEE OCIT. 491–494.

[31] Umeshwar Dayal. 1983. Processing Queries Over Generalization Hierarchies
in a Multidatabase System. In VLDB. 342–353.

[32] Umeshwar Dayal, Malú Castellanos, Alkis Simitsis, and Kevin Wilkinson.
2009. Data integration flows for business intelligence. In EDBT (ACM Inter-
national Conference Proceeding Series), Vol. 360. 1–11.

[33] Umeshwar Dayal, Kevin Wilkinson, Alkis Simitsis, and Malú Castellanos.
2009. Business Processes Meet Operational Business Intelligence. IEEE Data
Eng. Bull. 32, 3 (2009), 35–41.

[34] Antonios Deligiannakis, Nikos Giatrakos, Yannis Kotidis, Vasilis Samoladas,
and Alkis Simitsis. 2021. Extreme-Scale Interactive Cross-Platform Streaming
Analytics - The INFORE Approach. In SEA-Data@VLDB, Vol. 2929. 7–13.

[35] Delta Lake. 2023. Delta Lake. Available at: https://github.com/delta-io/delta.
[36] David J. DeWitt, Alan Halverson, Rimma V. Nehme, Srinath Shankar, Josep

Aguilar-Saborit, Artin Avanes, Miro Flasza, and Jim Gramling. 2013. Split
query processing in polybase. In ACM SIGMOD. 1255–1266.

[37] Katerina Doka, Nikolaos Papailiou, Dimitrios Tsoumakos, Christos Man-
tas, and Nectarios Koziris. 2015. IReS: Intelligent, Multi-Engine Resource
Scheduler for Big Data Analytics Workflows. In ACM SIGMOD. 1451–1456.

[38] Weimin Du, Ravi Krishnamurthy, and Ming-Chien Shan. 1992. Query Opti-
mization in a Heterogeneous DBMS. In VLDB. 277–291.

[39] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena Balazinska,
Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and
Stanley B. Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44,
2 (2015), 11–16.

[40] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
2007. Duplicate Record Detection: A Survey. IEEE TKDE 19, 1 (2007), 1–16.

[41] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005.
Data exchange: semantics and query answering. Theor. Comput. Sci. 336, 1
(2005), 89–124.

[42] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. 2004.
Composing Schema Mappings: Second-Order Dependencies to the Rescue.
In ACM SIGMOD. 83–94.

[43] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An
Architecture Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[44] Yannis Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern
Data Engines. In IEEE ICDE.

[45] Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yan-
nis E. Ioannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly
Performant User-Defined Functions in Relational Databases. Proc. VLDB
Endow. 15, 10 (2022), 2270–2283.

[46] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compacting
Transactional Data in Hybrid OLTP & OLAP Databases. Proc. VLDB Endow.
5, 11 (2012), 1424–1435.

[47] Henning Funke, Jan Mühlig, and Jens Teubner. 2022. Low-latency query
compilation. VLDB J. 31, 6 (2022), 1171–1184.

[48] Helena Galhardas, Daniela Florescu, Dennis E. Shasha, and Eric Simon. 2000.
AJAX: An Extensible Data Cleaning Tool. In ACM SIGMOD. 590.

[49] Roberta Galici, Laura Ordile, Michele Marchesi, Andrea Pinna, and Roberto
Tonelli. 2020. Applying the ETL Process to Blockchain Data. Prospect and
Findings. Inf. 11, 4 (2020), 204.

[50] Victor Giannakouris, Alejandro Fernandez, Alkis Simitsis, and Shivnath Babu.
2019. Cost-Effective, Workload-Adaptive Migration of Big Data Applications
to the Cloud. In ACM SIGMOD. 1909–1912.

[51] Nikos Giatrakos, David Arnu, Theodoros Bitsakis, Antonios Deligiannakis,
Minos N. Garofalakis, Ralf Klinkenberg, Aris Konidaris, Antonis Kontaxakis,
Yannis Kotidis, Vasilis Samoladas, Alkis Simitsis, George Stamatakis, Fabian
Temme, Mate Torok, Edwin Yaqub, Arnau Montagud, Miguel Ponce de Leon,
Holger Arndt, and Stefan Burkard. 2020. INforE: Interactive Cross-platform
Analytics for Everyone. In ACM CIKM. 3389–3392.

[52] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen
Clement, and Steven Hand. 2015. Musketeer: all for one, one for all in data
processing systems. In EuroSys. 2:1–2:16.

[53] Himanshu Gupta and Inderpal Singh Mumick. 2006. Incremental mainte-
nance of aggregate and outerjoin expressions. Inf. Syst. 31, 6 (2006), 435–464.

[54] Immanuel Haffner and Jens Dittrich. 2023. A simplified Architecture for Fast,
Adaptive Compilation and Execution of SQL Queries. In EDBT. 1–13.

[55] Ramanujam Halasipuram, Prasad M. Deshpande, and Sriram Padmanabhan.
2014. Determining Essential Statistics for Cost Based Optimization of an ETL
Workflow. In EDBT. 307–318.

[56] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. 2006. Data Integra-
tion: The Teenage Years. In VLDB. 9–16.

[57] JoachimHammer, Hector Garcia-Molina, Kelly Ireland, Yannis Papakonstanti-
nou, Jeffrey D. Ullman, and Jennifer Widom. 1995. Information Translation,
Mediation, and Mosaic-Based Browsing in the TSIMMIS System. In ACM
SIGMOD. 483.

[58] Ian Henry. 2018. Machine Learning Prototype – Au-
tomating ETL. Available at: https://blogs.sap.com/2018/11/09/
machine-learning-prototype-automating-etl.

[59] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen,
Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang,
Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao,
Nicholas Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based
HTAP Database. Proc. VLDB Endow. 13, 12 (2020), 3072–3084.

[60] Hudi. 2023. Apache Hudi. Available at: https://hudi.apache.org.
[61] Fabian Hueske and Volker Markl. 2014. Optimization of Massively Parallel

Data Flows. In Large-Scale Data Analytics. 41–74.
[62] Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas

Tzoumas, Volker Markl, and Johann-Christoph Freytag. 2013. Peeking into
the optimization of data flow programs with MapReduce-style UDFs. In IEEE
ICDE. 1292–1295.

[63] Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico
Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black
Boxes in Data Flow Optimization. Proc. VLDB Endow. 5, 11 (2012), 1256–1267.

[64] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer.

[65] Iceberg. 2023. Apache Iceberg. Available at: https://iceberg.apache.org.
[66] Theodore Johnson and Tamraparni Dasu. 2003. Data Quality and Data

Cleaning: An Overview. In ACM SIGMOD. 681.
[67] Thomas Jörg and Stefan Dessloch. 2009. Near Real-Time Data Warehousing

Using State-of-the-Art ETL Tools. In BIRTE, Vol. 41. 100–117.
[68] Petar Jovanovic, Oscar Romero, Alkis Simitsis, and Alberto Abelló. 2012. In-

tegrating ETL Processes from Information Requirements. In DaWaK (LNCS),
Vol. 7448. 65–80.

[69] Petar Jovanovic, Oscar Romero, Alkis Simitsis, and Alberto Abelló. 2016.
Incremental Consolidation of Data-Intensive Multi-Flows. IEEE TKDE 28, 5
(2016), 1203–1216.

[70] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abelló, Héctor Can-
dón, and Sergi Nadal. 2015. Quarry: Digging Up the Gems of Your Data
Treasury. In EDBT. 549–552.

[71] Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. BabbleFlow: a
translator for analytic data flow programs. In ACM SIGMOD. ACM, 713–716.

[72] Petar Jovanovic, Alkis Simitsis, and Kevin Wilkinson. 2014. Engine indepen-
dence for logical analytic flows. In IEEE ICDE. 1060–1071.

[73] Abdulrahman Kaitoua, Tilmann Rabl, Asterios Katsifodimos, and Volker
Markl. 2019. Muses: Distributed Data Migration System for Polystores. In
IEEE ICDE. 1602–1605.

[74] Anastasios Karagiannis, Panos Vassiliadis, and Alkis Simitsis. 2013. Schedul-
ing strategies for efficient ETL execution. Inf. Syst. 38, 6 (2013), 927–945.

[75] Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. 2005. ETL
queues for active data warehousing. In IQIS@ACM SIGMOD. ACM, 28–39.

[76] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2018. PolyBench: The
First Benchmark for Polystores. In TPCTC (LNCS), Vol. 11135. 24–41.

[77] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A survey on
deep learning approaches for text-to-SQL. The VLDB Journal (2023).

[78] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In IEEE
ICDE. 195–206.

[79] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and Henrik
Mühe. 2012. HyPer: Adapting Columnar Main-Memory Data Management
for Transactional AND Query Processing. IEEE Data Eng. Bull. 35, 1 (2012),
46–51.

[80] Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, and Bob
Becker. 2008. The Data Warehouse Lifecycle Toolkit: Practical Techniques for
Building Data Warehouse and Business Intelligence Systems. Wiley.

[81] Phokion G. Kolaitis. 2005. Schema mappings, data exchange, and metadata
management. In ACM SIGMOD. 61–75.

[82] Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-
Peris, Raquel Pau, and José Pereira. 2016. The CloudMdsQL Multistore
System. In ACM SIGMOD. 2113–2116.

[83] Boyan Kolev, Raquel Pau, Oleksandra Levchenko, Patrick Valduriez, Ricardo
Jiménez-Peris, and José Pereira. 2016. Benchmarking polystores: The Cloud-
MdsQL experience. In IEEE ICDE. 2574–2579.

[84] Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-
Peris, Raquel Pau, and José Pereira. 2016. CloudMdsQL: querying hetero-
geneous cloud data stores with a common language. Distributed Parallel
Databases 34, 4 (2016), 463–503.

[85] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. 2006. Record linkage:
similarity measures and algorithms. In ACM SIGMOD. ACM, 802–803.

[86] Nick Koudas and Divesh Srivastava. 2005. Approximate Joins: Concepts and
Techniques. In VLDB. ACM, 1363.

[87] Georgia Kougka, Anastasios Gounaris, and Alkis Simitsis. 2018. The many
faces of data-centric workflow optimization: a survey. Int. J. Data Sci. Anal.
6, 2 (2018), 81–107.

[88] Wilburt Labio andHector Garcia-Molina. 1996. Efficient Snapshot Differential
Algorithms for Data Warehousing. In VLDB. 63–74.

[89] Wilburt Labio, Janet L. Wiener, Hector Garcia-Molina, and Vlad Gorelik. 2000.
Efficient Resumption of Interrupted Warehouse Loads. In ACM SIGMOD. 46.

[90] Wilburt Labio, Jun Yang, Yingwei Cui, Hector Garcia-Molina, and Jennifer
Widom. 2000. Performance Issues in Incremental Warehouse Maintenance.
In VLDB. 461–472.

[91] Jeff LeFevre, Jagan Sankaranarayanan, Hakan Hacigümüs, Jun’ichi Tatemura,
Neoklis Polyzotis, and Michael J. Carey. 2014. MISO: souping up big data
query processing with a multistore system. In ACM SIGMOD. 1591–1602.

[92] Maurizio Lenzerini. 2002. Data Integration: A Theoretical Perspective. In
ACM SIGMOD. 233–246.

[93] Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and
What is Next. In ACM SIGMOD. 2483–2488.

[94] Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen. 2012.
MapReduce-based Dimensional ETL Made Easy. Proc. VLDB Endow. 5, 12
(2012), 1882–1885.

[95] Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen. 2013. ETLMR:
A Highly Scalable Dimensional ETL Framework Based on MapReduce. Trans.
Large Scale Data Knowl. Centered Syst. 8 (2013), 1–31.

[96] Xiufeng Liu, Christian Thomsen, and Torben Bach Pedersen. 2014. CloudETL:
scalable dimensional ETL for hive. In IDEAS. 195–206.

[97] Sergio Luján-Mora, Panos Vassiliadis, and Juan Trujillo. 2004. Data Mapping
Diagrams for Data Warehouse Design with UML. In ER (LNCS), Vol. 3288.
191–204.

[98] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael Watzke. 2006.
Transaction Reordering and Grouping for Continuous Data Loading. In BIRTE
(LNCS), Vol. 4365. 34–49.

[99] Stavros Maroulis, Nikos Bikakis, George Papastefanatos, Panos Vassiliadis,
and Yannis Vassiliou. 2021. RawVis: A System for Efficient In-situ Visual
Analytics. In ACM SIGMOD. 2760–2764.

[100] Stavros Maroulis, Nikos Bikakis, George Papastefanatos, Panos Vassiliadis,
and Yannis Vassiliou. 2023. Resource-aware adaptive indexing for in situ
visual exploration and analytics. VLDB J. 32, 1 (2023), 199–227.

[101] Rana Faisal Munir, Sergi Nadal, Oscar Romero, Alberto Abelló, Petar Jo-
vanovic, Maik Thiele, and Wolfgang Lehner. 2018. Intermediate Results
Materialization Selection and Format for Data-Intensive Flows. Fundam.
Informaticae 163, 2 (2018), 111–138.

[102] Emona Nakuçi, Vasileios Theodorou, Petar Jovanovic, and Alberto Abelló.
2014. Bijoux: Data Generator for Evaluating ETL Process Quality. In ACM
DOLAP. 23–32.

[103] Fatemeh Nargesian, Ken Q. Pu, Bahar Ghadiri Bashardoost, Erkang Zhu,
and Renée J. Miller. 2023. Data Lake Organization. IEEE TKDE 35, 1 (2023),
237–250.

[104] Felix Naumann, Alexander Bilke, Jens Bleiholder, and Melanie Weis. 2006.
Data Fusion in Three Steps: Resolving Schema, Tuple, and Value Inconsisten-
cies. IEEE Data Eng. Bull. 29, 2 (2006), 21–31.

[105] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, Timos K. Sellis, and
Yannis Vassiliou. 2009. Rule-Based Management of Schema Changes at ETL
Sources. In ADBIS (LNCS), Vol. 5968. 55–62.

[106] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
2009. Policy-Regulated Management of ETL Evolution. J. Data Semant. 13
(2009), 147–177.

[107] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
2012. Metrics for the Prediction of Evolution Impact in ETL Ecosystems: A
Case Study. J. Data Semant. 1, 2 (2012), 75–97.

[108] Maksim Podkorytov and Michael N. Gubanov. 2019. Hybrid.Poly: A Consoli-
dated Interactive Analytical Polystore System. In IEEE ICDE. 1996–1999.

[109] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2018. Data Lifecycle Challenges in Production Machine Learning: A Survey.
SIGMOD Rec. 47, 2 (2018), 17–28.

[110] Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and
Nils-Erik Frantzell. 2007. Supporting Streaming Updates in an Active Data
Warehouse. In IEEE ICDE. 476–485.

[111] Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and
Nils-Erik Frantzell. 2008. Meshing Streaming Updates with Persistent Data
in an Active Data Warehouse. IEEE TKDE 20, 7 (2008), 976–991.

[112] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halver-
son, César A. Galindo-Legaria, and Conor Cunningham. 2017. Froid: Opti-
mization of Imperative Programs in a Relational Database. Proc. VLDB Endow.
11, 4 (2017), 432–444.

[113] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani,
David Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone,
Shaorong Liu, Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis
Pandis, Berni Schiefer, David Sharpe, Richard Sidle, Adam J. Storm, and Lip-
ing Zhang. 2013. DB2 with BLU Acceleration: So Much More than Just a
Column Store. Proc. VLDB Endow. 6, 11 (2013), 1080–1091.

[114] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An
Interactive Data Cleaning System. In VLDB. 381–390.

[115] Aunn Raza, Periklis Chrysogelos, Angelos-Christos G. Anadiotis, and Anas-
tasia Ailamaki. 2020. Adaptive HTAP through Elastic Resource Scheduling.
In ACM SIGMOD. 2043–2054.

[116] Cédric Renggli, Luka Rimanic, Nezihe Merve Gürel, Bojan Karlas, Wentao
Wu, and Ce Zhang. 2021. A Data Quality-Driven View of MLOps. IEEE Data
Eng. Bull. 44, 1 (2021), 11–23.

[117] Astrid Rheinländer, Arvid Heise, Fabian Hueske, Ulf Leser, and Felix Nau-
mann. 2015. SOFA: An extensible logical optimizer for UDF-heavy data flows.
Inf. Syst. 52 (2015), 96–125.

https://blogs.sap.com/2018/11/09/machine-learning-prototype-automating-etl
https://blogs.sap.com/2018/11/09/machine-learning-prototype-automating-etl

[118] Oscar Romero, Alkis Simitsis, and Alberto Abelló. 2011. GEM: Requirement-
Driven Generation of ETL and Multidimensional Conceptual Designs. In
DaWaK (LNCS), Vol. 6862. 80–95.

[119] Mary Tork Roth, Manish Arya, Laura M. Haas, Michael J. Carey, William F.
Cody, Ronald Fagin, Peter M. Schwarz, Joachim Thomas, and Edward L.
Wimmers. 1996. The Garlic Project. In ACM SIGMOD. 557.

[120] Lutz Schlesinger, Florian Irmert, and Wolfgang Lehner. 2005. Supporting the
ETL-process by Web Service technologies. Int. J. Web Grid Serv. 1, 1 (2005),
31–47.

[121] Timos K. Sellis and Alkis Simitsis. 2007. ETL Workflows: From Formal
Specification to Optimization. In ADBIS (LNCS), Vol. 4690. 1–11.

[122] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Effi-
ciently Integrating Custom Algorithms into Modern Databases. Proc. VLDB
Endow. 15, 5 (2022), 1119–1131.

[123] Alkis Simitsis. 2003. List of ETL tools (circa 2003). Available at: https://web.
imsi.athenarc.gr/~alkis/publications/ETLTools.htm.

[124] Alkis Simitsis. 2004. Modeling and Optimization of Extraction-Transformation-
Loading (ETL) Processes in Data Warehouse Environments. Ph.D. Dissertation.

[125] Alkis Simitsis. 2005. Mapping conceptual to logical models for ETL processes.
In ACM DOLAP. ACM, 67–76.

[126] Alkis Simitsis, Chetan Gupta, Song Wang, and Umeshwar Dayal. 2010. Parti-
tioning real-time ETL workflows. In IEEE ICDE Workshops. 159–162.

[127] Alkis Simitsis, Chetan Gupta, Kevin Wilkinson, and Umeshwar Dayal. 2012.
Optimizing Flows for Real Time Operations Management. In SSDBM (LNCS),
Vol. 7338. 607–612.

[128] Alkis Simitsis, Dimitrios Skoutas, and Malú Castellanos. 2008. Natural lan-
guage reporting for ETL processes. In ACM DOLAP. 65–72.

[129] Alkis Simitsis, Dimitrios Skoutas, and Malú Castellanos. 2010. Represen-
tation of conceptual ETL designs in natural language using Semantic Web
technology. Data Knowl. Eng. 69, 1 (2010), 96–115.

[130] Alkis Simitsis and Panos Vassiliadis. 2008. A method for the mapping of
conceptual designs to logical blueprints for ETL processes. Decis. Support
Syst. 45, 1 (2008), 22–40.

[131] Alkis Simitsis, Panos Vassiliadis, Umeshwar Dayal, Anastasios Karagiannis,
and Vasiliki Tziovara. 2009. Benchmarking ETLWorkflows. In TPCTC (LNCS),
Vol. 5895. 199–220.

[132] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. 2005. Optimizing ETL
Processes in Data Warehouses. In IEEE ICDE. 564–575.

[133] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. 2005. State-Space
Optimization of ETL Workflows. IEEE TKDE 17, 10 (2005), 1404–1419.

[134] Alkis Simitsis, Panos Vassiliadis, Manolis Terrovitis, and Spiros Skiadopoulos.
2005. Graph-Based Modeling of ETL Activities with Multi-level Transforma-
tions and Updates. In DaWaK (LNCS), Vol. 3589. 43–52.

[135] Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, and Umeshwar Dayal.
2009. QoX-driven ETL design: reducing the cost of ETL consulting engage-
ments. In ACM SIGMOD. 953–960.

[136] Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, and Umeshwar Dayal.
2012. Optimizing analytic data flows for multiple execution engines. In ACM
SIGMOD. 829–840.

[137] Alkis Simitsis, KevinWilkinson, and Umeshwar Dayal. 2013. Hybrid Analytic
Flows - the Case for Optimization. Fundam. Informaticae 128, 3 (2013), 303–
335.

[138] Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Malú Castellanos.
2010. Optimizing ETL workflows for fault-tolerance. In IEEE ICDE. 385–396.

[139] Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, and Meichun Hsu. 2013.
HFMS: Managing the lifecycle and complexity of hybrid analytic data flows.
In ICDE IEEE. 1174–1185.

[140] Alkis Simitsis, Kevin Wilkinson, and Petar Jovanovic. 2013. xPAD: a platform
for analytic data flows. In ACM SIGMOD. 1109–1112.

[141] Utku Sirin, Sandhya Dwarkadas, and Anastasia Ailamaki. 2021. Performance
Characterization of HTAP Workloads. In IEEE ICDE. 1829–1834.

[142] Yannis Sismanis, Antonios Deligiannakis, Yannis Kotidis, and Nick Rous-
sopoulos. 2003. Hierarchical dwarfs for the rollup cube. In ACM DOLAP.
17–24.

[143] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis
Kotidis. 2002. Dwarf: shrinking the PetaCube. In ACM SIGMOD, Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki (Eds.). ACM, 464–475.

[144] Dimitrios Skoutas and Alkis Simitsis. 2006. Designing ETL processes using
semantic web technologies. In ACM DOLAP. 67–74.

[145] Dimitrios Skoutas and Alkis Simitsis. 2007. Flexible and Customizable NL
Representation of Requirements for ETL processes. InNLDB (LNCS), Vol. 4592.
433–439.

[146] Dimitrios Skoutas and Alkis Simitsis. 2007. Ontology-Based Conceptual
Design of ETL Processes for Both Structured and Semi-Structured Data. Int.
J. Semantic Web Inf. Syst. 3, 4 (2007), 1–24.

[147] Dimitrios Skoutas, Alkis Simitsis, and Timos K. Sellis. 2009. Ontology-Driven
Conceptual Design of ETL Processes Using Graph Transformations. J. Data
Semant. 13 (2009), 120–146.

[148] George Stamatakis, Antonis Kontaxakis, Alkis Simitsis, Nikos Giatrakos, and
Antonios Deligiannakis. 2022. SheerMP: Optimized Streaming Analytics-as-
a-Service over Multi-site and Multi-platform Settings. In EDBT. 2:558–2:561.

[149] Vasileios Theodorou, Alberto Abelló, Wolfgang Lehner, and Maik Thiele.
2016. Quality measures for ETL processes: from goals to implementation.
Concurr. Comput. Pract. Exp. 28, 15 (2016), 3969–3993.

[150] Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner.
2014. A Framework for User-Centered Declarative ETL. In DOLAP. 67–70.

[151] Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner.
2015. POIESIS: a Tool for Quality-aware ETL Process Redesign. In EDBT.
545–548.

[152] Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner.
2017. Frequent patterns in ETL workflows: An empirical approach. Data
Knowl. Eng. 112 (2017), 1–16.

[153] Vasileios Theodorou, Petar Jovanovic, Alberto Abelló, and Emona Nakuçi.
2017. Data generator for evaluating ETL process quality. Inf. Syst. 63 (2017),
80–100.

[154] Maik Thiele, Ulrike Fischer, and Wolfgang Lehner. 2009. Partition-based
workload scheduling in living data warehouse environments. Inf. Syst. 34,
4-5 (2009), 382–399.

[155] Maik Thiele, Tim Kiefer, and Wolfgang Lehner. 2009. Cardinality estimation
in ETL processes. In ACM DOLAP. 57–64.

[156] Christian Thomsen and Torben Bach Pedersen. 2006. ETLDiff: A Semi-
automatic Framework for Regression Test of ETL Software. InDaWaK (LNCS),
Vol. 4081. 1–12.

[157] Christian Thomsen and Torben Bach Pedersen. 2009. pygrametl: a powerful
programming framework for extract-transform-load programmers. In ACM
DOLAP. 49–56.

[158] Christian Thomsen and Torben Bach Pedersen. 2011. Easy and effective
parallel programmable ETL. In ACM DOLAP. 37–44.

[159] Christian Thomsen, Torben Bach Pedersen, andWolfgang Lehner. 2008. RiTE:
Providing On-Demand Data for Right-Time Data Warehousing. In IEEE ICDE.
456–465.

[160] Rizkallah Touma, Oscar Romero, and Petar Jovanovic. 2015. Supporting Data
Integration Tasks with Semi-Automatic Ontology Construction. In ACM
DOLAP. 89–98.

[161] Juan Trujillo and Sergio Luján-Mora. 2003. A UML Based Approach for
Modeling ETL Processes in Data Warehouses. In ER (LNCS), Vol. 2813. 307.

[162] Dimitris Tsesmelis and Alkis Simitsis. 2022. Database Optimizers in the Era
of Learning. In IEEE ICDE. 3213–3216.

[163] Vasiliki Tziovara, Panos Vassiliadis, and Alkis Simitsis. 2007. Deciding the
physical implementation of ETL workflows. In ACM DOLAP. 49–56.

[164] Manasi Vartak. 2021. From ML Models to Intelligent Applications: The Rise
of MLOps. Proc. VLDB Endow. 14, 13 (2021), 3419.

[165] Panos Vassiliadis. 2011. A Survey of Extract-Transform-Load Technology. In
Integrations of Data Warehousing, Data Mining and Database Technologies -
Innovative Approaches. 171–199.

[166] Panos Vassiliadis and Alkis Simitsis. 2009. Near Real Time ETL. InNew Trends
in DataWarehousing and Data Analysis. Annals of Information Systems, Vol. 3.
Springer, 1–31.

[167] Panos Vassiliadis, Alkis Simitsis, and Eftychia Baikousi. 2009. A taxonomy
of ETL activities. In ACM DOLAP. 25–32.

[168] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, and Manolis Terrovitis.
2003. A Framework for the Design of ETL Scenarios. In CAiSE (LNCS),
Vol. 2681. 520–535.

[169] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terrovitis, and
Spiros Skiadopoulos. 2005. A generic and customizable framework for the
design of ETL scenarios. Inf. Syst. 30, 7 (2005), 492–525.

[170] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. 2002. Conceptual
modeling for ETL processes. In DOLAP. 14–21.

[171] Panos Vassiliadis, Alkis Simitsis, Manolis Terrovitis, and Spiros Skiadopoulos.
2005. Blueprints and Measures for ETLWorkflows. In ER, Vol. 3716. 385–400.

[172] Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, Nikos Karayan-
nidis, and Timos K. Sellis. 2001. ARKTOS: towards the modeling, design,
control and execution of ETL processes. Inf. Syst. 26, 8 (2001), 537–561.

[173] Marco Vogt, Nils Hansen, Jan Schönholz, David Lengweiler, Isabel Geissmann,
Sebastian Philipp, Alexander Stiemer, and Heiko Schuldt. 2020. Polypheny-
DB: Towards Bridging the Gap Between Polystores and HTAP Systems. In
DMAH@PVLDB (LNCS), Vol. 12633. 25–36.

[174] Kevin Wilkinson and Alkis Simitsis. 2011. Designing integration flows using
hypercubes. In EDBT. 503–508.

[175] Kevin Wilkinson, Alkis Simitsis, Malú Castellanos, and Umeshwar Dayal.
2010. Leveraging Business Process Models for ETL Design. In ER (LNCS),
Vol. 6412. 15–30.

[176] Chen Xu, Markus Holzemer, Manohar Kaul, and Volker Markl. 2016. Efficient
fault-tolerance for iterative graph processing on distributed dataflow systems.
In IEEE ICDE. 613–624.

[177] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-Demand Approach to ETL. Proc. VLDB Endow.
8, 12 (2015), 1578–1589.

[178] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing
and Advanced Analytics. In CIDR.

[179] Eftim Zdravevski, Cas Apanowicz, Krzysztof Stencel, and Dominik Slezak.
2019. Scalable Cloud-based ETL for Self-serving Analytics. In ICDM. 317–331.

[180] Eftim Zdravevski, Petre Lameski, Ace Dimitrievski, Marek Grzegorowski,
and Cas Apanowicz. 2019. Cluster-size optimization within a cloud-based
ETL framework for Big Data. In IEEE BigData. 3754–3763.

[181] Yi Zhang and Zachary G. Ives. 2019. Juneau: Data Lake Management for
Jupyter. Proc. VLDB Endow. 12, 12 (2019), 1902–1905.

[182] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes
for Interactive Data Science. 1951–1966.

https://web.imsi.athenarc.gr/~alkis/publications/ETLTools.htm
https://web.imsi.athenarc.gr/~alkis/publications/ETLTools.htm

	Abstract
	1 The History
	1.1 What is ETL?
	1.2 Challenges
	1.3 Early solutions
	1.4 Impact

	2 The Present
	2.1 Evolution of the ETL architecture
	2.2 Trends in ETL processing
	2.3 Trends in ETL infrastructure
	2.4 Alternatives to ETL

	3 The Future
	4 Conclusions
	References

