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ABSTRACT
In this paper, we discuss methods to assess the interestingness
of a query in an environment of data cubes. We assume a hi-
erarchical multidimensional database, storing data cubes and
level hierarchies. We focus our approach on a taxonomy of the
dimensions of interestingness, and specifically, relevance, sur-
prise, novelty, and peculiarity. We propose specific measures and
algorithms for assessing the different dimensions of cube query
interestingness in a quantitative fashion.

1 INTRODUCTION
How interesting is a (data cube) query?What are the fundamental
characteristics that make a (data cube) query interesting for a
user? Assessing query interestingness is important for at least
two common scenarios: (a) a-priori interestingness prediction,
and, (b) a-posteriori interestingness evaluation.
• A-priori prediction of query interestingness occurs in the
case where a recommender system is in the process of
automatically generating candidate queries, to provide the
user with an overview of the information space, as well as
with suggestions on how to explore it, or how to follow
up on previous query in an on-going query session.
• A-posteriori evaluation of query interestingness is relevant
in the case where a large number of queries have already
been issued (possibly by other users too), they are cached
and readily available, and we need to pick the ones that
seem the most significant either in order to recommend
them to a user, or, because they highlight best the user
actions and goals in the query session.

The above are by no means an exhaustive enumeration of
cases where the evaluation of query interestingness is important
(e.g., the automatic generation of exploration sessions, can be
considered as the middle ground between a priori and a posteriori
cases [7]). The common thread in both cases, however, is that
both for reasons of efficiency and computational overhead, and
for reasons of cognitive load of the person who is involved in the
process, it is imperative that a small subset of queries, out of a
large number of candidates, are picked for further processing.

In our deliberations, we focus on data organized in cubes due
to (a) their extreme relevance to the problem, due to the fact that
analysts explore data in query sessions via Business Intelligence
tools, (b) their simplicity – as the simplest possible database set-
ting in terms of how data are presented to the end-users, (c) the
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most focused setup, also due to the simplicity of the underlying
schema, but also because the queries follow a pattern of filtering
and grouping with very specific joins between the dimension and
fact tables, and, (d) the richness of information content, due to
the presence of hierarchically structured dimensions that allow
manipulating, examining and understanding the data from mul-
tiple layers of abstraction. In other words, cubes are relevant to
the problem, simple, information rich, and allow focused query
sessions to take place.

Therefore, in our work, we assume an OLAP environment, con-
sisting of cubes, dimensions, levels, and aggregate cube queries
posed in the context of user sessions. We will also assume the abil-
ity to register, extract, or simply approximate user goals, beliefs
and profiles.

What is then the assessment of interestingness for cube queries?
Well, to address the question, we will first frame the assessment
aspect: we regard assessment as the process where an assessor
(person or software) examines specific properties of an object that
is evaluated (in our case: cube queries), within a certain context
(in our case, as we will demonstrate, the multidimensional space,
the query history, the goals, beliefs and interests of the user),
for its degree of support/fulfillment of a property (in our case:
interestingness aspects) via a method that objectively quantifies
the above degree of support via a numerical score or label that is
interpretable via a reference scale of assessment.

Intuitively speaking, we need to establish the different prop-
erties/aspects/dimensions of interestingness and introduce algo-
rithms to numerically assess the objects of study (cube queries)
for their "performance" with respect to these properties, in the
context of a specific user (with his own characteristics) and a
specific session.

Based on the study of the related literature, both in the area
of psychology, and in the area of computer science, we have
concluded that interestingness is not a single entity, but rather, a
vector of scores along several dimensions [14]:

• Relevance: the extent to which a new piece of information
(here: the results of the query) are related to the overall
information goals, preferences, . . . of the user.
• Surprise: the extent to which the result of the query con-
tradicts, revises, updates the user’s prior beliefs.
• Novelty: the extent to which the information presented to
the users is new, and previously unseen to them.
• Peculiarity: the extent to which the query is different, and
not in accordance with the previous queries of the session
or history.

The fundamental premise upon which we build our taxonomy
is the observation that the cornerstone of interest is curiosity
(either in search to fill an information gap, or plainly the joy of



acquiring new information), and by following the need to "feed"
the curiosity of the user, we end up with the above dimensions.

In this paper, we link a taxonomy of the dimensions of interesting-
ness with data cubes in hierarchically structured multidimensional
spaces, and, we propose specific measures and algorithms for as-
sessing the different dimensions of cube query interestingness in a
quantitative fashion.

Roadmap. The rest of this document is structured as follows:
In Section 2 we review related work. In Section 3, we discuss
the data and querying environment in which we operate. Then,
we proceed to discuss formulae and algorithms for assessing
interestingness for each of the four dimensions, with a varying
degree of available information: novelty in Section 4, relevance in
Section 5, peculiarity in Section 6, and, surprise in Section 7. We
present experiments in Section 8 and conclude our deliberations
in the final section.

2 RELATEDWORK
In the literature, insights (also known as highlights, findings,
discoveries, etc). demonstrate an interesting property or pattern
for a subset of the data in a dataset, typically characterized by an
interestingness score [7, 10, 15, 17, 20]. We start with the follow-
ing fundamental dimensions of interestingness: (i) relevance (R):
a cube query is contrasted to a user’s exploration goal; (ii) novelty
(N): a cube query is contrasted to a user’s exploration history; (iii)
peculiarity (P): the similarity of a cube query to a user’s history
is assessed (either at the level of the query expression or at the
level of the query results); and (iv) surprise (S): the result of a
cube query is contrasted to a user’s belief.

Peculiarity. It appears that peculiarity has attracted most of
the attention in the literature. The main measures defined in this
dimension concern either (i) the significance, (ii) the coverage,
or (iii) the coherency of the insights.

The significance of an insight [1, 5, 6, 8, 18, 21] allows to quan-
tify its importance among its peer data. This importance is often
related to the data distribution. [8] performs a preliminary ad-
hoc attempt to measure significance via the difference in z-scores
of the data obtained in two consecutive exploration steps. Re-
cently, a trend is to turn insights into hypothesis testing [5, 6, 21],
which has many advantages: (i) using the p-value for the in-
sight significance, (ii) defining false discoveries (type-1 errors,
e.g., visualizations supporting a non-significant insight) and false
omissions (type-2 errors, e.g., visualizations not supporting a
significant insight), (iii) defining credibility (e.g., percentage of
visualizations supporting an insight). However, since the risk of
type-1 error increases as more than one hypothesis are consid-
ered at once, a correction is needed in the statistical test to ensure
that non-spurious insights are reported [21].

Measuring the coverage of the insight consists of quantifying
how the subject of an insight represents the entire dataset [6,
13, 18]. In most cases, anti-monotonic conditions are checked to
prune insights, like, for instance: if the subject of insight A is a
superset of the subject of insight B, then the impact of A should
be no less than the impact of B.

Characterizing the coherency of an insight compares the in-
sight with others in the exploration session, to check whether a
given exploratory operation is coherent at a certain point. For
instance, in [7] heuristic classification rules are used to express
general properties of the operations sequence (e.g., a group-by
on a continuous, numerical attribute is incoherent) or on the
input dataset’s semantics (e.g., if the user focuses on flight delays,

aggregating on the “departure-delay time” columns is preferred).
Other works use distances between exploration actions to mea-
sure how coherent a sequence of actions is; for instance, in [5] a
weighted Hamming distance of relational query parts is used.

Novelty. Interestingness measures of the novelty dimension
are used to characterize data in terms of either being new ob-
servations or operations in terms of favoring going further in
the exploration. In its simplest expression, novelty can simply
be measured as a Boolean indicating whether some data have
already been seen [8]. However, more advanced definitions ex-
ist. For instance, in [15], a diversity measure is computed as the
minimal Euclidean distance between the current observation and
all the previous displays obtained. In [16], curiosity is inversely
proportional to the number of times a result is encountered.

Relevance. Interestingness measures of the relevance dimen-
sion are used to characterize data in terms of the user being
familiar with them. In [16], a familiarity measure is defined as
the concentration ratio of target objects in a set. It is implemented
as a variant of the Jaccard index between objects encountered
during the exploration and a given target set of familiar objects.
This measure is expected to increase as the EDA session goes on,
to avoid over-exploiting a set of familiar objects.

Surprise. This dimension seems to be the one that attracted
less attention for EDA. We can mention the work of Francia et
al. [8] where surprise is measured as the proportion of values
that have not been seen frequently, presented in models (e.g.,
clustering) extracted from the data under observation. A formal
framework for defining measures of surprise had previously been
introduced by De Bie for exploratory data mining [4]. Using an
information-theoretic approach, the framework consists of quan-
tifying the interactive exchange of information between data and
user, accounting for the user’s prior belief state. Approximating
the belief that the user would attach to the result being expected
is modeled as a background distribution, namely, a probability
measure over the exploration results. This background distribu-
tion, which initially can e.g., be uniform over all the exploration
results, is updated after each result is presented to the user.

Recently, we addressed the problem of cell interestingness [14].
However, a query is much more than a composition of its result
cells, esp., if the interestingness of the query is to be assessed
before deciding if we will execute it. None of the previous works,
however, exploits the hierarchies of a multidimensional space to
compute cube query interestingness, along several dimensions. We
address this shortcoming in the sequel of this paper.

3 PRELIMINARIES & FORMAL
BACKGROUND

In our deliberations, we assume the formal model of [19] for the
definition of the multidimensional space, cubes and cube queries.
We follow a simplified apodosis of the formalities here to allow a
concise description. The reader is assumed to have knowledge of
fundamental OLAP concepts.

Multidimensional space. Data are defined in the context of
a multidimensional space. The multidimensional space includes
a finite set of dimensions. Dimensions provide the context for
factual measurements and will be structured in terms of dimen-
sion levels, which are abstraction levels that aid in observing the
data at different levels of granularity. For example, the dimen-
sion 𝑇𝑖𝑚𝑒 is structured on the basis of the dimension levels 𝐷𝑎𝑦,
𝑀𝑜𝑛𝑡ℎ, 𝑌𝑒𝑎𝑟 , 𝐴𝑙𝑙 .



A dimension level 𝐿 includes a name and a finite set of values,
𝑑𝑜𝑚(𝐿), as its domain. Following the traditional OLAP termi-
nology, the values that belong to the domains of the levels are
called dimension members, or simply members (e.g., the values
Paris, Rome, Athens are members of the domain of level 𝐶𝑖𝑡𝑦,
and, subsequently, of dimension 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦).

A dimension is a non-strict partial order of a finite set of levels,
obligatorily including (a) a most detailed level at the lowest pos-
sible level of coarseness, and (b) an upper bound, which is called
𝐴𝐿𝐿, with a single value ‘All’. We denote the partial order of
dimensions with ⪯, i.e., 𝐷.𝐿𝑙𝑜𝑤 ⪯ 𝐷.𝐿ℎ𝑖𝑔ℎ signifies that 𝐷.𝐿𝑙𝑜𝑤
is at a lower level of coarseness than 𝐷.𝐿ℎ𝑖𝑔ℎ in the context of
dimension 𝐷 – e.g., 𝐺𝑒𝑜.𝐶𝑖𝑡𝑦 ⪯ 𝐺𝑒𝑜.𝐶𝑜𝑢𝑛𝑡𝑟𝑦.

We can map the members at a lower level of coarseness to
values at a higher level of coarseness via an ancestor function
𝑎𝑛𝑐𝐿

ℎ

𝐿𝑙
(). Given a member of a level 𝐿𝑙 as a parameter, say 𝑣𝑙 ,

the function 𝑎𝑛𝑐𝐿
ℎ

𝐿𝑙
() returns the corresponding ancestor value,

for 𝑣𝑙 , say 𝑣ℎ , at the level 𝐿ℎ , i.e., 𝑣ℎ = 𝑎𝑛𝑐𝐿
ℎ

𝐿𝑙
(𝑣𝑙 ). The inverse

of an ancestor function is not a function, but a mapping of a
high level value to a set of descendant values at a lower level of
coarseness (e.g., 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 Europe is mapped to the set of all
European cities at the𝐶𝑖𝑡𝑦 level), and is denoted via the notation
𝑑𝑒𝑠𝑐𝐿

𝑙

𝐿ℎ
(). For example 𝐸𝑢𝑟𝑜𝑝𝑒 = 𝑎𝑛𝑐𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡

𝐶𝑖𝑡𝑦
(𝐴𝑡ℎ𝑒𝑛𝑠). See [19]

for more constraints and explanations.
Cubes. Facts are structured in cubes. The schema of a cube

𝑠𝑐ℎ𝑒𝑚𝑎(𝐶), is a tuple, say [𝐷1 .𝐿1, ..., 𝐷𝑛 .𝐿𝑛, 𝑀1, ..., 𝑀𝑚], or simply
[𝐿1, ..., 𝐿𝑛, 𝑀1, ..., 𝑀𝑚], with the combination of the dimension
levels (each coming from a different dimension) acting as primary
key and context for the measurements and a set of measures as
placeholders for the (aggregate) measurements. If all the dimen-
sion levels of a cube schema are the lowest possible levels of
their dimension, the cube is a detailed cube, typically denoted
via the notation 𝐶0 with a schema [𝐷1 .𝐿01, ..., 𝐷𝑛 .𝐿

0
𝑛, 𝑀

0
1 , ..., 𝑀

0
𝑚].

The result of a query 𝑞 is a set of cells that we denote as 𝑞.𝑐𝑒𝑙𝑙𝑠 .
Each record of a cube 𝐶 under a schema [𝐷1 .𝐿1, . . . , 𝐷𝑛 .𝐿𝑛 ,

𝑀1, . . . , 𝑀𝑚], also known as a cell, is a tuple 𝑐 = [𝑙1, . . . , 𝑙𝑛 ,𝑚1, . . . ,
𝑚𝑚], such that 𝑙𝑖 ∈ 𝑑𝑜𝑚(𝐷𝑖 .𝐿𝑖 ) and𝑚 𝑗 ∈ 𝑑𝑜𝑚(𝑀𝑗 ). The vector
[𝑙1, . . . , 𝑙𝑛] signifies the coordinates of a cell.

Queries. A cube query is a cube too, specified by (a) the de-
tailed cube over which it is imposed, (b) a selection condition
that isolates the facts that qualify for further processing, (c) the
grouping levels, which determine the coarseness of the result,
and (d) an aggregation over some or all measures of the cube that
accompanies the grouping levels in the final result.

𝑞 = < 𝐶0, 𝜙 , [𝐿1, ..., 𝐿𝑛, 𝑀1, ..., 𝑀𝑚], [𝑎𝑔𝑔1 (𝑀0
1 ), ...,𝑎𝑔𝑔𝑚 (𝑀

0
𝑚)] >

We assume:

• Selection conditions which are conjunctions of atomic fil-
ters of the form 𝐿 = 𝑣𝑎𝑙𝑢𝑒 , or in general 𝐿 ∈ {𝑣1, . . . , 𝑣𝑘 }.
Selection conditions of this form can eventually be trans-
lated to their equivalent selection conditions at the de-
tailed level, via the conjunction of the detailed equiva-
lents of the atoms of 𝜙 . Specifically, assuming an atom
𝐿 ∈ {𝑣1, . . . , 𝑣𝑘 }, then 𝐿0 ∈ {𝑑𝑒𝑠𝑐𝐿

0

𝐿
(𝑣1)∪ ...∪𝑑𝑒𝑠𝑐𝐿

0

𝐿
(𝑣𝑘 )},

eventually producing an expression 𝐿0 ∈ {𝑣 ′1, ..., 𝑣
′
𝑘 ′
} is its

detailed equivalent, called detailed proxy. The reason for
deriving 𝜙0 is that 𝜙0, as the conjunction of the respective
atomic filters at the most detailed level, is directly applica-
ble over 𝐶0 and produces exactly the same subset of the
multidimensional space as 𝜙 , albeit at a most detailed level

of granularity. For example, assume 𝑌𝑒𝑎𝑟 ∈ {2018, 2019},
its detailed proxy is𝐷𝑎𝑦 ∈ {2018/01/01, . . . , 2019/12/31}.
For a dimension 𝐷 that is not being explicitly filtered by
any atom, one can equivalently assume a filter of the form
𝐷.𝐴𝐿𝐿 = 𝑎𝑙𝑙 .
• Aggregation functions 𝑎𝑔𝑔𝑖 include aggregate functions
like {𝑠𝑢𝑚,𝑚𝑎𝑥,𝑚𝑖𝑛, 𝑐𝑜𝑢𝑛𝑡, ...} with the respective well-
known semantics.

Signatures and detailed areas. We will use the term signa-
ture to refer to sets of coordinates that specify an area of interest
in the multidimensional space. Specifically:
• The signature of a cell c, denoted as 𝑐+, is its coordinates.
• The signature of an atomic filter 𝛼 : 𝐿 ∈ {𝑣1, . . . , 𝑣𝑘 } is the
value set {𝑣1, . . . , 𝑣𝑘 } and it is denoted as 𝛼+.
• The signature of a selection condition of the form𝜙 : 𝛼1 ∧ · · · ∧ 𝛼𝑛
(assuming a single atom per dimension) is the expression
𝜙+ : 𝛼+1 × · · · × 𝛼

+
𝑛 . In other words, we compute the Carte-

sian product of the values of the involved atom signatures.
• The signature of a query 𝑞, 𝑞+ is the set of coordinates
computed as follows: (a) compute the signature, i.e., the
set of coordinates pertaining to 𝜙0, the detailed equivalent
of its selection condition; (b) within each of these coordi-
nates, replace the (detailed) value of each dimension by
its ancestor value at the level of the schema of the query.
This guarantees that the resulting coordinates will be the
coordinates of the query result.

The detailed signatures of the above categories are produced
by replacing the respective values of their regular signatures
with the expression 𝑑𝑒𝑠𝑐𝐿

0

𝐿
(·), computing the respective set of

descendant values and taking their union. The detailed signature
of a query is (simply) the set of coordinates that pertain to the
signature of 𝜙0.

The detailed proxies of expressions are the respective ex-
pressions transformed at the most detailed level for each of the
involved dimensions. The detailed proxy of a query
𝑞 = < 𝐶0, 𝜙 , [𝐿1, ..., 𝐿𝑛, 𝑀1, ..., 𝑀𝑚], [𝑎𝑔𝑔1 (𝑀0

1 ), ...,𝑎𝑔𝑔𝑚 (𝑀
0
𝑚)] >

is the query (i.e., an expression again)
𝑞0 = < 𝐶0, 𝜙0, [𝐿01, ..., 𝐿

0
𝑛, 𝑀

0
1 , ..., 𝑀

0
𝑚], [𝑎𝑔𝑔1 (𝑀0

1 ),
...,𝑎𝑔𝑔𝑚 (𝑀0

𝑚)] >
Detailed areas are sets of cells, pertaining to an aggregate

cell, or set of cells, like, e.g., the result of a query. The detailed
area of a cell 𝑐 :< 𝑣1, . . . , 𝑣𝑛 > is the set of descendant cells that
can be obtained by replacing each of its coordinates, say 𝑣𝑖 , by
𝑑𝑒𝑠𝑐𝐿

0

𝐿
(𝑣𝑖 ) and taking the Cartesian product of each such value

set. The detailed area of the query 𝑞 is the set of cells of the result
𝑞0, which we denote as 𝑞0 .𝑐𝑒𝑙𝑙𝑠 .

4 NOVELTY OF A QUERY
Novelty assesses the amount of previously unknown information
delivered to the user via a query. Due to this inherent character-
istic, we need to either explicitly know, or at least estimate the
prior knowledge of the data that the user has.

Naturally, a system is not in a position to actually have knowl-
edge of the user’s memory or knowledge. Knowledge can come
to the user via external channels, not related to the query an-
swering and thus, the system necessarily has "knowledge" of
just a subset of the user’s actual knowledge. At the same time,
one should also take account of the effects of time that erases,
hides or distorts the remembrance of facts encountered in the
past. Although in our following deliberations we will not directly



address the above problems, we will occasionally offer insights
on how to handle some of them. However, when we use the
term "knowledge" we simplify and approximate the situation, by
assuming that the system knows what the user has seen, or what
the user has explicitly stated that she believes.

Explicit knowledge is primarily attained by knowing the his-
tory of user queries (and assuming that the user remembers it).
A second way to approximate what the users remember is to
exploit their registered beliefs with a low level of confidence, by
making the rational assumption that since they have expressed
practically uncertain beliefs about some cells, they do not know
their values. Novelty is mostly goal-independent, i.e., it is not
affected by neither the current (goal) or the typical (key interests)
informational needs of the user.

Summarizing, novelty is mostly related (a) to history, and,
(b) to registered values for beliefs with confidence below a cer-
tain threshold. We will examine the different alternatives in the
respective subsections.

4.1 Novelty assessment in the presence of a
query history

First, we will assess the novelty of a cube query 𝑞 assuming
a query history 𝑄 = {𝑞1, . . . , 𝑞𝑛} exists. We use the following
terminology:

(1) Syntactic vs Extensional Assessment: syntactic assessment
is based only on query definitions, whereas extensional
also assumes the presence of the cells of the query result(s).

(2) Same-level vs Detailed Assessment: same-level (equiv., im-
mediate) assessment assumes that two cubes are at the
same level of aggregation; detailed (equiv., indirect or
derivable) assessment means that the comparison of two
cubes will be done at levels lower than their definition –
typically, we will use the most detailed level as the com-
mon ground upon which the constituting detailed cells for
two cubes can be compared.

(3) Full vs partial Assessment: full assessment means that
the checks made return a true/false answer on whether
a new query is entirely novel or not; partial assessment
means that the checks return a novelty score as a real
number (typically in the interval [0 . . . 1]). Naturally, a
partial assessment that returns 1, also implies full novelty.

4.1.1 Same-Level Assessment of Novelty. Assume that we only
check 𝑞 against members of𝑄 whose schema is at the same level
with𝑄 . We also require the same detailedmeasures and aggregate
functions to be used, otherwise the comparison is referring to
essentially different measures, and also different numbers, and,
therefore, novelty is guaranteed.

Full Syntactic Same-Level Assessment of Novelty. In this
case, the question to be answered is: Given 𝑞 and 𝑄 = {𝑞1, . . . ,
𝑞𝑛}, is there any 𝑞𝑖 ∈ 𝑄 such that 𝑞 = 𝑞𝑖? In this case,
the solution is a trivial syntactic check: we iterate through the
syntactic definitions of the queries of𝑄 and check whether there
is any query that is identical to 𝑞. The check is (a) full (practically
a true/false decision), (b) syntactic (without using the cells of the
query results), and, (c) same-level, i.e., only between same level
cubes. The case of query containment (instead of equivalence,
discussed here) is found in the long version of this paper [11].

4.1.2 Detailed Assessment of Novelty. Assume now that in-
stead of checking cubes defined at the same level, we compare
cubes with respect to their constituting cells at the most detailed

level. We indicatively present an extension-based algorithm, that
assumes cells are available. Syntactic checks are similar.

Partial Extensional Detailed Assessment of Novelty. In
this case, the question to be answered is: Given𝑞 and𝑄 = {𝑞1, . . . , 𝑞𝑛},
can we identify which part of the results of the detailed area of
𝑞0 are already covered by the detailed areas of the queries of 𝑄?

Algorithm 1: Cell-based extensional enumeration of
covered detailed cells
Input: A query 𝑞; the query history 𝑄 expressed as a set

of queries 𝑞𝑖
Output: The subset of the cells of 𝑞0, say 𝑞𝑐𝑜𝑣 that are

also part of the union of the results of the
queries in 𝑄 , i.e., the union of 𝑞0

𝑖
, and its

complement 𝑞𝑛𝑜𝑣
1 begin
2 produce 𝑞0 .𝑐𝑒𝑙𝑙𝑠
3 produce 𝑞0

𝑖
.𝑐𝑒𝑙𝑙𝑠 for all 𝑞𝑖

4 populate the hashmap(cell signature) 𝑄0←⋃
𝑖 𝑞

0
𝑖
.𝑐𝑒𝑙𝑙𝑠

5 𝑞𝑐𝑜𝑣
0 ← ∅

6 𝑞𝑛𝑜𝑣
0 ← 𝑞0 .𝑐𝑒𝑙𝑙𝑠

7 forall 𝑐0 ∈ 𝑞0 .𝑐𝑒𝑙𝑙𝑠 do
8 if 𝑐0 ∈ 𝑄0 then
9 remove 𝑐0 from 𝑞𝑛𝑜𝑣

0
and add it to 𝑞𝑐𝑜𝑣

0

10 end
11 end
12 return 𝑞𝑐𝑜𝑣

0
, 𝑞𝑛𝑜𝑣

0

13 end

Algorithm 1 computes the union of the detailed areas of the
queries in the query list and intersects it with the detailed area of
the query under question. We remark that only the queries in the
history sharing the same measures and aggregation functions
with 𝑞 are passed to the algorithm. The resulting novelty is the
fraction of the detailed not covered (i.e., novel) cells over the
entire detailed area of 𝑞.

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑡𝑎𝑖𝑙𝑒𝑑𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑁𝑜𝑣𝑒𝑙𝑡𝑦 =
|𝑞𝑛𝑜𝑣0 |

|𝑞𝑛𝑜𝑣0 | ⋃ |𝑞𝑐𝑜𝑣0 |
The check is (a) partial (practically a normalized score), (b)

extensional (via cells), and, (c) detailed, i.e., with respect to the
detailed levels of the involved cubes.

The complexity of Algorithm 1 is mainly determined by the
cost of answering the detailed queries in Lines 2 and 3 that pro-
duce the cells for𝑞0 and𝑞0

𝑖
for both the input query and the query

history. The complexity of these actions is: (a) linear with respect
to the size of the query history, and, (b) linear with respect to the
cube size, assuming that the cube query is linear with respect
to the cube size. The rest of the algorithm, requires a linear in-
memory pass of the result to populate𝑄0 and a linear lookup for
each cell of 𝑞0 .𝑐𝑒𝑙𝑙𝑠 to cross-check if it belongs to𝑄0. Again, this
cost is linear, yet, we consider it insignificant comparing it to
the time needed for query answering. Therefore, the overall cost
of the algorithm is linear with respect to the size of the query
history and to the cube size.



4.2 Novelty assessment in the presence of
belief statements

Assume now that we do not have explicit knowledge of the
user history, or key interests, but we do have an estimation of
probabilities for the likely values of some cells in the multidi-
mensional space. Specifically, assume that for certain cells, it has
been possible to either deduce or explicitly have the user register
probabilities per expected value for the value m = c.M, of a cell c
and a certain measure𝑀 . So, some cells in the multidimensional
space are annotated with a set of cell expected-value statements,
which are statements of the form

𝑝 (𝑀 ∈ [𝑙𝑖 . . . 𝑢𝑖 ] |𝑐) = 𝑝𝑖 , 𝑝𝑖 ∈ [0..1],
[𝑙𝑖 . . . 𝑢𝑖 ] is a range of values of 𝑑𝑜𝑚(𝑀)

or of the form

𝑝 (𝑀 ∈ si |𝑐) = 𝑝𝑖 , 𝑝𝑖 ∈ [0..1],
si is a discrete, finite set of values of 𝑑𝑜𝑚(𝑀)

For uniformity of notation we will use the syntactic form 𝑝 (𝑀 ∈
𝑚𝑖 |𝑐) = 𝑝𝑖 to denote either a range or a finite set of values for
the value-set of the expressed belief. The distinction makes no
difference for the evaluation of novelty.

We refer to the set of statements of the above form for a cell
𝑐 , the probable active domain of 𝑐 , or 𝑑𝑜𝑚𝑝𝑎 (𝑐). A well-formed
probable active domain of a cell has the property that all its state-
ments’ probabilities sum up to 1. However, requiring well-formed
probable active domains is too restrictive, in the sense that maybe
some probabilities are unknown, or hard to evaluate; thus, we
do not require it as a necessary property for the sequel.

We call a cell c to be Π − 𝑘𝑛𝑜𝑤𝑛 if, within the statements
of the probable active domain of 𝑐 , there exists a probability 𝑝𝑖
which is equal or higher to a threshold Π. Otherwise, if all the
probabilities of 𝑐 are below Π the cell is called Π − 𝑢𝑛𝑘𝑛𝑜𝑤𝑛.

The intuition behind this treatment lies on the observation that
if a user has a set of beliefs about the behavior of a cell, with a
high amount of certainty (i.e., the probability is above a certain
threshold), then we cannot consider the cell to be "unknown" to
the user. The result of a query might be surprising, if it is far
from the expected value, but the existence of this area of the
multidimensional space is not novel to the user.

To give a practical example, assume the following user beliefs

𝑝 (𝑠𝑎𝑙𝑒𝑠 ∈ [100..200) | 𝑐𝑖𝑡𝑦 = 𝐴𝑡ℎ𝑒𝑛𝑠,𝑦𝑒𝑎𝑟 = 2020) = 30%
𝑝 (𝑠𝑎𝑙𝑒𝑠 ∈ [80..100) | 𝑐𝑖𝑡𝑦 = 𝐴𝑡ℎ𝑒𝑛𝑠,𝑦𝑒𝑎𝑟 = 2020) = 70%

assuming all other dimensions set to ALL. For a particular cell
therefore, concerning the sales in Athens for 2020, we have a
probability distribution for the range of its values. Let’s also
assume that we have agreed that if a user has a belief higher or
equal to 50% for a cell’s measure, then he "knows" the cell; this
means setting a value of Π = 50%. Given the above belief set, and
the existence of a belief with probability 70% (i.e., higher than
Π), we can say that this particular cell is indeed 50%-known, and
thus consider it not novel.

Let B a set of beliefs expressed as cell expected-value state-
ments for a set of cells 𝐶𝐵 . Assume now a query 𝑞, and its re-
sulting cells 𝐶 = 𝑞.𝑐𝑒𝑙𝑙𝑠 . Assume also a threshold Π. Then, the
Π − 𝑑𝑖𝑟𝑒𝑐𝑡 𝑛𝑜𝑣𝑒𝑙𝑡𝑦 of 𝑞 is the percentage of cells of 𝑞.𝑐𝑒𝑙𝑙𝑠 that
are Π − 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. We can distinguish three cases for computing

belief-based novelty, depending on the level that the cells of 𝐶𝐵

have been defined: (a) at an arbitrary level of aggregation, (b) at
the level of the query, or (c) at the most detailed level. We explore
the last case in the sequel and refer the interested reader to the
long version [11] for a thorough analysis. Here, the set of beliefs
𝐵 is expressed over a set of cells𝐶𝐵 at the most detailed aggrega-
tion level. Then, we can compare the cells of 𝑞 with the cells of
𝐶𝐵 by converting them to their detailed equivalents. Algorithm
2 performs the computation of novelty.

Algorithm 2: Partial Extensional Detailed Belief-Based
Enumeration Of Covered Cells
Input: A query 𝑞; a set of beliefs 𝐵 over a set of cells 𝐶𝐵

at the most detailed level; a threshold Π for
deciding if a cell is eligible for being novel

Output: The subset of the cells of 𝑞0, say 𝑞𝑐𝑜𝑣
0
that are

also part of the space the beliefs cover, as well as
its complement 𝑞𝑛𝑜𝑣

0

1 begin
2 produce 𝑞0 .𝑐𝑒𝑙𝑙𝑠
3 𝑞𝑐𝑜𝑣

0 ← ∅
4 𝑞𝑛𝑜𝑣

0 ← 𝑞0 .𝑐𝑒𝑙𝑙𝑠

5 𝐶★← the subset of 𝐶𝐵 for which there exists a
known belief, i.e.,
{𝑐 | 𝑐 ∈ 𝐶𝐵, ∃ 𝑝 (𝑀 ∈𝑚 |𝑐) ∈ 𝐵, 𝑝 (𝑀 ∈𝑚 |𝑐) ≥ Π}

6 forall 𝑐0 ∈ 𝑞0 .𝑐𝑒𝑙𝑙𝑠 do
7 if 𝑐0

+ ∈ 𝐶★+ then
8 remove 𝑐0 from 𝑞𝑛𝑜𝑣

0
and add it to 𝑞𝑐𝑜𝑣

0

9 end
10 end
11 return 𝑞𝑐𝑜𝑣

0
, 𝑞𝑛𝑜𝑣

0

12 end

Then, we can compute the novelty of the query 𝑞 as usual:

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑡𝑎𝑖𝑙𝑒𝑑𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝐵𝑒𝑙𝑖𝑒 𝑓 𝑁𝑜𝑣𝑒𝑙𝑡𝑦 =
|𝑞𝑛𝑜𝑣0 |

|𝑞𝑛𝑜𝑣0 | ⋃ |𝑞𝑐𝑜𝑣0 |
The check is (a) partial (practically a normalized score), (b)

extensional (via cells), and, (c) detailed, i.e., with respect to the
most detailed cells of the data space. The Syntactic version of the
algorithm (as contrasted to the Extensional one) is quite similar,
albeit with the difference that no cells in the query result are
needed and all sets and comparisons are performed with respect
to the signatures of the queries. The complexity is linear to the
result size (assuming the set 𝐶𝐵 is fixed) and linear to the size of
the set𝐶𝐵 assuming the query result size is fixed. In the case that
only the query expression is given as input to the algorithm, and
the query result has to be computed, the cost is dominated by
the computation of 𝑞.𝑐𝑒𝑙𝑙𝑠 , which is linear to the data cube size.

5 RELEVANCE OF A QUERY
Relevance is a dimension that pertains to retaining focus towards
a specific information goal (or a set of them). The dimension
of relevance ensures that the data exploration does not wan-
der around areas of the multidimensional space that are not of
interest to the current information acquisition goal.

This is particularly the case with business intelligence scenar-
ios, where the need to satisfy an informational gap (either on
an ad-hoc or a recurring basis) is the main driver for accessing



the database for data. This does not mean that the queries are
pre-fixed, however: the quest for an information goal is very
often "open" and an exploration of a certain sub-space of the data,
possibly viewed from different angles and at different levels of
granularity. In [14] we have named this exploration a "walk" in
the multidimensional space.

As the above discussion demonstrates, a foundation for the
assessment of the relevance of a query to an exploratory session
or a recommendation to the use is the existence of an informa-
tional goal. The goal can be an ad-hoc goal for information, or a
recurring one, based on a profile of data that have to be collected
to answer recurring questions of the analyst. Specifically, we can
discriminate between several cases: (a) the case where the goal
is explicitly stated, or, (b) the case where the goal has to be in-
ferred from collateral profile information. In the former case, we
will assume that the analyst specifies an area of the information
space via a selection predicate (again, the way this is extracted
is orthogonal: it can be explicitly requested, it can be inferred
from a natural-language expression, it can be part of a query or
a KPI, etc). In the latter case, the user has not provided any such
information, and the system has to infer the intended goal from
other means – examples include the history of past analysis ac-
tions, or possibly a profile, or a set of registered KPIs. For lack of
space, we refer the interested reader to the long version [11] for
the former discussion, and here, present only the (more realistic)
case where no explicit user goal has been given.

Relevance assessment in the absence of a declared user
goal.Assume that an explicit goal to study a certain subset of the
multidimensional space is not available, but instead, the system
has access to a set of KPIs, expressed as a set of annotated queries
𝑄 = {𝑞1, . . . , 𝑞𝑛}, which we call beacon queries, that approximate
the user interest. KPIs are explicit expressions of time-invariant
interests (rather than a current user goal), so, even if they do not
explicate exactly what the user wants to achieve now, they act as
reference points of relevance for the user’s interest.

As a side-note, observe that, in extremis, one could even resort
to the user’s history for indications of relevance. Past queries are
last-resort, coarse manifestations of relevance, as they are only in
the past and not necessarily linked to what the user explores now,
or, they could be erroneous, or playful, or eventually irrelevant,
etc. However, despite all these valid reservations, it could be the
case that this is the only thing that the system knows about the
user’s idea of what is relevant.

Intuition. What we want to assess is how much a new query
𝑞 overlaps with the set 𝑄 of beacon queries. Observe that all the
methods that we define assess the overlap of levels and coordi-
nates between 𝑞 and the queries of 𝑄 ; measures and aggregate
functions are not involved in the assessment of relevance, as the
idea is to "highlight" the subset of the multidimensional space that
seems relevant to the user.

In the rest of this subsection, we simplify the discussion by
avoiding aging factors and possible weights of the different
queries and considering a single input for the interestingness
assessment algorithm: a set of beacon queries which we (ap-
proximately) deem to be relevant. We will also use the notion of
coverage, already discussed for novelty, aiming towards finding
the overlap of the area covered by the beacon set and the area
pertaining the current query.

The special case where all queries are defined at the
same level. Assuming all cubes of 𝑄 and 𝑞 are at the same level,
we can assess relevance via (a) a full syntactic check returning

true/false and (b) a partial check returning a relevance score

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑎𝑚𝑒𝐿𝑒𝑣𝑒𝑙𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 =
|𝑞𝑐𝑜𝑣+ |
|𝑞+ |

It is important to stress that the same-level relevance can only
be applied in the case where all the cubes are at the same level
of abstraction. Overall, the idea is that the beacon-set provides a
homogeneous space for query evaluation at the same level, and
thus, we can compute relevance without having to resort to the
detailed space. The Extensional counterpart of relevance (e.g.,
𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑎𝑚𝑒𝐿𝑒𝑣𝑒𝑙𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒) is defined equivalently,
with cells of the query result instead of signatures.

Foundations of history-based relevance assessment. The
most fundamental assessment method of all is to compare the
union of the detailed signatures of the queries of 𝑄 with the
signature of 𝑞. The amount of overlap signifies the relevance of
the new query.

To characterize the cells of the result of 𝑞 (in fact: their coordi-
nates) as previously-covered vs novel, we can refer to a signature-
based variant of Algorithm 1, this time passing all the history as
argument, i.e., without the requirement of same measures and
aggregate functions. Equivalently, we can use (a) the detailed
proxy of 𝑞, 𝑞0 and (b) the detailed equivalents of the queries of
𝑄 , 𝑞0

𝑖
, and pass them as input to the algorithm ComputePartial-

ImmmediateCubeCoverage of [19]. Observe, that when working
at the detailed level, coordinates and cells are equivalent, as mea-
sures are not taken into consideration. Then, the sets 𝑞𝑐𝑜𝑣

0+
and

𝑞𝑛𝑜𝑣
0+

(respectively, 𝑞𝑐𝑜𝑣
0
and 𝑞𝑛𝑜𝑣

0
) are produced.

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑡𝑎𝑖𝑙𝑒𝑑𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 =
|𝑞𝑐𝑜𝑣0 |
|𝑞0 |

𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐷𝑒𝑡𝑎𝑖𝑙𝑒𝑑𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 =
|𝑞𝑐𝑜𝑣0

+
|

|𝑞0+ |
The complexity of computing all these formulas is practically
the same with the one of Algorithm 1, and therefore, linear with
respect to query history and fact table size.

6 PECULIARITY OF A QUERY
How peculiar is a query? To understand peculiarity we must
understand that its essence lies in discriminating a particular
object (in our case: a query) from its peers (in our case: a session,
history, or just collection of other queries, to be used as the
context for the assessment of peculiarity). Beliefs, Key Interests
and Goals are not explicitly treated here; however to the extent
that they can be expressed as queries, peculiarity based on these
aspects can also be evaluated.

Therefore, in the rest of our deliberations, we assume that ev-
ery query 𝑞 is going to be assessed against a collection of queries
𝑄 = {𝑞1, . . . , 𝑞𝑛}. This generic setup can cover two alternative
situations: (a) a set of KPIs, each expressed via a query, collec-
tively describing a set of static key interests of the user, and, (b)
a set of queries in the history (be it the current session, or the
history of previous sessions).

6.1 Syntactic Outlierness
Assume the query 𝑞 and a collection of queries 𝑄 = {𝑞1, . . . , 𝑞𝑛}.
How different is 𝑞 from the collection 𝑄?

Fundamentally, the question boils down to answering the as-
sessment of the distance of two queries. To support our discussion



in the sequel we assume two queries over the same data set in a
multidimensional space of 𝑛 dimensions.

𝑞𝑎 = DS0, 𝜙𝑎, [𝐿𝑎1 , . . . , 𝐿
𝑎
𝑛, 𝑀

𝑎
1 , . . . , 𝑀

𝑎
𝑚𝑎 ], [𝑎𝑔𝑔𝑎1 (𝑀

𝑎0

1 ), . . . , 𝑎𝑔𝑔
𝑎
𝑚 (𝑀𝑎0

𝑚𝑎 )]

and

𝑞𝑏 = DS0, 𝜙𝑏 , [𝐿𝑏1 , . . . , 𝐿
𝑏
𝑛, 𝑀

𝑏
1 , . . . , 𝑀

𝑏
𝑚𝑏 ], [𝑎𝑔𝑔𝑏1 (𝑀

𝑏0

1 ), . . . , 𝑎𝑔𝑔
𝑏
𝑚 (𝑀𝑏0

𝑚𝑏 )]

To solve the problem of computing the distance of two queries,
we use the syntactic formula from [19], which, in turn, is based
on results from (see [2], [3], [12]).

The syntactic distance of the two queries is expressed by the
weighted sum of structural distances between their selection
conditions, their grouping levels, and their measures, as:

𝛿 (𝑞𝑎, 𝑞𝑏 ) = 𝑤𝜙𝛿𝜙 (𝑞𝑎, 𝑞𝑏 ) +𝑤𝐿𝛿𝐿 (𝑞𝑎, 𝑞𝑏 ) +𝑤𝑀𝛿𝑀 (𝑞𝑎, 𝑞𝑏 ),

such that the sum of the weights𝑤𝑖 adds up to 1. We follow [2]
and recommend the following weights: 𝑤𝜙 : 0.5, 𝑤𝐿 : 0.35, 𝑤𝑀 :
0.15.

Given, then, the [19] method for computing distance of two
queries 𝛿 (𝑞𝑎, 𝑞𝑏 ), the computation of the distance of a new query
𝑞 to a pre-existing collection of queries 𝑄 can be computed via
several possible methods, out of which we highlight a couple of
prominent ones:

(1) A simple statistic over the distances of the query to the
set members, 𝛿 (𝑞,𝑄) = 𝛾 (𝛿 (𝑞, 𝑞𝑖 )), 𝑞𝑖 ∈ 𝑄 ,𝛾 ∈ {𝑚𝑖𝑛,𝑚𝑎𝑥 ,
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ,𝑚𝑒𝑑𝑖𝑎𝑛}.

(2) k-nn distance of the query to the set, 𝛿 (𝑞,𝑄) = 𝑘-th small-
est 𝛿 (𝑞, 𝑞𝑖 ), 𝑞𝑖 ∈ 𝑄 . Practically, this entails ranking all the
distances of 𝑞 to the elements of𝑄 in ascending order and
take the k-th one.

The check is (a) partial (practically a normalized score), (b)
syntactical (without using the cells of the query results), (c) de-
pending upon the statistic or function that determines the final
value of the metric, and, (d) indifferent to the schema levels of
the involved cubes. We can define a Partial Syntactic Cube Out-
lierness based on which method we pick for the determination
of the final value, e.g., Partial Syntactic Average Cube Outlierness
uses the average query distance to determine the outlierness
of the measured query. To the extent that we refer to syntactic
checks, data size is irrelevant for the complexity of the algorithm.
However, the algorithm requires a linear pass from all the queries
of the history and a pairwise computation of distance at its first
phase, as well as the determination of the final peculiarity (again
requiring at most a linear past of all distances): therefore, the
complexity is linear with respect to the size of the collection 𝑄 .

6.2 Value-based Outlierness
When we address the issue of value-based outlierness assessment,
we base the result of the assessment on the actual values of the
cells of the result of the query. Then, we treat each query as a
set of cells (each cell primarily identified by its coordinates). The
question boils down to assessing how distant are the queries 𝑞𝑎

and 𝑞𝑏 with 𝑞𝑎 .𝑐𝑒𝑙𝑙𝑠 = {𝑐𝑎1 , . . . , 𝑐
𝑎
𝑛𝑎
} vs. 𝑞𝑏 .𝑐𝑒𝑙𝑙𝑠 = {𝑐𝑏1 , . . . , 𝑐

𝑏
𝑛𝑏
}

Earlier works about comparing queries through their sets of
cells, such as [9], have shown that it is not straightforward to
assess their distance. The reasons can be identified as follows:
• It is not straightforward how to map the cells of the one
query to another; this is especially true if the cardinality
of the two queries is not the same;

• It is possible that the two queries are defined at differ-
ent levels of aggregation, which means that they are not
directly comparable;
• Even if the above problems are not present, deciding a
mapping from the cells of 𝑞𝑎 to the cells of 𝑞𝑏 is not a
straightforward task.

6.2.1 Jaccard-based resolution via cell comparison at the de-
tailed level. A possible answer to the problem is to address the
issue by referring to the detailed cells that pertain to the aggre-
gate cells that constitute the results of the compared queries.
Remember that we refer to the set of cells that produce an ag-
gregate cell as the detailed area of the cell; the detailed area of a
set of aggregate cells is defined respectively. Let 𝑞01 .𝑐𝑒𝑙𝑙𝑠 be the
detailed area of 𝑞1 over 𝐶0 and 𝑞02 .𝑐𝑒𝑙𝑙𝑠 be the detailed area of 𝑞2
over 𝐶0. Then, we can compute the Jaccard similarity of the two
detailed areas. The distance of the two queries is: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞1, 𝑞2)
= 1 - 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑞01 .𝑐𝑒𝑙𝑙𝑠, 𝑞

0
2 .𝑐𝑒𝑙𝑙𝑠).

Algorithm3: Partial Extensional Detailed Jaccard-Based
(Value-based) Cube Peculiarity

Input: A new query 𝑞, the query history 𝑄 , and an
integer 𝑘 for picking the k-th neighbour

Output: the PartialExtensionalDetailedJaccard-
BasedCubePeculiarity
𝑣𝑎𝑙𝑢𝑒𝐵𝑎𝑠𝑒𝑑𝑃𝑒𝑐𝑢𝑙𝑖𝑎𝑟𝑖𝑡𝑦 (𝑞 |𝑄)

1 begin
2 Let 𝐿 = ∅ a list of Jaccard distances
3 Compute 𝑞0, i.e., the detailed area of interest for the

query 𝑞
4 forall 𝑞𝑖 ∈ 𝑄 do
5 Compute 𝑞0

𝑖
, i.e., the detailed area of interest for

the query 𝑞𝑖
6 Compute the Jaccard distance 𝐽𝐷𝑖 = 1 - |𝑞

0
𝑖

⋂
𝑞0 |

|𝑞0
𝑖

⋃
𝑞0 |

7 add 𝐽𝐷𝑖 to 𝐿
8 end
9 𝐿𝑠 = Sort 𝐿 ascending into a sorted list

10 return 𝑝𝑒𝑐𝑢𝑙𝑖𝑎𝑟𝑖𝑡𝑦 (𝑞 |𝑄) = 𝐿𝑠 [ 𝑘 ]
11 end

The intuition of the above is based on the idea that the outlier-
ness of a query is based on how much overlap its detailed cells
have with the detailed cells of the queries in the history. The
check is (a) partial (practically a Jaccard distance), (b) extensional
(with the use of the cells of the query results), and, (c) detailed,
i.e., with respect to the detailed levels of the involved cubes. Thus,
we define the Partial Extensional Detailed Jaccard-Based Cube
Peculiarity (for short: Value-based Peculiarity) as the result of
Algorithm 3.

The execution cost is dominated by the execution of the de-
tailed queries for both the reference queries and the queries of
the history𝑄 . The complexity of the algorithm is obviously linear
with respect to the history size, since there is a single detailed
query 𝑞0

𝑖
to be executed per member of 𝑄 . Also, the in-memory

check between the results of the queries is also linear with re-
spect to the history size. At the same time, the complexity is also
linear with respect to the cube size, assuming that the execution
cost for all the queries linearly depends on the cube size (i.e., all
the involved queries have their execution time scale linearly with
the same scale factor over the cube size).



7 SURPRISE OF A QUERY
Surprise is an interestingess dimension that depends mainly (if
not only) on prior beliefs. The main idea about assessing surprise
is to evaluate how far from the prior beliefs of the analyst do the
actual values lie. The two problems that one has to handle are: (a)
what kind of beliefs can we express, and how?, and, (b) assuming
these beliefs have, somehow, been expressed, how can we compute
surprise on their basis?

7.1 Expressing beliefs
We can express beliefs in a variety of ways: specific values, ex-
pected intervals, probabilities; we can even label results and give
probabilities for the labels, too [11]. Is it necessary, however, for
the analysts to express beliefs manually? In the case of KPIs that
label performance, this is explicitly done. In the general case,
all analysts work with some form of predictions that are auto-
matically derived via methods in the spectrum from a simple
regression over past values to elaborate statistical models that
economists use.

7.2 Computing surprise: the overall setup
Assume that for certain cells in the multidimensional space, we
can register or compute their expected values for specific mea-
sures (several alternatives are discussed in the rest of this section).
So, for such a cell, for each of these measures, we have (a) the
actual value𝑚, and, (b) the expected value𝑚𝑒 .

Then, the questions that we need to answer are (a) how do we
assess the surprise for a specific cell over a specific measure, (b)
how do we assess the surprise for a specific cell, with respect to
all its measures (assuming multiple such measures exist), and, (c)
how do we assess the overall surprise of a query result (which,
of course, includes a set of cells)?

Let us start with a single measure for a single cell. Fundamen-
tally, surprise is a function of how far the expected from the
actual value lies. Therefore, 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝑐.𝑀) = (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚,𝑚𝑒 ))
– for example, 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝑐.𝑀) = |𝑚 −𝑚𝑒 |. Assuming now a set
of measures per cell, the total surprise of a cell is an aggregate
measure computed over the set of surprise values for the various
measures of a cell (e.g., the number of measures indicating a
non-zero amount of surprise, or maybe the maximum, or the
average surprise). Formally, 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝑐) = 𝑓

𝑎𝑔𝑔

𝑐𝑒𝑙𝑙
(𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝑐.𝑀𝑖 )),

with 𝑓
𝑎𝑔𝑔

𝑐𝑒𝑙𝑙
∈ {𝑐𝑜𝑢𝑛𝑡, 𝑠𝑢𝑚,𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛,𝑚𝑎𝑥,𝑚𝑖𝑛, ...}.

Finally, now that we can compute the surprise for each in-
dividual cell, we can proceed in computing the surprise for a
set of cells, e.g., a query result. The surprise of a set of cells,
say 𝐶 = {𝑐1, . . . , 𝑐𝑛} is 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝐶) = 𝑓 𝑎𝑔𝑔 (𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 (𝑐𝑖 )), with
𝑓 𝑎𝑔𝑔 ∈ {𝑐𝑜𝑢𝑛𝑡, 𝑠𝑢𝑚,𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛,𝑚𝑎𝑥,𝑚𝑖𝑛, ...}

One possible concern here is what happens if there is no ex-
pected value registered for a measure of a cell. Then, there are
twoways to handle the situation: (a) this particular measure value
does not participate in the rest of the computation, or, (b) a mech-
anism for computing a derived expected value, against which we
will perform the comparison (e.g., the average of the expected
values, an interpolation over certain criteria, etc), is introduced.
Unless explicitly mentioned otherwise, the former policy of ex-
cluding the respective measure value from any computation will
be our reaction of choice.

7.3 Value-based average cell surprise
The most simple implementation of the assessment of surprise is
to (a) compute a simple distance of the actual and the expected

Algorithm 4: Value-based surprise assessment for a
single measured cube by absolute distance for expected
values and averaging of cell surprise

Input: A cube 𝐶 including a set of cells {𝑐1, . . . , 𝑐𝑛} with
a single measure𝑀 , a set of expected values for
each cell 𝐸 = {𝑚𝑒

1, . . . ,𝑚
𝑒
𝑛}

Output: The (average) surprise carried by the cube 𝐶
1 begin
2 𝑐𝑜𝑢𝑛𝑡𝑂 𝑓𝐶𝑒𝑙𝑙𝑠𝑊 𝑖𝑡ℎ𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = 0;
3 𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = 0;
4 forall 𝑐 ∈ 𝐶 do
5 𝑐.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = null;
6 if ∃ an expected value 𝑐.𝑚𝑒 for 𝑐.𝑚 then
7 𝑐.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = |𝑐.𝑚 − 𝑐.𝑚𝑒 |;
8 𝑐𝑜𝑢𝑛𝑡𝑂 𝑓𝐶𝑒𝑙𝑙𝑠𝑊 𝑖𝑡ℎ𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 + +;
9 𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 += 𝑐.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒;

10 end
11 end
12 if 𝑐𝑜𝑢𝑛𝑡𝑂 𝑓𝐶𝑒𝑙𝑙𝑠𝑊 𝑖𝑡ℎ𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒 ≠ 0 then
13 𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 =

𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒/𝑐𝑜𝑢𝑛𝑡𝑂 𝑓𝐶𝑒𝑙𝑙𝑠𝑊 𝑖𝑡ℎ𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒;
14 else
15 𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = null;
16 return 𝐶.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒;
17 end

value per measure, and per cell, (b) aggregate the measures’ sur-
prise per cell, and (c) aggregate the different cell surprises to
compute the surprise of the set of cells. As a concrete example,
Algorithm 4 works on a single-measured cube, with absolute
distance as the distance function to assess how far the actual
and the expected measures are, and averaging over all cells with
surprise to produce the aggregate cube surprise. The complexity
of the algorithm is linear with respect to the result size for the
query, assuming a fixed set of expected values 𝐸.

8 EXPERIMENTAL EVALUATION
In this Section, we present the experimental result for the evalu-
ation of several algorithms working over different dimensions
of interestingness. We measure efficiency in terms of time per-
formance for the execution of the interestingness assessment
algorithms, under different conditions of scale.

8.1 Experimentation methodology
The experimentswere performed on the Loan cube of the pkdd99_star
database, for which, we artificially generated data of different
sizes. The contents of the cube were generated with a dedicated
random generator. The server for the experiments came with an
AMD Ryzen 9 5900HS 3.3GHz CPU processor, 16GB of RAM and
a 1TB SSD NVMe M2 hard drive. For all experiments, 8GB of
RAM was allocated to the MYSQL server, via Workbench 8.0 CE.
The experimental goal is to assess the efficiency of the algorithms,
via their execution time, by tuning the scale of two parameters of
the problem, fact table and history size.

8.2 Novelty
Partial Detailed Extensional Novelty. In this experiment, we
study the effect of the fact table size and the query history to the
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Figure 1: Execution time for (left) Novelty, (middle) Relevance, (right) Peculiarity algorithms

execution time of the Algorithm for the Partial Detailed Exten-
sional Novelty. We have limited ourselves to table sizes of 100K,
1M and 10M tuples and query history of 1, 5 and 10 queries. As
Figure 1 shows, both the increase of the table size and the size of
query history, increase the total execution time of the algorithm.
The vertical axis is logarithmic. Both the increase of the table
size and query history size cause a linear increase in the total
execution time.

Belief Based Novelty. In this experiment, we study the effect
of the fact table size to the execution time of the Algorithm for
the Partial Extensional Detailed Belief-Based Novelty. We have
experimented with table sizes of 100K, 1M and 10M tuples. Fig. 1
demonstrates the results. Bear in mind that the vertical axis is
logarithmic and observe that the execution time increases linearly
with data size increase, a behavior that agrees with the complexity
analysis of the algorithm.

Comparison. Evidently, Partial Extensional Detailed Belief
Based Novelty is faster than Partial Detailed Extensional Novelty,
due to the fact that the latter is based on the time-consuming
procedure of calculating the detailed area of interest of all the
queries participating in the query history and comparing them to
the one of the given query. This requires additional queries to the
database, while on the other hand, Partial Extensional Detailed
Belief-Based Novelty simply decides if a detailed cell of the result
is considered novel based on a set of user’s beliefs.

8.3 Relevance
Partial Detailed Extensional Cube Relevance. In this experi-
ment, we study the effect of the increase of the fact table size for
a query history of 1, 5 and 10 queries to the Algorithm for the
Partial Detailed Extensional Cube Relevance, which is practically
assessing relevance with respect to a Detailed Area of Interest.
We have experimented with 100K, 1M and 10M table sizes and
query history of 1, 5 and 10 queries. As Figure 1 shows, increas-
ing either the table size or the query history size results in an

increase of the execution time of the algorithm. Both experiments
for the table and the history increase, agree with the complexity
analysis of the algorithm, which presented that the algorithm is
depended linearly on the query history size and the table size.

Partial Same Level Extensional Cube Relevance. In this
experiment, we study the behavior of this goal-based algorithm’s
execution time when we increase the result size of a query, in
terms of number of tuples. Specifically, we limit ourselves to
result sizes of 10, 84 and 792 tuples respectively. Observe that
even though the algorithm is relatively fast, the increase of the
result size increases linearly the execution time of the algorithm.

Comparison. Partial Same Level Extensional Cube Relevance
is a much faster algorithm than Partial Detailed Extensional Cube
Relevance, due to the fact that the latter one is calculating the
detailed area of interest for all the history queries, while the first
algorithm simply calculates the coverage of the detailed cells
based on the user’s goal.

8.4 Peculiarity
Partial Syntactic Average Cube Peculiarity. In this experi-
ment, we study the behavior of this algorithm’s execution time
when we increase the number of queries used as a query history.
The results in Fig. 1, show that the increase of the query history
size linearly increases the total execution time of the algorithm,
as presented in the complexity analysis of the algorithm too.

Partial Extensional Detailed Jaccard-Based Peculiarity.
In this experiment, we study the effect of the increase of (a) the
fact table size, and (b) and the query history to the Partial Exten-
sional Detailed Jaccard-Based Peculiarity algorithm (practically
assessing peculiarity on the basis of a Jaccard similarity between
the detailed areas of the query and the history of queries). Fig. 1,
with its vertical axis in logarithmic scale, shows the results of
the experiments. Both table size and query history size increase
linearly the execution time of the algorithm, but the first one in
a much larger scale.



Figure 2: The execution time for the Partial Extensional
Value-Based Surprise with respect to query result size

Comparison. Partial Syntactic Average Cube Peculiarity is a
much faster algorithm than Partial Extensional Detailed Jaccard-
Based Peculiarity. This is due to the fact that the first one simply
does a syntactic analysis of the query and compares it to the
already submitted ones, while the latter one needs to compute
the detailed area of interest of all the queries in the history, which
hides the execution of a series of new queries.

8.5 Surprise
Partial Extensional Value-Based Surprise. In this experiment,
we study the behavior of this algorithm’s execution time when
we increase the result size of a query, in terms of number of tuples.
The results, as presented in Fig. 2, show that the theoretical linear
increase with respect to the result size is not exactly achieved.
The algorithm is quite fast, of course, due to its simple nature
that works on top of a query result (remember, surprise cannot
work with signatures, and requires the query result and the cells
measures to be computed). We attribute the variation of the
execution time to the probability of hitting an expected value
when the result size of the query is larger, which results in extra
CPU time for computing the surprise.

9 CONCLUSIONS
In this paper, we have addressed the problem of assessing the
interestingness of a cube query in the context of a hierarchi-
cal multidimensional database with cubes and level hierarchies.
We have focused the discussion on 4 interestingness dimensions,
specifically, relevance, surprise, novelty, and peculiarity. For these
dimensions of interestingness, we have also proposed specific
measures and algorithms for assessing them in a quantitative
fashion. We take care to discriminate between result-based algo-
rithms, after the query has been executed and signature-based
algorithms, before the query is executed. We have also explored
the runtime behavior of such algorithms, over different sizes and
session histories.

Future work can continue in different roads. First, it is clear
that the presented algorithms are only a first attack to the prob-
lem. Several parts of the domain of solutions are also possible (see
[11] for a discussion). Moreover, while our four interestingness
dimensions cover the majority of existing definitions of interest-
ingness, a notable one concerns the expression aspect, in which
data are assessed for their fitness to the medium used to express
them – e.g., a cube can be described by the set of cells, or by a
query, or by a visualization, etc.
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