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ABSTRACT
The advent of big data has continuously offered new opportu-
nities for analysis due to the growth and diversification of data
sources. However, traditional data warehouses based on multidi-
mensional models have limitations when it comes to changing
and evolving. In recent years, innovative work in the field of data
warehouse evolution has been performed; it has mainly focused
on the management of big data and the chronological evolution
of models in terms of their structures and data. However, an agile
decision model is still required. We propose in this paper an agile
approach for schema evolution in data warehouses that allows
designers to integrate new data sources and take into account
new user needs in order to enrich the analysis possibilities of
data warehouses in a flexible way. Our approach is based on a
multi-version evolutionary schemamodel. The data instances cor-
responding to the different versions of the schema are stored in a
graph data warehouse. A meta-model will allow the management
of the warehouse schema versions. We also propose evolution
functions on the schema level. We validate our approach with a
software prototype and a case study that illustrates queries on
schema versions, cross-queries and the runtime of our approach.

1 INTRODUCTION
Data warehouses (DWs) are the core of modern decision-making
systems, enabling decision-makers to consider their environ-
ments for better decision-making. Since the appearance of DWs
[17, 18], the warehousing approach has become an important
research field in which many problems still need to be solved,
particularly problems related to the evolutionary aspect of DWs.
Indeed, DWs based on classical multidimensional models cen-
tralise data from different sources to meet the analysis needs of
users. One of the key tasks that must be carried out in a success-
ful data warehousing process is the definition of the warehouse
model according to the data sources and analysis needs. With the
advent of big data, there has been a proliferation of data sources,
which is leading to new analysis needs. Big data offers due to
the growth and diversification of data sources. A DW’s schema
is designed to meet predefined analysis needs; if these needs
change, it can be costly to change the schema. The classical mul-
tidimensional model, based on the star schema and its variants,
has limited possibilities when it comes to change, and its evo-
lution is complex. These limitations are related to the fixed star
model: it is created for analysis needs that are known in advance.
We are interested in the evolution of data warehouses in this
context. Even though this problem is not new, as many works
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concerning it exist in the literature, it still raises new research
questions. In this article, we propose an agile multidimensional
model for big data called the graph-based agile multidimensional
model (GAMM), which is based on an extension of the classical
multidimensional model, to support chronological evolution on
the conceptual level and the evolution of the graph structure on
the logical and physical levels. GAMM allows the evolution of
a schema in a data warehouse by creating a new version of the
schema at each evolution using evolution functions. Each ver-
sion corresponds to a data instance extracted from an agile graph
data warehouse. A meta-model has been proposed to manage
the different schema versions. The rest of the article is organised
as follows. It starts by presenting a running motivating example
(Section 2). Then, related work and a comparative description of
evolution in data warehouses are presented (Section 3). In Sec-
tion 4, we present GAMM, its architecture, the meta-model for
schema version management, the agile graph-based warehouse
for data storage and the formalisation of the model. We then
describe in Section 5 the schema evolution process of our model,
which is performed by the implemented evolution functions. In
Section 6, we give an example of an instance and queries. In
Section 7, we describe the use of our software prototype, which
has a 3-tier architecture, and we present a use case based on the
Star Schema Benchmark (SSB) dataset 1 2 for functional valida-
tion and to study the runtime of our model. Finally, a conclusion
and future research topics are presented.

2 RUNNING MOTIVATING EXAMPLE
We define agility in a multidimensional model as its organisa-
tional capacity to build data warehouses in a scalable way while
prioritising the goals of business teams. It is about responding to
new business objectives and the integration of new data sources
in a flexible and incremental way while maintaining all previous
builds. This flexibility delivers more business value to decision-
makers and allows them to better manage their environment. We
use the dimensional fact model (DFM) formalism [13] to repre-
sent the conceptual schemas of our example (Figure 1).

Consider the initial schema at 𝑡0 in Figure 1a, which is com-
posed of a fact Sales and three dimensions, the Product, Cus-
tomer and Date dimensions. For the sake of consistency, we will
use this schema configuration as a running example during the
presentation of all parts of our proposal. The dimension Product
is described by the attributes Product_Name and Unit_Price and
the hierarchical level Category. This dimension therefore has
a single hierarchy on the analysis axis (Product, Category).
The dimension Customer is described by the attributes Cus-
tomer_Name, Address and Phone, and the hierarchical level City.

1https://jorgebarbablog.wordpress.com/2016/03/21/how-to-load-the-ssb-schema-
into-an-oracle-database/
2https://github.com/Kyligence/ssb-kylin



(a) Schema version at t0 (b) Schema version at t3

Figure 1: Multidimensional model schemas for retail sales using DFM formalism

The dimension Date has two hierarchical levels, i.e. Month and
Year. The fact Sales is indicated by the measure Sales_Amount.

Let us assume that this schema undergoes the following changes:
(i) a new level Country is added to the dimension Customer
dimension at 𝑡1; (ii) a new dimension Supplierwith the attributes
Sup_Name, Address and Phone is added at 𝑡2; and (iii) the dimen-
sion Customer is deleted and a measureQuantity is added at 𝑡3.
The conceptual schema after these changes is depicted in Figure
1b. (The dimension Customer and its hierarchies have been left
on the diagram with a broken line box for explanatory purposes.)

If, at the conceptual level, schema changes are quite easy to
represent, the concretisation of these changes is quite complex
on the logical and physical levels. Indeed, multidimensional mod-
elling based on the entity–relationship (ER) model presents a
resistance to schema changes that we describe in detail in the
following section.

3 RELATEDWORK
At the end of the 1990s, decision-making systems based on mul-
tidimensional modelling were progressively implemented to pro-
vide tools and methods that allow decision-makers to better
visualise their environments and to offer them adequate sup-
port for strategic decision-making [17]. The concept of multidi-
mensional modelling, particularly the evolutionary aspect, has
become a research field in its own right [15]. Indeed, the evo-
lution of multidimensional models has been the subject of sev-
eral studies proposing different approaches. These works can be
grouped into two categories: (i) those focused on data evolution
[2, 10, 12, 14, 20, 22], and (ii) those focused on schema evolution
without change-history support [7–9, 11, 16, 19, 25] and with
change-history support [1, 3, 21, 23, 24, 26].

In our literature study (Table 1), we compared the various
existing research works based on the evolutionary aspect of the
schemas and data, the history of these evolutions, data integrity
and the cross-queries.

The work in the literature on evolving multidimensional mod-
els is based on the ER model, which limits the evolution of these

Table 1: Comparative review of previous work

Study Temporal
evolution
of the data

Schema
evolu-
tion

History Data
integrity

Cross-
queries

[10] √

[16] √ √

[9] √ √

[20] √

[7] √

[21, 26] √ √ √

[6] √ √

[8] √ √

[23] √ √ √

[19] √ √

[11] √ √

[24] √ √ √

[14] √

[25] √ √

[1, 4] √ √ √

[12] √

[22] √ √

[2, 3] √ √ √ √

multidimensional models, particularly in terms of the schema. In-
deed, these solutions proposed either implicit or explicit version-
ing. Implicit versioning was accomplished by providing temporal
extensions to the schema, such as the use of the bitmap to share
data between several reference versions, which is constraining in
terms of queries, especially in a big data context. Meanwhile, ex-
plicit versioning was performed through the duplication of data
and entities (elements of the schema), which is also constraining
due to the quantity of data generated and the complex structure
that must be managed. Moreover, the extension of relational en-
tities causes a loss in the integrity of the data due to the creation
of Null values.

The evolution of multidimensional models in various previous
research works is both logically and physically constrained. In-
deed, the modelling of facts connected to several dimensions con-
siderably limits the possibilities of evolution because of a design
based on a multidimensional schema. Moreover, the relational



structure used in almost all of the previous studies is not adapted
to this evolution because of the tabular structure of the entities
and because each schema is established for a specific need, which
means that updating these schemas is complex. Additionally, the
creation of multiple versions of the facts with different levels
of granularity considerably complicates the cross-queries. The
approach that we propose allows the evolution of the schemas
with a history of all previous versions. The approach adopted
for the formalisation of our model will facilitate the incremental
integration of data.

4 GRAPH-BASED AGILE
MULTIDIMENSIONAL MODEL

4.1 Architecture of GAMM
GAMM is a flexible approach to schema and data evolution in
data warehouses. The model allows designers to integrate new
data sources and accommodate new user requirements to enrich
the analytical capabilities of the data warehouse. It is an approach
based on a multi-version scalable schema model and a data ware-
house stored in a unique global graph database (Figure 2).

Figure 2: Architecture of GAMM

Each schema version (SV) is valid for a period of time (T) char-
acterised by a Starting_Time (ST) and an Ending_Time (ET), and
it corresponds to a data instance (DInst) extracted from the graph-
based data warehouse (GDW). A meta-model is implemented for
the management of schema versions whose validity periods are in
sequential order. We will develop in the following subsections the
meta-model of GAMM for schema versioning (subsection 4.2),
the graph-based data warehouse for data storage, the rules for
moving from a classical data warehouse to a GDW (subsection
4.3) and the formalisation of GAMM (subsection 4.4).

4.2 Meta-model of GAMM
We have built a meta-model that enables the identification of all
the schema structures that exist in the model in order to manage
the many schema versions arising from evolution in GAMM. The
foundation of this meta-model is a single class called Version that
contains the version identification, an ST and an ET to specify
the duration of each version’s validity and each version’s status.
We present a diagram of the meta-model in Figure 3.

The organisation of each schema is determined by the Version
class, which serves as the hub around which all other classes
revolve. The diagram effectively establishes the facts pertaining

Figure 3: Meta-model of GAMM

to the versions, as well as the measurements and dimensions
related to the versions. Additionally, it establishes the attributes
connected to the dimensions/levels, the order in which these
levels are determined and the hierarchical levels connected to
the dimensions at any given time.

A new version is created with the appropriate schema each
time the schema is changed by the addition/deletion of a new
entity or link between existing entities (fact/dimension, dimen-
sion/level, level/level, etc.). The ST of the new version is set to
the date of creation, the ET has the value Null until the end of
the schema’s validity is determined by the creation of another
version and the status takes the value Last to indicate the active
version. In a similar way, the ET from the previous version has
been upgraded and has an Old status. The active schema and the
additional data sources will be taken into account as the data
integration process is modified. Each schema, then, corresponds
to a specific piece of data that has been integrated into a GDW
and is identifiable by its chronological label TT in explicit queries
or by the relationships of entities in implicit queries, especially
for cross-queries. The VT parameter will be used in an analysis
context. The data integration process will be readapted according
to the active schema and the new data sources.

4.3 Graph data warehouse
The conception of the GDW is characterised by the separation
of business concepts from their descriptors (attributes), allowing
each entity to have an independent evolution. The graph formal-
isation and implementation in a graph-oriented database were
adopted to overcome the constraints generated by the use of an
ER model. Indeed, the graph formalisation offers more flexibility
for the model, particularly in terms of evolution [5]. In addition to
the representative quality of the interconnected data, the use of
graphs was preferred due to the absence of integrity constraints,
particularly for the management of keys during the evolution
of the schemas; the absence of a pre-established schema; and
the possibility of representing each value of a tuple (or all of
the tuple according to the need) using a node of the graph. This
graph implementation is unlike relational tables, which are or-
der schemas composed of horizontal lines and vertical columns
in which the addition/removal of a column affects the whole
structure. A graph-oriented NoSQL database (GDB) was cho-
sen to represent the GDW because of its concordance with the
proposed graph formalisation. Indeed, graph-oriented databases
present data in the form of a graph (vertex/edge) using physical
pointers between nodes, thus avoiding joins in queries, which is



advantageous, particularly in a big data context. GDBs are also
characterised by the absence of a data type and the possibility
of integrating information into the relationships between data.
Additionally, the concept of graphs has been adopted mainly to
allow us to carry out an advanced analysis on the model; this
makes it possible to perform an online analysis to produce ex-
plicative and predictive models. The business concepts, as well
as the descriptors, will be represented by nodes, and the relations
between these concepts will be represented by edges (Figure 4). In
this context, we have established the following rules for moving
from a classical multidimensional model to the graph model:

(1) Each tuple of a fact is represented by its own node.
(2) Each (business/descriptor) value of a dimension, level or

attribute is represented by its own node.
(3) All relationships are represented by edges.
(4) The fact nodes contain the measures.
(5) The facts nodes are directly related to the dimension nodes.
(6) The level nodes are related to a dimension / other level

nodes according to their depth.
(7) The attributes nodes are directly related to the dimen-

sion/level nodes.
(8) The levels constitute hierarchies according to axes of anal-

ysis organised from the finest to the coarsest level of ag-
gregation.

(9) All entities have a chronological tag (Valid_Time (VT) and
Transaction_Time (TT)) in accordance with the principles
of bi-temporal databases[14].

By applying these rules of passage to the schema of our run-
ning example, we obtain the schema represented in Figure 4. We
consider the three dimensions Product, Customer and Date,
the fact Sales, themeasure Sales_Amount and the hierarchical lev-
els Category for Product and City for Customer. Dimensions
and levels are described by nodes representing the descriptors.

Figure 4: Logical schema of GAMM(𝑡0)

This model separates the business concepts from the descrip-
tors (attributes) in order to allow an independent evolution of
each entity. Indeed, facts, dimensions and hierarchy levels are
represented by nodes corresponding to the basic multidimen-
sional concepts to which other nodes representing descriptors
are linked. A temporal label consisting of a VT and a TT has
been assigned to all entities to allow the identification of the
different instances and to indicate which version they belong to.
Thus, the data of each schema version can be consulted using
the TTs that belong to the time interval of validity of the schema
concerned. This representation allows us to provide flexibility
in the evolution of the model both at the schema level and at
the data level while preserving the history of these evolutions.

Indeed, the data instances in the GDW evolve incrementally and
without redundancy. All data instances of previous schemas will
be available for consultation. Thus, the deletion of any entity
from the schema is done only at the meta-model level, without
deleting the data corresponding to this entity. In our article, we
are interested in the evolution of the schema, and a formalisation
of this model is proposed in the following subsection.

4.4 Formalisation of GAMM
On the conceptual level, the GAMM approach represents an ex-
tension of classical multidimensional modelling based on the
fact, measure, dimension, level and hierarchy concepts. Indeed,
due to the evolution of the schema over time and for historical
purposes, the temporal concept has been introduced according
to the following definitions.

Definition 1: GAMM is represented as follows:

𝐺𝐴𝑀𝑀 (𝑡) = {𝐹, 𝐷, 𝐹𝐴𝑠𝑠𝑜𝑐 [𝐹, 𝐷] (𝑡)}.

𝐺𝐴𝑀𝑀 (𝑡) represents the schema version at a time 𝑡 .
𝑡 ∈ 𝑇 = [𝑆𝑇 , 𝐸𝑇 ] represents the period of validity of the schema
version, where 𝑆𝑇 is the Starting_Time of the version and 𝐸𝑇 is
the Ending_Time of the version.
𝐹 = {𝑓𝑖 (𝑡)}, 𝑖 ∈ [1, ∗], represents the set of facts at the moment 𝑡 .
𝑓𝑖 (𝑡) represents the fact 𝑓𝑖 at a time 𝑡 .
𝐷 = {𝑑 𝑗 (𝑡)}, 𝑗 ∈ [1, ∗], represents the set of dimensions accord-
ing to which 𝑓𝑖 (𝑡) is analysable at a time 𝑡 .
𝑑 𝑗 (𝑡) represents the dimension 𝑑 𝑗 at a time 𝑡 .
𝐹𝐴𝑠𝑠𝑜𝑐 [𝐹, 𝐷] (𝑡) : 𝑓𝑖 (𝑡) =⇒ {𝑑 𝑗 (𝑡), 𝑆𝑇 , 𝐸𝑇 }, where 𝑗 ∈ [1, ∗], rep-
resents the association function of the set of dimensions {𝑑 𝑗 (𝑡)}
and the fact 𝑓𝑖 (𝑡) at a time 𝑡 .
Example:

𝐺𝐴𝑀𝑀 (𝑡0) = {{𝑆𝑎𝑙𝑒𝑠}, {𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡}, {𝑆𝑎𝑙𝑒𝑠 =⇒ 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟,

𝑃𝑟𝑜𝑑𝑢𝑐𝑡}}
and 𝑆𝑇0 =< 𝑡0 < 𝐸𝑇0.

Definition 2: A fact represents a subject analysed by GAMM.
It is defined as follows:

𝐹 (𝑡) = {𝐹_𝐼𝑑,𝑇𝑇 ,𝑉𝑇 , [𝑀], 𝑀𝐴𝑠𝑠𝑜𝑐 [𝐹,𝑀] (𝑡)}.

𝐹_𝐼𝑑 represents the fact identifier.
𝑇𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 represents the period during which a
fact is stored in the model.
𝑉𝑇 = 𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒 represents the period during which a fact is
true in relation to reality.
[𝑀] = {𝑚𝑘 (𝑡)}, 𝑘 ∈ [1, ∗], represents the set of measures associ-
ated with the fact at a time 𝑡 .
𝑚𝑘 (𝑡) represents a measure𝑚𝑘 at an instant 𝑡 .
𝑀𝐴𝑠𝑠𝑜𝑐 [𝐹,𝑀] (𝑡) : 𝑓𝑖 (𝑡) =⇒ {𝑚𝑘 (𝑡), 𝑆𝑇 , 𝐸𝑇 } represents an as-
sociation function of the set of measures {𝑚𝑘 (𝑡)} and the fact
𝑓𝑖 (𝑡) at a time 𝑡 , where 𝑆𝑇 is the Starting_Time and 𝐸𝑇 is the
Ending_Time.
Example:

𝐹 (𝑡𝑜 ) = {𝑆𝑎𝑙𝑒𝑠_𝐼𝑑,𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑜 ,

𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒𝑜 , 𝑀𝑜 , 𝑀𝐴𝑠𝑠𝑜𝑐 [𝐹,𝑀] (𝑡𝑜 )}.

𝑀𝑜 : {𝑆𝑎𝑙𝑒𝑠_𝐴𝑚𝑜𝑢𝑛𝑡}.
𝑀𝐴𝑠𝑠𝑜𝑐 [𝐹,𝑀] (𝑡𝑜 ) : {𝑆𝑎𝑙𝑒𝑠 =⇒ 𝑆𝑎𝑙𝑒𝑠_𝐴𝑚𝑜𝑢𝑛𝑡}.



Definition 3: A measure is an indicator allowing the analysis
of the business subject represented by the fact; it is numerical
and aggregable and is defined as follows:

𝑀 (𝑡) = {𝑀_𝐼𝑑, 𝑀𝑒𝑎𝑠𝑢𝑟𝑒,𝑇𝑇 ,𝑉𝑇 }.
𝑀_𝐼𝑑 represents the measure identifier.
𝑀𝑒𝑎𝑠𝑢𝑟𝑒 represents the indicator.
𝑇𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 represents the period during which a
measure is stored in the model.
𝑉𝑇 = 𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒 represents the period during which a measure
is true in relation to reality.
Example:

𝑀 (𝑡𝑜 ) = {𝑆𝑎𝑙𝑒𝑠_𝐴𝑚𝑜𝑢𝑛𝑡_𝐼𝑑, 𝑆𝑎𝑙𝑒𝑠_𝐴𝑚𝑜𝑢𝑛𝑡,𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑜 ,

𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒𝑜 }.
Definition 4: A dimension is an axis of analysis according to
which the business subject is analysed. It determines the level of
detail of the measures and is defined as follows:

𝐷 (𝑡) = {𝐷_𝐼𝑑,𝑇𝑇 ,𝑉𝑇 , [𝐴], [𝐿], 𝐷𝐴𝑠𝑠𝑜𝑐𝑎 [𝐷,𝐴] (𝑡),

𝐷𝐴𝑠𝑠𝑜𝑐𝑙 [𝐷, 𝐿] (𝑡)}.
𝐷_𝐼𝑑 represents the dimension identifier.
𝑇𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 represents the period for which a di-
mension is stored in the model.
𝑉𝑇 = 𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒 represents the period during which a dimen-
sion is true in relation to reality.
[𝐴] = {𝑎𝑖 (𝑡)}, 𝑖 ∈ [1, ∗], represents the set of attributes associ-
ated with the dimension at a time 𝑡 .
𝑎 𝑗 (𝑡) represents the attribute 𝑎 𝑗 at a time 𝑡 .
[𝐿] = {𝑙𝑘 (𝑡)}, 𝑘 ∈ [0, ∗], represents the set of levels associated
with the dimension at a time 𝑡 .
𝐷𝐴𝑠𝑠𝑜𝑐𝑎 [𝐷,𝐴] (𝑡) : 𝑑 𝑗 (𝑡) =⇒ {𝑎𝑖 (𝑡), 𝑆𝑇 , 𝐸𝑇 } represents the asso-
ciation function of the set of attributes {𝑎𝑖 (𝑡)} and the dimension
𝑑 𝑗 (𝑡) at a time 𝑡 , where 𝑆𝑇 is the Starting_Time and 𝐸𝑇 is the
Ending_Time.
𝐷𝐴𝑠𝑠𝑜𝑐𝑙 [𝐷, 𝐿] (𝑡) : (𝑑 𝑗 (𝑡) =⇒ {𝑙𝑘 (𝑡), 𝑆𝑇 , 𝐸𝑇 } represents the as-
sociation function of the set of levels {𝑙𝑘 (𝑡)} and the dimension
𝑑 𝑗 (𝑡) at a time 𝑡 , where 𝑆𝑇 is the Starting_Time, 𝐸𝑇 is the End-
ing_Time and 𝑗 ∈ [0, ∗].
Example:

𝐷 (𝑡0) = {𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐼𝑑,𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑜 ,𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒𝑜 ,

𝐴0, 𝐿0, 𝐷𝐴𝑠𝑠𝑜𝑐𝑎 [𝐷,𝐴] (𝑡0), 𝐷𝐴𝑠𝑠𝑜𝑐𝑙 [𝐷, 𝐿] (𝑡0)}.

𝐴0 : {𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑁𝑎𝑚𝑒,𝑈𝑛𝑖𝑡_𝑃𝑟𝑖𝑐𝑒}.
𝐿0 : {Category}.
𝐷𝐴𝑠𝑠𝑜𝑐 [𝐷,𝐴] (𝑡𝑜 ) : {𝑃𝑟𝑜𝑑𝑢𝑐𝑡 =⇒ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑁𝑎𝑚𝑒,𝑈𝑛𝑖𝑡_𝑃𝑟𝑖𝑐𝑒}.
𝐷𝐴𝑠𝑠𝑜𝑐𝑙 [𝐷, 𝐿] (𝑡0) : {𝑃𝑟𝑜𝑑𝑢𝑐𝑡 =⇒ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦}.

Definition 5: A hierarchy is a projection of analysis by level
along the axis defined by the dimension. It is organised from
the finest to the coarsest granularity level, thus offering analysis
possibilities for ascending groupings through roll-up and descend-
ing groupings through drill-down. The hierarchy is defined as
follows:

𝐻 (𝑡) = {𝐿, 𝑅ℎ [𝐿𝑗 , 𝐿𝑘 ] (𝑡)}.
𝐿 = {𝑙𝑖 (𝑡)}, 𝑖 ∈ [1, ∗], represents the set of aggregation levels
constituting a hierarchy H(t) at a time 𝑡 .
𝑅ℎ [𝑙 𝑗 , 𝑙𝑘 ] (𝑡) represents the aggregation function between the
different levels {𝑙𝑖 (𝑡)} constituting a hierarchy 𝐻 (𝑡) at a time 𝑡 ,
with 𝑗 ∈ [1, ∗], 𝑘 ∈ [1, ∗] and 𝑗 ≠ 𝑘 .

Assume that 𝐷𝑖 (𝑡) ∈ 𝐷 with 𝑖 ∈ [1, ∗], ∀ 𝐻 𝑗 (𝑡) ∈ 𝐻 with 𝑗 ∈
[1, ∗], and 𝐿ℎ 𝑗

1 (𝑡) is directly related to 𝐷𝑖 (𝑡) so that

𝐷𝑖 (𝑡) ≺ 𝐿
ℎ 𝑗

1 (𝑡) ≺ 𝐿
ℎ 𝑗

2 (𝑡) ≺ ... ≺ 𝐿
ℎ 𝑗

𝑘
(𝑡) ≺ 𝐴𝑙𝑙 .

𝐷𝑖 (𝑡) represents the finest level of aggregation of the analysis
axis.
𝐿
ℎ 𝑗

𝑘
(𝑡) represents the coarsest level of aggregation in the hierar-

chy ℎ 𝑗 .
𝐴𝑙𝑙 represents the global aggregation level of the dimension.
Example: Analysis projection by country and city for the Cus-
tomer dimension can be performed as follows:

𝐷 (𝑡) = (𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ) ≺ 𝐿
ℎ 𝑗

1 (𝑡) = (𝐶𝑖𝑡𝑦) ≺ 𝐿
ℎ 𝑗

2 (𝑡) = (𝐶𝑜𝑢𝑛𝑡𝑟𝑦) ≺ 𝐴𝑙𝑙 .

Definition 6: A level represents the degree of detail of an
analysis perspective according to a given hierarchy. It is defined
as follows:

𝐿(𝑡) = {𝐿_𝐼𝑑,𝑇𝑇 ,𝑉𝑇 ,𝐴, 𝐿𝐴𝑠𝑠𝑜𝑐 [𝐿,𝐴] (𝑡)}.
𝐿_𝐼𝑑 represents the level identifier.
𝑇𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 represents the period during which a
level is stored in the model.
𝑉𝑇 = 𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒 represents the period during which a level is
true compared to reality.
𝐴 = {𝑎𝑖 (𝑡)}, 𝑖 ∈ [1, ∗], represents the set of attributes associated
with the level at a time 𝑡 .
𝐿𝐴𝑠𝑠𝑜𝑐 [𝐿,𝐴] (𝑡) : 𝐿𝑗 (𝑡) =⇒ {𝑎𝑖 (𝑡)} represents the association
function of the set of attributes {𝑎𝑖 (𝑡)} and the level 𝐿𝑗 (𝑡) at a
time 𝑡 .
Example:

𝐿(𝑡0) = {𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝐼𝑑,𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑜 ,

𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒𝑜 , 𝐴0, 𝐿𝐴𝑠𝑠𝑜𝑐 [𝐿,𝐴0] (𝑡0)}.
𝐴0 : {𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑁𝑎𝑚𝑒}.
𝐿𝐴𝑠𝑠𝑜𝑐 [𝐿,𝐴0] (𝑡0) : {𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 =⇒ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑁𝑎𝑚𝑒}.

Definition 7: An attribute is an element of description of a
dimension or a hierarchical level to which it is associated. It is
defined as follows:

𝐴(𝑡) = {𝐴_𝐼𝑑, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,𝑇𝑇 ,𝑉𝑇 }.
𝐴_𝐼𝑑 represents the attribute identifier.
Attribute represents the value of the description attribute.
𝑇𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 represents the period during which an
attribute is stored in the model.
𝑉𝑇 = 𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒 represents the period during which an at-
tribute is true with respect to reality.
Example:

𝐴(𝑡) = {𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑛𝑎𝑚𝑒_𝐼𝑑, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝑛𝑎𝑚𝑒,𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑜 ,

𝑉𝑎𝑙𝑖𝑑_𝑇𝑖𝑚𝑒𝑜 }.

5 SCHEMA EVOLUTION IN GAMM
The warehouse schema is likely to evolve to meet new analysis
needs and to be able to handle the new data sources required to
meet those needs. Indeed, GAMM is a multi-version evolutionary
model in which each version represents the state of the schema at
time t. The evolutions are performed according to the following
function:

𝐺𝐴𝑀𝑀 (𝑡𝑛+1) = 𝐺𝐴𝑀𝑀 (𝑡𝑛) + 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑛) .
where GAMM(𝑡𝑛+1) represents the schema after the evolu-

tion, GAMM(𝑡𝑛) represents the schema before the evolution and



Evolution_Operation(𝑡𝑛+1) represents the evolution to be applied
to a given version according to the type of this evolution. The
evolution operators are defined in Table 2.

Table 2: Schema evolution operators

Evolution Evolution operator Description

Add an at-
tribute

Add_attribute(a1,d1),
Add_attribute(a1,l1)

Add the attribute a1 to the
dimension d1 or the level
l1

Add a mea-
sure

Add_measure(m1,f1) Add themeasurem1 to the
fact f1

Add a di-
mension

Add_dimen-
sion(d1,f1,«a»)

Add the dimension d1 to
the fact f1 with attributes
«a»

Add a level Add_level(l1,d1),
Add_level(l1,l2)

Add the level l1 to the di-
mension d1 or to the level
l2

Add a fact Add_-
fact(f1,«d»,«m»)

Add the fact f1 to the di-
mensions «d1» with mea-
sures «m»

Delete an
entity

Delete_entity(e) Delete an entity e (fact,
measure, dimension, level
or attribute)

Create a re-
lationship

Add_link(e1,e2) Create a link between en-
tity e1 and entity e2

Delete a re-
lationship

Delete_link(e1,e2) Delete a link between en-
tity e1 and entity e2

For the function Delete_entity, several cases are considered
according to the type of the entity to be deleted and the objective
of the user. The operations performed by the model according
to each case are not described in detail in this article due to
the lack of space. Additionally, the modification of an entity
will be described when the chronological evolution in terms of
data is discussed. In what follows, we reuse our current example
to propose the previously described schema modifications that
correspond to three new analysis needs and illustrate for each of
these needs the evolution of the schema, as well as the appropriate
evolution functions for each operation.

5.0.1 Example 1: Add a new level Country to the dimension

Customer. The addition of a level Country to the level City of
the dimension Customer, which is represented by the schema
in Figure 5, creates a new hierarchy on the axis of analysis
(Customer, City, Country), thus responding to a new need for
a more detailed geographic analysis using the level Country.

Figure 5: Logical schema of GAMM(𝑡1)

The addition of this newhierarchy does not require any changes
to the factual level of Sales, nor does it require changes to the
measures associated with Sales since the added level does not rep-
resent a base level and therefore does not correspond to the finest
level of granularity of the Customer dimension. However, the
analysis queries will need to be updated, especially for the gen-
eration of the OLAP cubes that are built. The evolution function
corresponding to this operation is represented as follows:

𝐺𝐴𝑀𝑀 (𝑡1) = 𝐺𝐴𝑀𝑀 (𝑡0) +𝐴𝑑𝑑_𝑙𝑒𝑣𝑒𝑙 (Country,City) .

5.0.2 Example 2: Add a new dimension Supplier. The addition
of a new dimension Supplier with the attributes Sup_Name,
Address and Phone, which is represented by the schema in Figure
6, offers the model a new axis of analysis, thus responding to a
new analysis need using the added dimension.

Figure 6: Logical schema of GAMM(𝑡2)

This new axis of analysis, created by the addition of the dimen-
sion Supplier, increases the level of granularity of the measure
present in the fact Sales and modifies the schema of the model by
creating the new version. Consequently, new instances of these
measures, as well as of the corresponding fact, will be created to
respond to this new level of detail. The old instances will be kept
for historical purposes. The evolution function corresponding to
this operation is represented as follows:

𝐺𝐴𝑀𝑀 (𝑡2) = 𝐺𝐴𝑀𝑀 (𝑡1) +𝐴𝑑𝑑_𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(Supplier, Sales,

[Sup_Name, Sup_Address, Sup_Phone]).

5.0.3 Example 3: Delete a dimension Customer with hierarchi-

cal levels and add a measure Quantity. The addition of this new
measure, which is represented by Figure 7, meets a new analysis
need, namely the ability to determine the quantity of sales.

Figure 7: Logical schema of GAMM(𝑡3)



This measure is represented only by the dimensions Product
and Supplier, which implies the removal of the dimension Cus-
tomer from the schema. This operation decreases the level of
granularity of the measures associated with the fact Sales. There-
fore, new instances of these measures will be created to meet this
new level of detail. The evolution function corresponding to this
operation is represented as follows:

𝐺𝐴𝑀𝑀 (𝑡3) = 𝐺𝐴𝑀𝑀 (𝑡2) + 𝐷𝑒𝑙𝑒𝑡𝑒_𝑒𝑛𝑡𝑖𝑡𝑦 (Customer)

+𝐴𝑑𝑑_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (Quantity, Sales).
The evolutions in GAMM are characterised by the creation

of a new schema version for each modification of the schema.
𝐺𝐴𝑀𝑀 (𝑡0) represents the initial model;𝐺𝐴𝑀𝑀 (𝑡1) represents
the first evolution, which corresponds to the addition of a hierar-
chical level; 𝐺𝐴𝑀𝑀 (𝑡2) represents the second evolution, which
corresponds to the addition of a dimension; and 𝐺𝐴𝑀𝑀 (𝑡3) rep-
resents the last evolution, which corresponds to the addition of a
measure and the deletion of a dimension.

6 QUERIES IN GAMM
In most of the research works related to the evolution of classical
multidimensional models based on the ER model [3], the recog-
nised approach is the creation of a new fact table for each version,
particularly in the case of a change in the level of granularity of
the measures. Here, we present an example of a fact instance in
a relational model corresponding to the three schema versions
in our running example. Tables 3, 4 and 5 show extracts of ver-
sions of the SALES fact table, which displays the fact instances
according to the different schema evolutions.

Table 3: Fact v1

Sale_id Cus_id Pro_id Orderdate Sales_Amt

S1001 Cus001 Pro001 15062020 1800

Table 4: Fact v2

Sale_id Cus_id Pro_id Sup_id Orderdate Sales_Amt

S2001 Cus001 Pro001 Sup001 12072020 1200
S2002 Cus001 Pro001 Sup002 25072020 1500

Table 5: Fact v3

Sale_id Pro_id Sup_id Orderdate Sales_Amt

S3001 Pro001 Sup001 08082020 2000
S3002 Pro001 Sup002 22082020 2500

In this approach, the queries on each version are performed,
respectively, on the fact table corresponding to this version. Ad-
ditionally, cross-queries are done through the union of several
queries on different versions of the fact table and an alignment of
the granularity level of the results, which becomes very complex,
especially when there are many versions.

We represent the same instances with our approach based on
graphs in Figure 8. Indeed, the 𝑇𝑇1 nodes represent the Sales_-
amount between the customer Cus001 and the product Pro001 in
the version valid for 𝑇1 = [01062020, 30062020]. The 𝑇𝑇2 nodes
represent the Sales_amount between the customer Cus001, the
product Pro001 and the suppliers Sup001 and Sup002 in the
version valid for 𝑇2 = [01072020, 31072020], and the 𝑇𝑇3 nodes
represent the Sales_amount between the product Pro001 and
the suppliers Sup001 and Sup002 in the version valid for 𝑇3 =

[01082020, 31082020].

Figure 8: Example of a data instance from a GDW

GAMM offers great flexibility in the elaboration of explicit
and implicit queries, which we show in the following examples.
The queries are written in the Cypher request language (CRL),
which is specific to the Neo4j graph database.

6.0.1 Explicit requests. Explicit requests allow one to extract
data from a specific version or set of versions based on the time pa-
rameter TT using the clause where 𝑆𝑇𝑛<=TT<𝐸𝑇𝑛 ; 𝑇𝑛=[𝑆𝑇𝑛 ,𝐸𝑇𝑛]
is the period of validity of version 𝑉𝑛 .

Query 1:

MATCH (M:MONTH) <-[:DATE_MONTH] - (:DATE) <-
[:SALE_DATE] - (S:SALES) - [SALE_CUST] -> (C:CUSTOMER)
WHERE 𝑆𝑇2 <= S.TT < 𝐸𝑇2 RETURN C.CUST_ID, M.MONTH,
SUM(S.SALES_AMT) ORDER BY M.MONTH

Table 6: Results of query 1

Cust_id Month Sales_amt

Cus001 July 2700

Query 1 shows the sales amounts of customer Cus001 for each
month. According to the TT parameter, the result is obtained
only from version 2, although the same client has instances in
version 1. Note that in the CRL, the clause :
RETURN 𝑣𝑎𝑙𝑢𝑒1,.., 𝑣𝑎𝑙𝑢𝑒𝑛 ,AGGREGATE_FUNCTION(attribute)
allows one to group the aggregation by 𝑣𝑎𝑙𝑢𝑒1... 𝑣𝑎𝑙𝑢𝑒𝑛 .



6.0.2 Implicit requests. Implicit requests allow one to browse
all instances related to the entities specified in the query without
version restriction. This feature, which is due to the ability of
graph databases to traverse instances through the relationships
between entities, offers a major advantage: cross-queries can
be formulated using the same simple queries regardless of the
number of versions.

Query 2:

MATCH (M:MONTH) <-[:DATE_MONTH] - (:DATE) <-
[:SALE_DATE] - (S:SALES) - [SALE_CUST] -> (C:CUSTOMER)
RETURN C.CUST_ID, M.MONTH, SUM(S.SALES_AMT) ORDER
BY M.MONTH

Table 7: Results of query 2

Cust_id Month Sales_amt

Cus001 June 1800
Cus001 July 2700

Query 2 is essentially query 1without the TT parameter. There-
fore, the results are the sales amounts of customer Cus001 for
each month according to all versions.

Query 3:

MATCH (M:MONTH) <-[:DATE_MONTH] - (:DATE)
<- [:SALE_DATE] - (S:SALES) RETURN M.MONTH,
SUM(S.SALES_AMT) ORDER BY M.MONTH

Table 8: Results of query 3

Month Sales_amt

June 1800
July 2700
August 4500

Query 3 shows the sales amounts per month according to all
versions. The query is quite basic, but one would have to consult
three fact table versions in the relational approach to get the
same result.

7 USE CASES
To illustrate our approach, we have developed a software proto-
type that manages the meta-model, the graph-based data ware-
house and the evolution operators. This prototype has been de-
veloped as a 3-tier architecture: the first tier (front end) is based
on web technology and uses the GoJS library to create and ma-
nipulate diagrams and interactive graphs on the web. It allows
one to view the logical schema of the different versions. The
second tier (back end), developed in JavaEE, represents the core
of the processing, and the third tier is responsible for metadata
and data management. A metadata component is implemented
using a relational database and a data component is implemented
using the NoSQL Neo4j graph database.

For the validation of our approach, we have established two
case studies based on the Star Schema Benchmark (SSB): the
first study was performed for the functional validation of our
approach, and the second study was used to perform runtime
tests for a graph DW.

As part of the functional validation study, we chose to per-
form the instantiation process on Neo4j for several chronolog-
ical versions using the SSB data; the corresponding schema is
represented in Figure 9. Then, direct and cross-queries were
performed on the schema versions.

Figure 9: Logical schema for graph SSB versions

As the SSB data spans from 1992 to 1998, the versioning was
set as follows:

(1) A first schema for 1992 and 1993 data was composed
of a fact Sales analyzed according to the Part and
Customer dimensions. The fact Sales is indicated by the
measures Sales_Amount, Discount and Supplycost.
The dimension Part is described by the attributes P_Name
and Size and the hierarchical levels Category, Mfgr,
Brand and Type. The dimension Customer is described
by the attributes C_Name, C_Address and C_Phone, and
the hierarchical levels C_City, C_Nation, C_Region
and Segment. Note that for further study, we ourselves
created these levels, which were attributes in the original
SSB dataset. This version is valid during the period 𝑇1
=[01/01/2019,31/12/2019].

(2) A second schema version for data from 1994 to 1996 was
characterised by the addition of a new Supplier dimension
described by the attributes S_Name, S_Address and
S_Phone, and the hierarchical levels S_City, S_Nation
and S_Region. This version is valid during the period 𝑇2
=[01/01/2020,31/12/2020].

(3) A third version of the schema for the 1997 and 1998 data
was characterised by the removal of the Customer dimen-
sion and the addition of a measureQuantity. This version
is valid during the period 𝑇3 = [01/01/2021,31/12/2021].

We were able to apply the 13 queries proposed for the SSB,
which we wrote in CRL, either explicitly to query a particular



version or implicitly to query all versions according to the ex-
isting schema. Some queries were readjusted to match the time
intervals established during the versioning. We provide below,
as an example, the first query of the SSB in CRL. Note that the
query has been adjusted by changing the attribute D_YEAR to
1997 instead of 1994 in the SSB to match the versioning we estab-
lished, because the measureQuantitywas only created from the
third schema version and using data from the years 1997 and 1998.

OPTIONAL MATCH (D:DATED_YEAR:1997) <- [R:ORDER_-
DATE] - (L:LINEORDER) WHERE L.TRANSACTION_TIME >=
DATE(YEAR:2021,MONTH:01) AND 1<= L.LO_DISCOUNT <=3
AND L.LO_QUANTITY < 25 RETURN SUM(L.LO_REVENUE)

The dataset, the commands for creating the graph versions
of the DW and all the queries are available at GAMM GITHUB.
However, we illustrate the potential of our approach, especially
for cross-queries, using the following three queries:

Query 1:

MATCH (D:DATE) <- [:ORDER_DATE] - (L:LINEORDER) -
[R:ORDER_CUSTOMER] -> (C:CUSTOMER) RETURN D.D_-
YEAR, COUNT(DISTINCT(C.CUSTKEY)), SUM(L.LO_REVENUE)
ORDER BY D.D_YEAR

Table 9: Results of query 1

YEAR C CUSTOMERS SUM(REVENUE)

1992 79974 13233029288673
1993 79978 13253674263486
1994 79979 13234066608062
1995 79972 13207130575971
1996 79980 13270332561589

Query 2:

MATCH (D:DATE) <- [:ORDER_DATE] - (L:LINEORDER) -
[R:ORDER_SUPPLIER] -> (S:SUPPLIER) RETURN D.D_YEAR,
COUNT(DISTINCT(S.SUPPKEY)), SUM(L.LO_REVENUE)
ORDER BY D.D_YEAR

Table 10: Results of query 2

YEAR C SUPPLIERS SUM(REVENUE)

1994 8000 13234066608062
1995 8000 13207130575971
1996 8000 13270332561589
1997 8000 13216215992478
1998 8000 7763622653194

Query 3:

MATCH (D:DATE) <- [:ORDER_DATE] - (L:LINEORDER) -
[R:ORDER_PART] -> (P : PART) RETURN D.D_YEAR, COUNT(
DISTINCT(P.PARTKEY) ), SUM(L.LO_REVENUE) ORDER BY
D.D_YEAR

Table 11: Results of query 3

YEAR C PART SUM(REVENUE)

1992 399956 13233029288673
1993 399956 13253674263486
1994 399953 13234066608062
1995 399959 13207130575971
1996 399965 13270332561589
1997 399965 13216215992478
1998 398036 7763622653194

From the results obtained, we can clearly observe that the ver-
sions queried change from one query to another implicitly, even
if the version to be queried has not been specified. Indeed, query
1, which displays the sales_amount per year and the number
of customers, showed the results between the years 1992 and
1996; this corresponds to versions 1 and 2 of the schema, which
included the dimension customer. Additionally, query 2, which
displays the sales_amount per year and the number of suppliers,
showed the results between the years 1994 and 1998; this corre-
sponds to versions 2 and 3 of the schema, which included the
dimension supplier. In the same way, query 3, which displays
the sales_amount per year and the number of pieces, showed
results for all of the years, as the dimension part is common to
all three versions. The alignment of the granularity level was
done with the aggregation function SUM.

For the runtime performance study and due to the lack of a
baseline for scalable data warehouses, we generated the same
SSB schema using our graph approach, spread over the entire
validity period of the data, and compared the execution times of
the 13 queries on both approaches. The dataset, the commands
for creating the full graph DW and all the queries are available
at GSSB GITHUB. The experimental process was performed on
Windows 10 Professional with an Intel(R) Core(TM) i7-10700
CPU @ 2.90 GHz and 16.0 GB of RAM. Neo4j 4.4.5 was used for
the graph approach and Oracle 11g was used for the relational ap-
proach. The execution times displayed in Figure 10 represent the
average ten executions for each query using the two approaches
(the same results were obtained on an Ubuntu platform with the
same configuration).

Figure 10: Response times for SSB queries using the graph
and relational approaches

https://github.com/Redwass/GAMM
https://github.com/Redwass/GSSB


We found through the results obtained that the graph ap-
proach performed better for the queries Q1.2, Q1.3, Q2.2, Q2.3,
Q3.3 and Q3.4 (from 2x to 11x). The two approaches were quite
close, with the relational approach being slightly faster, for the
queries Q1.1, Q2.1, Q3.2 and Q4.3 (1.5x to 3x), and the relational
approach performed better for the queries Q3.1, Q4.1 and Q4.2 (6x
to 8x). These differences in the execution times of the response
graph approach depend on the filter factors (FFs), the number
of dimensions and the number of edges to be covered. Indeed,
Neo4j can be very efficient when the FF is low, just as it can
become less efficient as the FF and the number of dimensions
increase, which implies that many relations need to be browsed
to operate an aggregation function; on the other hand, Oracle is
quite homogeneous in terms of the execution time of the queries.
However, in the context of evolutionary approaches in which
the schema is constantly evolving, a performance study must be
carried out on the entire storage process, taking into account not
only the execution time of the versions but also the evolution
procedure, the ETL process after evolution, the cross-requests
and other evaluation factors to be determined according to the
case being considered.

8 CONCLUSION
To overcome the schema evolution of DWs, we have proposed
in this paper a flexible multidimensional model called GAMM,
which is based on an extension of the classical multidimensional
model, to support chronological evolution at the conceptual level,
the evolution of the graph structure on the logical level and
the evolution of a NoSQL graph database on the physical level.
Thanks to the proposed functions, GAMM allows the evolution
of a schema in a data warehouse by creating a new version of the
schema at each stage. Each version corresponds to a data instance
extracted from a graph data warehouse. A meta-model has been
proposed to manage the different schema versions. An example of
an instance and direct and cross-queries have been provided. We
have validated GAMMwith a software prototype with a 3-tier ar-
chitecture, and we utilised use cases for the functional validation
of the approach and to test its runtime performance. In the short
term, we will study the temporal evolution of data instances and
What-If analysis. We will also carry out a performance study of
the entire integration process and further research OLAP queries
and graph cubes. In addition, we plan to carry out a study on
advanced analyses in graph models in order to utilise online
analysis to produce explanatory and predictive models.
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