
Text similarity measures in a data deduplication pipeline for
customers records
industrial experience report

Witold Andrzejewski
Poznan University of Technology

Poznan, Poland
witold.andrzejewski@cs.put.

poznan.pl

Bartosz Bębel
Poznan University of Technology

Poznan, Poland
bartosz.bebel@cs.put.poznan.pl

Paweł Boiński
Poznan University of Technology

Poznan, Poland
pawel.boinski@cs.put.poznan.pl

Mariusz Sienkiewicz
Poznan University of Technology

Poznan, Poland
mariusz.sienkiewicz@doctorate.put.

poznan.pl

Robert Wrembel
Poznan University of Technology

Poznan, Poland
robert.wrembel@cs.put.poznan.pl

ABSTRACT
Data stored in information systems are often erroneous. The
most typical errors include: inconsistent, missing, and outdated
values, typos as well as duplicates. To handle data of poor quality,
data cleaning (a.k.a. curation) and deduplication (a.k.a. entity
resolution) methods are used in projects realized by research
and industry. Data deduplication is of particular challenge due
to its computational complexity and the complexity of finding
the most adequate method for comparing records and computing
similarities of these records. The similarity value of two records
is a compound value, whose computation is based on similarities
of individual attribute values. To compute these similarities, mul-
tiple similarity measures were proposed in research literature
and were implemented in various libraries (widely available in
Python). For a given deduplication problem, a challenging task
is to decide which similarity measures are the most adequate to
given attributes being compared, since some similarity measures
perform better than others for given characteristics of data being
compared. In this paper, we report the experimental evaluation
of 45 similarity measures for text values. The need to assess the
measures came from a project conducted for a large financial
institution in Poland. The measures were compared on five dif-
ferent real data sets, each of which had a different characteristic
(e.g., text length, the number of words). The similarity measures
were assessed (1) based on similarity values they produced for
given values being compared and (2) based on their execution
time. To the best of our knowledge, it is the first report that in-
cludes such a broad evaluation of a large selection of different
similarity measures, on different real data sets.

KEYWORDS
data quality, entity resolution, data deduplication, data dedupli-
cation pipeline, customers records deduplication, text similarity
measures, customer data, Python packages, experimental evalua-
tion

1 INTRODUCTION
Institutions worldwide use data governance strategies to man-
age data collected by their day-to-day businesses. The strategies

Copyright © 2023 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

are supported by industry accepted guidelines (e.g., The Global
Data Management Community - DAMA [11]) and by the most
advanced state-of-the-art data management and data engineer-
ing solutions (e.g., database management systems, data quality
assurance software). The biggest challenges in managing data
in big institutions result from heterogeneous and distributed
architectures used in such institutions. As a consequence, data
within the same institution are represented by means of differ-
ent data models and structures, moreover these data are stored
in geographically distributed repositories. Accessing heteroge-
neous and distributed data is challenging. The most frequently
addressed challenges include among others: performance of data
integration processes [2, 16, 35], interoperability, standardization,
comparability, and data quality [12, 17, 29]. Various data inte-
gration architectures were developed and are used as industry
standards, e.g., data warehouses, data lakes, and polystores.

Despite applying data governance strategies and the aforemen-
tioned technologies, assuring high quality of data is challenging
and still some of the collected data are faulty even in the same
data repository. In the context of this paper data faults mainly
concern: (1) values of attributes (features, fields) like: typing errors,
missing, outdated, or wrong values as well as (2) the existence
of multiple records in a system, which represent the same real
world object, a.k.a. duplicated data.

Out of these, the most commonly found errors in data values
include typos, inconsistent abbreviations, and different prefixes
used, e.g., {’street’, ’st.’, ’str.’}, {’avenue’, ’a.’, Ave.’}. As stated in [26],
a typing error is most likely to impact a third letter of a word; from
80% to 96% of typos include only one typo. In [27], the authors
further analyze data errors and report that frequent typing errors
include insertion, omission, transposition, substitution either of
a single character or a few characters.

Faulty data also affect customer records, both individuals and
institutions, since such data are typically entered manually into a
system. Moreover, customer data like addresses, phone numbers,
and last names change in time, i.e., get outdated. Faulty and
outdated data cause a serious problem to institutions, since they
deteriorate their reputation, result in economic loses, and increase
customer dissatisfaction. Moreover, they distort analytical results.

A special case of faulty data are duplicated records. Such
records are stored in repositories of probably the majority of
companies worldwide. Duplicated data in a company are the
results of (among others): (1) acquisitions of other companies,



with their proper customers, (2) offered products, e.g., financial,
which require for each product a separate customer instance in a
system, (3) the imperfection of a software and processes used for
data governance, which allow to create multiple instances of the
same real customer, cf. [4], (4) user manual errors while entering
data, (5) legacy systems used, which by design needed to store
multiple instances of the same real customer.

To identify duplicates, the so-called data deduplication pipeline
was proposed, cf. Section 2. It aims at efficiently comparing
records in pairs: (1) to find highly probable records that rep-
resent the same real-world object and (2) to group these highly
similar records. For each compared pair of records 𝑟1 and 𝑟2, sim-
ilarity values of their selected attributes are computed. Based on
the attribute similarities, an overall similarity between 𝑟1 and 𝑟2
is computed. To compute similarity values of records attributes,
over 30 different similarity measures were proposed, cf. Section 3.
For a given deduplication problem, a non-trivial task is to decide
which similarity measures would be the most suitable for given
attributes to be compared.

Paper contribution. In this paper, we present our findings
on similarity measures used for computing similarities of cus-
tomer records containing dirty data (notice that this paper is a
substantial extension of our poster paper [5]). These findings are
based on a real R&D project in the financial sector, which we are
currently running, thus the paper is of category industrial expe-
rience report. This paper contributes experimental evaluation of
similarity measures (cf. Section 4 and 5), suitable for our problem
at hand.

Project goals. The first goal of this evaluation was to figure
out which similarity measures offer in average the highest simi-
larity value for pairs of text strings that are true positives, but
include various types of errors. The second goal was to assess
execution time of these measures. The experiments were run
on real customers data, which included last names, institution
names, and addresses. To the best of our knowledge, this paper
is the first report to include such a broad evaluation of a large
set of different similarity measures, run on real customers data
sets having different characteristics.

Disclaimer. Since this paper presents findings from a real
R&D project in the financial sector, most of the information
about the project cannot be revealed. First, the detailed findings
from the project are treated as the company know-how. Second,
some of the test data that we used are sensitive according to the
GDPR regulation. Third, the NDA agreement that we have signed
prevents from publishing any data. For these reasons, the data
cannot be made public. Finally, all our test data are Polish names
and addresses, thus their values and errors are specific to one
country only.

2 DATA DEDUPLICATION PIPELINE
A remedy for the problem of duplicated data is their deduplication,
combined with prior data cleaning. A data deduplication is also
known as entity resolution [23, 31]. In the research literature, a
base-line data deduplication pipeline has been proposed [9, 10,
14, 18, 24, 25]. It has become a reference pipeline in multiple data
deduplication projects.

The base-line deduplication pipeline assumes that data in-
gested by the pipeline were previously cleaned. In this context,
cleaning consists among others in: homogenizing values of record
attributes, correcting typing errors, replacing nulls with real true

values, replacing abbreviations with full names, and homogeniz-
ing data formats.

The pipeline includes four basic tasks, namely:

• blocking (a.k.a. indexing) - it organizes records into groups,
such that each group includes records that may include
potential duplicates;

• block processing (a.k.a. filtering) - its goal is to eliminate
records that do not have to be compared;

• entity matching (a.k.a. similarity computation) - it com-
putes similarity values between records compared in pairs,
i.e., a value of each attribute in one record is compared to
a value of a corresponding attribute in the second record;

• entity clustering - it aims at creating groups of similar
records, from pairs of records representing highly probable
duplicates.

As mentioned before, cleaning records is needed prior to dedu-
plicating them. Unfortunately, in practice it is impossible to per-
fectly clean all data delivered to the deduplication pipeline. First,
because not all data can be cleaned automatically - in such cases
an expert knowledge and manual cleaning are needed. Second,
the amount of data that needs to be cleaned by a human may
be too large to be cleaned within a finite time and at reasonable
monetary costs.

On top of it, in the financial sector data deduplication is chal-
lenging for the following reasons. First, because an arbitrary full
cleaning is not allowed by regulations in the sector, cf. [4]. The
regulations prevent even known dirty customers data from being
cleaned without an explicit permission of a customer (e.g., cus-
tomer’s first and last names with evident typos). For this reason,
only simple cleaning is possible, like removing leading or trailing
erroneous characters (e.g., dots, dashes, commas, white spaces)
from customers addresses. Second, since customers data cannot
be fully cleaned, a deduplication process has to work on only
partially cleaned data. This in turn, impacts the quality of the
deduplication process, since dirty records are compared and their
similarities are computed based on dirty data. We reported on this
and other problems related to data cleaning and deduplication in
[4, 30], based on the same project as referred to in this paper.

Having said that, in commercial projects only partially cleaned
data are delivered to the deduplication pipeline. Thus, it is obvious
that the existing errors may substantially decrease the similarity
of compared strings in the deduplication pipeline. Moreover, a
similarity value between two character values varies depending
on a similarity measure applied. For example, the value of a
similarity measure between ’Avenida de la Reina María Cristina’
and ’ave. de la reina M.Cristina’ depends on a measure used. A
few such cases are listed in Table 1, where we show the values
of 6 similarity measures for these two example street names.
These measures are available in different Python packages, whose
names are also listed in the table. As we can see, the similarity
values may vary substantially, cf. the values of measures Overlap
and 2-gram.

Notice that, these two example street names represent un-
cleaned true positives, i.e., they refer to the same real street. As
such, they should be treated as the same entities, i.e., their similar-
ity value should be as high as possible. To this end, one should use
a similarity measure returning the highest value. In our example
it is Overlap available in package textdistance.

For text data, multiple similarity measures have been pro-
posed, cf. Section 3. Their inventors point out the most suitable
application scenarios for the measures. For example, Hamming



Table 1: Example values of some similarity measures for
two true positive street names: ’Avenida de la Reina María
Cristina’ and ’ave. de la reina M.Cristina’

similarity measure package value
Levenshtein strsimpy 0.676
Jaro jellyfish 0.740
Jaccard textdistance 0.694
1-gram ngram 0.694
2-gram ngram 0.465
Overlap textdistance 0.926

similarity measure was developed to compare equi-length strings,
Overlapp was proposed to handle letter transpositions, whereas
Jaro-Winkler returns higher similarities for character strings that
match from the beginning. However, a real and not yet fully ad-
dressed problem is to figure out which of the measures return in
overall a very high similarity value for a mixture of value errors
(which typically exists in a given data set being deduplicated).

In an ideal scenario, one would like to use a single similarity
measure in her/his entity matching task, which would return
the highest similarity value for given two true positive values,
even if these values were not identical, due to typing errors and
different abbreviations used. To the best of our knowledge, the
problem of selecting the most suitable similarity measure for a
given data set to be deduplicated hasn’t been addressed yet by the
research community. Moreover, a comprehensive evaluation of a
large number of similarity measures has not been made available
either.

3 SIMILARITY MEASURES FOR TEXT DATA
The literature on data deduplication and similarity measures lists
well over 30 different similarity measures for text data. One may
find in the literature suggestions supported by experimental eval-
uations on the applicability of different measures to different text
data, e.g., [1, 6, 7, 13], but they focus on small sets of measures and
on small varieties of test data, as contrasted with the evaluation
included in this paper.

The most frequently used similarity measures for text data are
typically categorized as [8, 22]:

• based on a phonetic encoding of a text value, e.g., Soundex,
Phonex, Phonix, NYSIIS, Metaphone;

• based on an edit distance, which counts the smallest num-
ber of edit operations that are required to convert string
𝑠1 into 𝑠2, e.g., Levenshtein, Damerau-Levenshtein, Smith-
Waterman;

• based on n-grams, where each compared string 𝑠1 and 𝑠2
is split into n-character sub-strings, i.e., n-grams, and then
n-grams common to both strings are counted;

• based on set similarity, e.g., Overlap, Jaccard, Sorensen-
dice, where a similarity depends on the number of common
elements in compared sets;

• based on either the longest common sub-sequence or the
longest common sub-string;

• based on a vector representation in an m-dimensional space,
e.g., TFIDF, Cosine;

• based on popular compression techniques, e.g., BZ2 (based
on bzip2), LZMA (based on Lempel–Ziv–Markov chain),
ZLib (based on the DEFLATE algorithm);

• ensemble of measures, like (1) Monge-Elkan combined
with Damerau-Levenshtein and combined with n-gram or
(2) Cosine combined with n-gram.

Detailed and informative descriptions of various similarity
measures for text data can be found in [1, 6–8, 13, 15, 21, 22, 32].

4 EXPERIMENTAL SETUP AND PROTOCOL
In this section we describe our experimental environment, the
tested similarity measures, our test data sets, and our procedure
for running the evaluation.

Our procedure for assessing the similarity measures is of type
unsupervised learning, as we do not build any trainable model.
We run experiments using the aforementioned data set and collect
similarity values returned by the measures, with a final goal to
identify these measures that on average (for each data set) return
the highest similarity values for compared text strings, which
represent true positives. Such similaritymeasures are then used in
one of the next steps in our deduplication pipeline for computing
an overall similarity value within pairs of compared records.

An alternative approach was proposed in [19], but for the
purpose of finding equivalent similarity measures, thus their
ranking was important but not similarity values returned by the
measures. To this end, the authors applied a supervised learning,
i.e., a binary classifier. Such a classifier predicted whether two
measures applied to the same character string could be treated
as equivalent. The measures were applied to binary as well as
numerical data. In [3], the authors also proposed a binary classi-
fier to learn the most appropriate text similarity measures for a
given deduplication problem at hand. In contrast to [19], in our
application scenario, a similarity value is of primary importance
as in one of the next steps in our deduplication pipeline, simi-
larity values are used to build a rule system for deciding about
similarities of whole customers records.

A supervised learning approach, similar to [19] or to [3], the-
oretically could work for our problem as well, provided that a
sufficiently large training data set was available. In both of these
approaches small training data sets were used (of not more than
1900 data items). In our case, creating a training data sets for over
11 million of customers records, where for each record over 20 at-
tributes are compared by similarity measures, would be too time
costly. For this reason, we opted for an unsupervised approach.

4.1 Choosing experimental environment
In the project, two production environments are available. The
first one is a typical data engineering environment that includes:
(1) a popular commercial RDBMS to store data and (2) SQL and an
in-database procedural language to process data at the back-end.
The second one is a typical data science environment that includes:
(1) csv files to store input data, (2) Python programs to process
data at the back-end, (3) spreadsheet files to store intermediate
results, and (4) SQLite database to store data produced by the
data deduplication pipeline.

Even though the discussion in [28] clearly shows the advan-
tages of using the data engineering environment for data process-
ing, as compared to the data science environment, in this project
we decided to use the data science environment for the following
reasons. First, the available RDBMS does not support ready to use
algorithms for tasks 3 and 4 in the base-line data deduplication
pipeline, i.e., few similarity measures are available out-of-the-box
and no algorithms for record matching are available. Second, a
pilot performance evaluation of both environments showed that



the data science environment was faster than the data engineering
environment. For these reasons, the data science environment was
selected as a deployment environment. It must be stressed that
the performance evaluation is valid only for the particular IT
infrastructure used by the company and must not be generalized,
however, it gives some valuable insights on the performance of
the tested similarity measures.

Finally, all experiments described in this section were run on
a workstation equipped with 16GB of RAM, Intel Core i5-8350
1.7GHz, and Samsung MZVLB256HBHQ-000L7 SSD, run under
Windows10 enterprise.

4.2 Choosing data sets
The experiments were run on five different real data sets, obtained
from profiling customers data. Notice that the data sets stored
text values in Polish.

The data sets included:
• customers last names composed of one word - they repre-
sent short strings; this set includes 754 rows; maximum
length of 1-word last names is 14 characters (on average
10.6 characters);

• customers last names composed of two words - they repre-
sent medium length strings; 419 rows; maximum length
of 2-word last names is 26 characters (on average 21.2
characters);

• a mixture of 1-word (98%) and 2-word last names (2%),
which reflects a real distribution of such last names in the
customer database of the company; 782 rows; maximum
length of a last name is 22 characters (on average 10.9
characters);

• addresses (street names) - they represent medium length
strings; 1115 rows; maximum length of street names is 28
characters (on average 21.2 characters);

• institution names - they represent long strings; 1300 rows;
maximum length of institution names is 116 characters
(on average 45.4 characters).

Notice that all these test data represented true positives, but
with typical real errors. Having profiled real customers data, e.g.,
first and last names, company names, addresses, we conclude
that such data typically include: typos, missing letters, additional
letters inserted, special characters inserted, transposed multiple
letters in one word, multiple inconsistent abbreviations. Such
errors were present in the test data sets as well.

The values in the aforementioned data sets included typical
errors found by profiling customers data, i.e., letter omissions,
letter transpositions, the lack of Polish diacritical signs (e.g., ą
replaced by a, ę replaced by e, ł replaced by l, ń replaced by n). For
street names and institution names the inconsistencies included
additionally word transpositions and various abbreviations of the
same word. Types of companies were written in multiple ways;
some examples of naming type ’limited liability company’ are
shown in Table 2.

Table 4 summarizes basic data characteristics of our test data
sets, like: (1) avg, min, and max number of characters, (2) avg,
min, max number of words, and (3) a number of rows in a given
data set.

4.3 Choosing similarity measures
The experimental evaluations and findings reported in the re-
search literature [1, 6, 7, 13] were only a starting point for the
evaluation on the applicability of similarity measures to text data,

Table 2: Examples of inconsistencies in naming ’limited
liability company’; correct forms are: SP. Z O. O. or SPÓŁKA
Z O. O.

incorrect forms
SPOLKA Z O O
SP. Z OGR. ODPOWIEDZIALN.
SP. Z OGRANICZONĄ ODP.
SP ZOO
SPÓŁKA Z OGR. ODP.
SPZOO
SP. z OGRANICZ. ODPOWIEDZIALNOSCIĄ

reported in this paper. Notice that, in our project features de-
scribing customers include mainly text strings with Polish letters.
Therefore, similarity measures based on a phonetic encoding
turned out to be inadequate in general.

We evaluated 45 measures available in the following Python
packages: distance, textdistance, strsimpy, jellyfish, nltk, ngram,
difflib, fuzzywuzzy, cf. Appendix. Some measures, e.g., Leven-
shtein, Jaro, Jaro-Winkler, Jaccard, Sorensen, are available in a
few different packages, thus we evaluated these different imple-
mentations as well.

Selecting similarity measures for evaluation was based on the
following criteria: (1) the popularity of the measure, based on con-
clusions from the following publications: [1, 6–8, 22], (2) prelimi-
nary evaluation of multiple similarity measures in a small pilot
project, run prior to the main experiment. In the pilot project we
evaluated over 70 different basic and ensemble measures. Based
on the results, we selected measures that returned similarity val-
ues above a defined threshold. As stated earlier, in this paper we
report the results obtained for 45 measures that in our opinion
offered promising results.

The following basic similarity measures and distances1 were
tested: Levenshtein, Damerau-Levenshtein, Jaro, Jaro-Winkler,
Smith-Waterman, Jaccard, Overlap, Bag, n-gram, Cosine, Sorensen,
Sorensen-dice, StrCmp95, Needleman-Wunsh, Gotoh, Tversky,
Longest common sub-sequence, Longest common sub-string,
Ratcliff-Obershelp, Square root, BZ2, LZMA, ZLib, Sequence-
Matcher, Prefix, and Editex.

We also evaluated the so-called ensemble (compound) simi-
larity measures, which combine at least two different similarity
measures. For example, in Python package NLTK, the Jaccard
distance is available as function jaccard_distance. It accepts as
an input parameter the value that defines an n-gram. In package
textdistance, the Monge-Elkan similarity measure is available as
function MongeElkan. As the first parameter it accepts the value
representing n-gram and as the second parameter it accepts a
proper similarity measure. The first parameter is used to build
n-grams from the compared text values. Then, these n-grams are
compared using a measure provided by the second parameter.

The following ensemble similarity measures were evaluated:

• Jaccard combined with 1-gram, 2-gram, and 3-gram,
• Cosine combined with 1-gram, 2-gram, and 3-gram,
• Monge-Elkan, combined with Damerau-Levenshtein and
n-gram,

1Notice that there is a transformation of a distance to its corresponding similarity
value [8]



• Jaro-Winkler, Sorensen-dice, StrCmp95, Overlap, Leven-
shtein, Damerau-Levenshtein, each of which was com-
bined with n-gram, where 𝑛 ranged from 1 to 12. 𝑛=12
applied only to long strings, i.e., institution names. We
are not presenting these detailed results in the paper, but
for each data set, we show in charts the highest similarity
value that was returned.
The highest value was returned by Monge-Elkan, com-
bined with Damerau-Levenshtein and n-gram. For ad-
dresses, n-gram means 6-gram; for institutions names n-
gram means 10-gram; for 1-word names n-gram means
7-gram; for 2-word names n-gram means 4-gram.

4.4 Procedure for performing experiments
Each row in every test data set, which we used, was composed of
two attributes, denoted as 𝐴1 and 𝐴2, which stored text values.
Some of them were correct, whereas others included real errors,
obtained from customers profiling, cf. Section 4.2, but both values
represented the same same real world object. As such, a similar-
ity measure applied to 𝐴1 and 𝐴2 for a given row should have
returned a high value.

The experimental protocol we used was as follows. First, for
each record in a given test data set, values of 𝐴1 and 𝐴2 were
compared by a tested similarity measure. Second, the average
similarity value of the tested measure was computed for the
whole data set. These steps were repeated for all 45 tested simi-
larity measures on the same file. Their average similarities are
visualized in charts reported in Section 5.

This protocol was run separately for each of the five test data
sets.

5 EXPERIMENTAL RESULTS
In this section we report similarity values obtained for the afore-
mentioned 45 similarity measures for: (1) short strings - repre-
sented by 1-word last names, (2) medium length strings - rep-
resented by 2-word last names, (3) mixed data set composed of
1-word and 2-word last names, (4) medium length strings - rep-
resented by street names, and (5) long strings - represented by
institution names.

5.1 Similarity values of short strings: 1-word
last names

The obtained average similarity values for 1-word last names are
shown in Figure 1.

As we can observe from the chart, the same highest average
similarity, which is equal to 0.928, was returned by three mea-
sures, namely:

• Jaro-Winkler from package strsimpy (in the chart, on the
horizontal axis it is denoted as label STRSIM_Jar_Win),

• Overlap from package textdistance (denoted as
TXTDIS_Overlap),

• StrCmp95 from package textdistance (denoted as
TXTDIS_StrCm95).

The top 3 highest similarity values are also reported in sum-
mary Table 4. Notice that, the labels of all similarity functions
shown in the chart are explained in Appendix.

5.2 Similarity values of medium length
strings: 2-word last names

The obtained average similarity values for 2-word last names are
shown in Figure 2.

The top 3 highest similarity values were returned by the fol-
lowing measures:

• Overlap from package textdistance (denoted as
TXTDIS_Overlap): value 0.942,

• StrCmp95 from package textdistance (denoted as
TXTDIS_StrCm95): value 0.938,

• Jaro-Winkler from package textdistance (denoted as
TXTDIS_Jar_Win) and Jaro-Winkler from package jellyfish
(denoted as JELLYF_Jar_Win): value 0.936.

5.3 Similarity values of mixed data set: 1-word
and 2-word last names

We also measured similarities of customers last names in a data
set composed of 1-word and 2-word last names in the following
proportion: 98% of 1-word names and 2% of 2-word names. Such
a proportion reflected a real distribution of last names in our
customers database.

The analysis of the obtained results revealed that they were
the same as reported for 1-word names, i.e., the average similarity
value was equal to 0.928 and this value was returned by the same
measures and from the same packages as for 1-word last names.
For this reason, the experimental results on this mixed names
data set are not visualized in a chart, but they are summarized in
Table 4.

5.4 Similarity values of medium length
strings: street names

The obtained similarity values for street names, are shown in
Figure 3.

The top 3 highest similarity values were returned by the fol-
lowing measures:

• Overlap from package textdistance (denoted as
TXTDIS_Overlap): value 0.893,

• Jaro-Winkler from package strsimpy (denoted as STR-
SIM_Jar_Win): value 0.863,

• StrCmp95 from package textdistance (denoted as
TXTDIS_StrCm95): value 0.856.

5.5 Similarity values of long strings:
institution names

The obtained similarity values for institution names are shown
in Figure 4.

The top 3 highest similarity values were returned by the fol-
lowing measures:

• Overlap from package textdistance (denoted as
TXTDIS_Overlap): value 0.921,

• Sorensen from package textdistance (denoted as DIS-
TAN_Sorens): value 0.861,

• StrCmp95 from package textdistance (denoted as
TXTDIS_StrCm95): value 0.828.

5.6 Execution times of similarity measures
In this experiment we measured execution times of the tested
implementations of similarity measures on the largest data set,
i.e., containing institution names. Each function implementing a



Figure 1: Average values of similarity measures for 1-word last names (short strings); max string length = 14 char, avg
string length = 10.6 char, min length = 7 char

Figure 2: Average values of similarity measures for 2-word last names (medium length strings); max string length = 27 char,
avg string length = 21.1 char, min length = 16 char

similarity measure was executed 12 times on the data set. The
lowest and highest measurements were discarded, then the av-
erage of the remaining 10 executions was computed. Figure 5
reports the obtained average execution times. These times, mea-
sured in seconds, are shown in the Y axis on the logarithmic
scale.

The chart clearly shows that some measures are terribly costly,
e.g., labels TXTDIS_LzmaNcd, TXTDIS_Editex, TXTDIS_Gotoh.
Additionally, the execution time of Monge-Elkan combined
with Damerau-Levenshtein and 10-gram (labeled as TXTDIS
MEDL+xGr) took 746 seconds. For this reason it was not in-
cluded in the chart. Notice also that execution costs of some pop-
ular similarity measures, i.e., Levenshtein (labels DISTAN_LevenS,

DISTAN_LevenL, STRSIM_Leven) can be high as compared for
example to Jaro-Winkler (e.g., labels JELLYF_Jar_Win, STR-
SIM_Jar_Win).

Standard deviations of the measures were computed as well.
In Table 3 we report their values only for the bold-blue labels on
the horizontal axis in Figure 5.

Finally, it is worth to note that some attempts to improve
performance of the Levenshtein, e.g., [20, 33] and Jaro-Winkler
measures, e.g., [34] have been made, but their implementations
are not yet available in Python packages.



Figure 3: Average values of similarity measures for street names (medium length strings); max string length = 28 char, avg
string length = 16 char, min length = 7 char

Figure 4: Average values of various similarity measures for institution names (long strings); max string length = 116 char,
avg string length = 45.5 char, min length = 13 char

Table 3: Values of execution times and standard deviations
of selected (the most suitable for our application scenario)
similarity measures; the names of Python packages are
given in parenthesis

similarity measure exec. time [sec] st. deviation
Jaro-Winkler (textdistance) 0.073 0.002
Jaro-Winkler (jellyfish) 0.062 0.001
Jaro-Winkler (strsimpy) 0.172 0.006
Sorensen (textdistance) 0.064 0.004
StrCmp95 (textdistance) 0.390 0.061
Overlap (textdistance) 0.108 0.004

5.7 Experiments summary
Values of execution times (labels on the horizontal axis marked
bold and blue in Figure 5) indicate the similarity measures that
returned the highest similarity values, when tested on long char-
acter strings. Since their execution costs are at the same time
reasonably low, these measures are good candidates to be used
in some deduplication projects.

The summary of the data sets used in the experiments as well
as similarity measures and their values are included in Table 4.
From the analysis of the charts and the content of this table we
draw the following conclusions:

• for short and medium length strings, like last names and
street names, composed from 7 to 28 characters, in our



Figure 5: Execution times of similarity measures on institution names (average from 10 executions)

experiments the Overlap, Jaro-Winkler, and StrCmp95 sim-
ilarity measures returned the highest similarity values, cf.,
column AVG similarity in Table 4;

• for long strings, like institution names (composed from 46
to 116 characters and up to 12 separate words) the Overlap,
Sorensen, and StrCmp95 measures returned the highest
similarity values.

Based on the above findings, in our project, we apply Jaro-
Winkler, StrCmp95, and Overlap for variable length texts and
Hamming for fixed length texts like birth dates and national ID
numbers.

The above findings on the similarity measure performance
should be seriously taken into consideration while deduplicating
large sets of data, since measures with high execution costs will
drastically deteriorate performance of the whole deduplication
pipeline.

Based on these findings, it is recommended that one should
apply different similarity measures to different attributes (taking
into account particular data characteristics). Surprisingly, one
can observe that different implementations (in different Python
packages) of the same similarity measure, e.g., Levenshtein, Jaro-
Winkler, or Jaccard, may return different similarity values for
exactly the same pairs of character strings being compared.

6 PAPER SUMMARY
In this paper we reported experimental evaluation of 45 the most
popular similarity measures for text values. To the best of our

knowledge, it is the first report that includes such a broad eval-
uation of a large set of similarity measures on real data sets of
different characteristics.

The evaluations presented in this paper were proven to be
adequate to our application scenario since the findings from the
experiments were incorporated in a deduplication pipeline for
customers data that we implemented in the project (for details
refer to [4]). The pipeline produced satisfactory results for the
financial institution on a data set of over 2 million of customers.
Moreover, the lessons learned from the experiments constitute
a knowledge base of the project. The final goal of the described
project is to apply the deduplication pipeline to a data set of
customers composed of over 11 million of records.

The aforementioned project and the described experiments al-
lowed us to identify some future directions towards improving
the base-line data deduplication pipeline.

• First, in each of the four steps (cf. Section 2) multiple
alternative algorithms may be used. For this reason, a
guidance by means of an ’intelligent’ software is needed
in order to help a designer to choose the most adequate
algorithms for a given data set at hand.

• Second, there is no method that would allow to automat-
ically or semi-automatically choose a suitable similarity
measure to a given data set (characterized by character
string lengths, types of errors and their distribution).

• Third, there are no tools that would assist a designer in
choosing and testing similarity measures and selecting the
most adequate one to a given application scenario.



Table 4: Values of top 3 similarity measures for different characteristics of text data (short, medium, and long character
strings); AVG(len), MIN(len), and MAX(len) are measured in characters; the names of Python packages are given in
parenthesis

Data Characteristics Sim measure (package) AVG(sim)

Last names
(1-word)

AVG(len)=10.6
MIN(len)=7
MAX(len)=14
754 rows

Jaro-Winkler (strsimpy)
Overlap (textdistance)
StrCmp95 (textdistance)

0.928
0.928
0.928

Last names
(2-words)

AVG(len)=21.2
MIN(len)=16
MAX(len)=27
419 rows

Overlap (textdistance)
StrCmp95 (textdistance)
Jaro-Winkler (textdistance)
Jaro-Winkler (jellyfish)

0.942
0.938
0.936
0.936

Last names
(mixed)

AVG(len)=10.9
MIN(len)=7
MAX(len)=22
98% of 1-word
2% of 2-word
782 rows

Jaro-Winkler (strsimpy)
Overlap (textdistance)
StrCmp95 (textdistance)

0.928
0.928
0.928

Street names

AVG(len)=16.0
MIN(len)=7
MAX(len)=28
AVG #words=2.4
MIN #words=1
MAX #words=4
1115 rows

Overlap (textdistance)
Jaro-Winkler (strsimpy)
StrCmp95 (textdistance)

0.893
0.863
0.856

Institution names

AVG(len)=45.5
MIN(len)=13
MAX(len)=116
AVG #words=6.3
MIN #words=1
MAX #words=12
1300 rows

Overlap (textdistance)
Sorensen (textdistance)
StrCmp95 (textdistance)

0.921
0.861
0.828

• Finally, our unsupervised approach to finding the most
appropriate similarity measures for a given data set could
be contrasted with supervised methods, similar to those
used in [3, 19].

Acknowledgements. The project is supported by the grant
from the National Center for Research and Development no.
POIR.01.01.01-00-0287/19. The work of Mariusz Sienkiewicz
is additionally supported by the Applied Doctorate grant no.
DWD/4/24/2020 from the Polish Ministry of Education and Sci-
ence.

REFERENCES
[1] Madhavi Alamuri, Bapi Raju Surampudi, and Atul Negi. 2014. A survey of

distance/similarity measures for categorical data. In Int. Joint Conf. on Neural
Networks (IJCNN). IEEE, 1907–1914.

[2] Syed Muhammad Fawad Ali and Robert Wrembel. 2017. From conceptual de-
sign to performance optimization of ETL workflows: current state of research
and open problems. VLDB Journal 26, 6 (2017), 777–801.

[3] Mikhail Bilenko and Raymond J. Mooney. 2003. Adaptive duplicate detection
using learnable string similarity measures. In ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining. ACM, 39–48.

[4] Paweł Boiński, Mariusz Sienkiewicz, Bartosz Bębel, Robert Wrembel, Dariusz
Gałęzowski, and Waldemar Graniszewski. 2022. On Customer Data Dedu-
plication: Lessons Learned from a R&D Project in the Financial Sector. In
Workshops of the EDBT/ICDT 2022 Joint Conference (CEUR Workshop Proceed-
ings), Vol. 3135. CEUR-WS.org.

[5] Paweł Boiński, Mariusz Sienkiewicz, Robert Wrembel, Bartosz Bębel, and
Witold Andrzejewski. 2023. On evaluating text similarity measures for cus-
tomer data deduplication. In The ACM Symposium on Applied Computing (SAC)

(accepted for publication). ACM.
[6] Shyam Boriah, Varun Chandola, and Vipin Kumar. 2008. Similarity Measures

for Categorical Data: A Comparative Evaluation. In SIAM Int. Conf. on Data
Mining (SDM). SIAM, 243–254.

[7] Peter Christen. 2006. A Comparison of Personal Name Matching: Techniques
and Practical Issues. In Int. Conf. on Data Mining (ICDM). IEEE Computer
Society, 290–294.

[8] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. Springer.

[9] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution
for Big Data. Comput. Surveys 53, 6 (2021), 127:1–127:42.

[10] Adrian Colyer. 2020. The morning paper on An overview of end-to-end entity
resolution for big data. https://blog.acolyer.org/2020/12/14/entity-resolution/.

[11] Dama International. 2017. DAMA-DMBOK: Data Management Body of Knowl-
edge (2nd edition). Technics Publications.

[12] Cinzia Daraio and Wolfgang Glänzel. 2016. Grand challenges in data integra-
tion - state of the art and future perspectives: an introduction. Scientometrics
108, 1 (2016), 391–400.

[13] María del Pilar Angeles and Adrian Espino-Gamez. 2015. Comparison of
Methods Hamming Distance, Jaro, and Monge-Elkan. In Int. Conf. on Advances
in Databases, Knowledge, and Data Applications (DBKDA). 63–69.

[14] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and
Data Engineering 19, 1 (2007), 1–16.

[15] Sergio Jiménez, Claudia Jeanneth Becerra, Alexander F. Gelbukh, and Fabio A.
González. 2009. Generalized Mongue-Elkan Method for Approximate Text
String Comparison. In Int. Conf. on Computational Linguistics and Intelli-
gent Text Processing (CICLing) (LNCS), Alexander F. Gelbukh (Ed.), Vol. 5449.
Springer, 559–570.

[16] Anastasios Karagiannis, Panos Vassiliadis, and Alkis Simitsis. 2013. Scheduling
strategies for efficient ETL execution. Inf. Systems 38, 6 (2013), 927–945.

[17] Sona Karkosková. 2023. Data Governance Model To Enhance Data Quality In
Financial Institutions. Inf. Syst. Manag. 40, 1 (2023), 90–110.

[18] Hanna Köpcke and Erhard Rahm. 2010. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering 69, 2 (2010), 197–210.

https://blog.acolyer.org/2020/12/14/entity-resolution/


[19] Marie-Jeanne Lesot and Maria Rifqi. 2010. Order-Based Equivalence De-
grees for Similarity and Distance Measures. In Int. Conf. Computational Intelli-
gence for Knowledge-Based Systems Design (Lecture Notes in Computer Science),
Vol. 6178. Springer, 19–28.

[20] Robert Logan, Zoe Fleischmann, Sofia Annis, Amy Wangsness Wehe,
Jonathan L. Tilly, Dori C. Woods, and Konstantin Khrapko. 2022. 3GOLD:
optimized Levenshtein distance for clustering third-generation sequencing
data. BMC Bioinform. 23, 1 (2022), 95.

[21] Alvaro E. Monge and Charles Elkan. 1997. An Efficient Domain-Independent
Algorithm for Detecting Approximately Duplicate Database Records. InWork-
shop on Research Issues on Data Mining and Knowledge Discovery (DMKD).

[22] Felix Naumann. 2013. Similarity measures. Hasso Plattner Institut.
[23] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.

2021. The Four Generations of Entity Resolution. Morgan&Claypool Publishers.
[24] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Pal-

panas. 2020. Blocking and Filtering Techniques for Entity Resolution: A Survey.
Comput. Surveys 53, 2 (2020), 31:1–31:42.

[25] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-
nakopoulos, Themis Palpanas, and Manolis Koubarakis. 2019. Domain- and
Structure-Agnostic End-to-End Entity Resolution with JedAI. SIGMOD Record
48, 4 (2019), 30–36.

[26] Joseph J. Pollock and Antonio Zamora. 1983. Collection and characterization
of spelling errors in scientific and scholarly text. Journal of the American
Society for Information Science 34, 1 (1983), 51–58.

[27] Joseph J. Pollock and Antonio Zamora. 1984. Automatic Spelling Correction
in Scientific and Scholarly Text. Commun. ACM 27, 4 (1984), 358–368.

[28] Oscar Romero and Robert Wrembel. 2020. Data Engineering for Data Science:
Two Sides of the Same Coin. In Int. Conf. on Big Data Analytics and Knowledge
Discovery (DaWaK) (LNCS), Vol. 12393. Springer, 157–166.

[29] Shazia Wasim Sadiq, Tamraparni Dasu, Xin Luna Dong, Juliana Freire, Ihab F.
Ilyas, Sebastian Link, Renée J. Miller, Felix Naumann, Xiaofang Zhou, and
Divesh Srivastava. 2017. Data Quality: The Role of Empiricism. SIGMOD
Record 46, 4 (2017), 35–43.

[30] Mariusz Sienkiewicz and Robert Wrembel. 2021. Managing Data in a Big
Financial Institution: Conclusions from a R&D Project. In Workshops of the
EDBT/ICDT 2021 Joint Conference (CEUR Workshop Proceedings), Vol. 2841.
CEUR-WS.org.

[31] Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, and Felix Naumann.
2022. Entity Resolution On-Demand. Proc. VLDB Endowment 15, 7 (2022),
1506–1518.

[32] Textdistance. [n.d.]. Python package: textdistance. https://pypi.org/project/
textdistance/.

[33] Andrew Todd, Marziyeh Nourian, and Michela Becchi. 2017. A Memory-
Efficient GPU Method for Hamming and Levenshtein Distance Similarity. In
Int. Conf. on High Performance Computing (HiPC). IEEE Computer Society,
408–418.

[34] Yaoshu Wang, Jianbin Qin, and Wei Wang. 2017. Efficient Approximate Entity
Matching Using Jaro-Winkler Distance. In Int. Conf. Web Information Systems
Engineering (WISE) (LNCS), Vol. 10569. Springer, 231–239.

[35] Robert Wrembel. 2022. Data Integration, Cleaning, and Deduplication: Re-
search Versus Industrial Projects. In Int. Conf. Information Integration and Web
Intelligence (iiWAS) (Lecture Notes in Computer Science), Vol. 13635. Springer,
3–17.

APPENDIX. SIMILARITY MEASURES TESTED
The following similarity or distance measures were tested in the
experiment. The below list includes: a label used in charts to
denote the measure, the name of a measure, and the name of a
Python package with its implementation.

(1) label:DISTAN_LevenS; measure: Levenshteinwith shortest align-
ment; package: distance

(2) label: DISTAN_LevenL; measure: Levenshtein with longest align-
ment; package: distance

(3) label: TXTDIS_Leven; measure: Levenshtein; package: textdis-
tance

(4) label: STRSIM_Leven; measure: Levenshtein; package: strsimpy
(5) label: TXTDIS_Dam_Lev; measure: Damerau-Levenshtein;

package: textdistance
(6) label: TXTDIS_Jaro; measure: Jaro; package: textdistance
(7) label: JELLYF_Jaro; measure: Jaro; package: jellyfish
(8) label: TXTDIS_Jar_Win; measure: Jaro-Winkler; package:

textdistance
(9) label: JELLYF_Jar_Win; measure: Jaro-Winkler; package: jelly-

fish
(10) label: STRSIM_Jar_Win; measure: Jaro-Winkler; package: str-

simpy

(11) label: TXTDIS_Smi_Wat; measure: Smith-Waterman; package:
textdistance

(12) label: DISTAN_Jaccard; measure: Jaccard; package: distance
(13) label: TXTDIS_Jaccard; measure: Jaccard; package: textdistance
(14) label: NLTK_Jaccard; measure: Jaccard; package: nltk
(15) label: NLTK_Jac_1Gr ; measure: Jaccard + 1-gram; package: nltk
(16) label: NLTK_Jac_2Gr ; measure: Jaccard + 2-gram; package: nltk
(17) label: NLTK_Jac_3Gr ; measure: Jaccard + 3-gram; package: nltk
(18) label: NGRAM_1Grams; measure: 1-gram; package: ngram
(19) label: TXTDIS_Bz2Ncd; measure: BZ2; package: textdistance
(20) label: NGRAM_2Grams; measure: 2-gram; package: ngram
(21) label: NGRAM_3Grams; measure: 3-gram; package: ngram
(22) label: TXTDIS_Cosine; measure: Cosine; package: textdistance
(23) label: TXTDIS_Cos_1Gr ; measure: Cosine + 1-gram; package:

textdistance
(24) label: TXTDIS_Cos_2Gr ; measure: Cosine + 2-gram; package:

textdistance
(25) label: TXTDIS_Cos_3Gr ; measure: Cosine + 3-gram; package:

textdistance
(26) label: DISTAN_Sorens; measure: Sorensen; package: distance
(27) label: TXTDIS_Sorens; measure: Sorensen; package: textdistance
(28) label: TXTDIS_Sor_dic; measure: Sorensen-dice; package:

textdistance
(29) label: TXTDIS_StrCm95; measure: Strcmp95; package: textdis-

tance
(30) label: TXTDIS_Ned_Wun; measure: Needleman-Wunsch; pack-

age: textdistance
(31) label: TXTDIS_Gotoh; measure: Gotoh; package: textdistance
(32) label: TXTDIS_Tversky; measure: Tversky; package: textdistance
(33) label: TXTDIS_Overlap; measure: Overlap; package: textdistance
(34) label: TXTDIS_Bag; measure: Bag; package: textdistance
(35) label: TXTDIS_LCS_Seq; measure: Longest Common Sub-

sequence; package: textdistance
(36) label: TXTDIS_LCS_Str ; measure: Longest Common Sub-string;

package: textdistance
(37) label: TXTDIS_Rat_Obe; measure: Ratcliff-Obershelp; package:

textdistance
(38) label: TXTDIS_SquRoot; measure: Square root; package: textdis-

tance
(39) label: TXTDIS_LzmaNcd; measure: LZMA; package: textdistance
(40) label: TXTDIS_ZlibNcd; measure: ZLib; package: textdistance
(41) label: DIFFLB_SequMat; measure: SequenceMatcher; package:

difflib
(42) label: TXTDIS_Prefix; measure: Prefix; package: textdistance
(43) label: TXTDIS_Editex; measure: Editex; package: textdistance
(44) label: FZ_Lev_ratio; measure: Levenshtein; package: fuzzy-

wuzzy
(45) label: TXTDIS MEDL+xGr ; measure: Monge-Elkan + Damerau-

Levenshtein + n-gram; package: textdistance; the following
n-gram values gave the highest similarity values: 6-gram for
addresses, 10-gram for institutions names, 7-gram for 1-word
names, 4-gram for 2-word names

https://pypi.org/project/textdistance/
https://pypi.org/project/textdistance/

	Abstract
	1 Introduction
	2 Data deduplication pipeline
	3 Similarity measures for text data
	4 Experimental setup and protocol
	4.1 Choosing experimental environment
	4.2 Choosing data sets
	4.3 Choosing similarity measures
	4.4 Procedure for performing experiments

	5 Experimental results
	5.1 Similarity values of short strings: 1-word last names
	5.2 Similarity values of medium length strings: 2-word last names
	5.3 Similarity values of mixed data set: 1-word and 2-word last names
	5.4 Similarity values of medium length strings: street names
	5.5 Similarity values of long strings: institution names
	5.6 Execution times of similarity measures
	5.7 Experiments summary

	6 Paper summary
	References

