CEUR-WS.org/Vol-3369/paperd.pdf

The Whys and Wherefores of Cubes

Matteo Francia
DISI - University of Bologna
Bologna, Italy
m.francia@unibo.it

describe

Stefano Rizzi
DISI - University of Bologna
Bologna, Italy
stefano.rizzi@unibo.it

Patrick Marcel
University of Tours
Blois, France
patrick.marcel@univ-tours.fr

highlight

assess data
cube

type
Batteries
Beer

Coffee
Cookies
Dried Fruit
Eggs

Canned Vegetables 5197
Cheese
Chips 4178

Chocolate Candy 4331

revenue
3320
27183

7818

3492
9300
7592
4132

model

\

revenue

components

revenue

quantity

enhanced cube

Figure 1: The IAM approach

ABSTRACT

The Intentional Analytics Model (IAM) has been devised to cou-
ple OLAP and analytics by (i) letting users express their anal-
ysis intentions on multidimensional data cubes and (ii) return-
ing enhanced cubes, i.e., multidimensional data annotated with
knowledge insights in the form of models (e.g., correlations). Five
intention operators were proposed to this end; of these, describe
and assess have been investigated in previous papers. In this
work we enrich the IAM picture by focusing on the explain op-
erator, whose goal is to provide an answer to the user asking
“why does measure m show these values?”. Specifically, we pro-
pose a syntax for the operator and discuss how enhanced cubes
are built by (i) finding the polynomials that best approximate
the relationship between m and the other cube measures, and
(ii) highlighting the most interesting one. Finally, we test the
operator implementation in terms of efficiency.
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1 INTRODUCTION

Despite the huge success of the OLAP (On-Line Analytical Pro-
cessing) paradigm in supporting decision makers for their analy-
ses of multidimensional cubes, it is now clear that this paradigm,
alone, does no longer meet the sophisticated requirements of
new-generation users. Among the directions taken by research
to enhance OLAP, the Intentional Analytics Model (IAM) suggests
to couple it with analytics [40]. The IAM approach relies on two
main ideas: (i) users explore the data space by expressing their
analysis intentions and (ii) in return they receive both multidi-
mensional data and knowledge insights in the form of models.
To achieve (i) five intention operators were proposed, namely, de-
scribe (describes one or more cube measures at some aggregation
level, possibly focused on some level members), assess (judges
one or more cube measures with reference to some benchmark),
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explain (reveals the reason behind the values of a measure, for
instance by correlating it with other measures), predict (shows
data not in the original cubes, derived for instance with regres-
sion), and suggest (shows data similar to those the current user,
or similar users, have been interested in). As to (ii), first-class
citizens of the IAM are enhanced cubes, defined as multidimen-
sional cubes coupled with highlights, i.e., interesting components
of models automatically extracted from cubes. An overview of
the approach is shown in Figure 1. Noticeably, having different
models automatically computed and evaluated in terms of their
interest relieves the user from the time-wasting effort of trying
different possibilities.

Among the five intention operators, describe and assess have
been investigated in previous papers [9, 10, 12]. In this paper
we enrich the IAM picture by focusing on the explain operator.
An explanation is essentially a description of causation for an
observed phenomenon; in practice, it answers the why? question
for that phenomenon by providing a causal model for it [22]. In
our context, we concentrate on providing explanation models
for a measure the user is observing; thus, the goal of the explain
operator will be to provide an answer to the user asking “why
does measure m show these values?”.

As envisioned in [40], several types of models can be used to
this end, for instance:

e use regression analysis to correlate the values taken by
m with those taken by another measure m’ (e.g., sales
revenues are roughly proportional to the quantity sold);

e find a Granger causality relationship [17] between m and
another measure m’ (e.g., a peak of deaths occurs after
about one week from a peak of infections);

e establish an analogy between the values of m at different
aggregation levels (e.g., the trend of sales revenues for
beer closely reflects the one of revenues for drinks);

¢ find recurrent patterns that relate m to members and/or
other measures [1] (e.g., the sales of panettone are always
high in December)

o find the cube facts that give the highest contributions to
m [23].



To give a proof-of-concept for explain, in this paper we restrict
to the first model type, specifically, the one that establishes a
polynomial relationship between m and m’.!

Example 1.1. Let a SALES cube be given, and let the user’s
intention be

with SALES explain revenue by type for year="2022

First, the subset of facts for 2022 are selected from the SALES
cube and aggregated by product type (in OLAP terms, a slice-
and-dice and a roll-up operator are applied). Then, regression
analysis is used to compare the revenue measure with each other
cube measure and find the polynomials that best approximates
their relationship. Finally, a measure of interest is computed for
the components (i.e., for the polynomials) obtained, and the most
interesting one is shown to the user (in Figure 1, the one showing
that revenue is roughly proportional to quantity). O

The paper outline is as follows. After introducing a formalism
to manipulate cubes and queries in Section 2, in Section 3 we
introduce models and enhanced cubes. In Section 4 we give the
syntax of explain and illustrate how models are built. Then, in
Section 5 we explain how enhanced cubes are visualized. Finally,
in Section 6 we test the operator implementation in terms of
efficiency, in Section 7 we discuss the related literature, and in
Section 8 we draw the conclusions.

2 FORMALITIES

To simplify the formalization and without loss of generality,? we
will restrict to consider linear hierarchies.

Definition 2.1 (Hierarchy and Cube Schema). A hierarchy is a
triple h = (Lp, >p, >j) where:

(i) Ly, is a set of categorical levels, each coupled with a domain
Dom(l) including a set of members;

(if) >p, is a roll-up total order of Ly; and
(iii) >p, is a part-of partial order of U;ey, Dom(l).
The top level of >}, is called dimension. The part-of partial order
is such that, for each couple of levels [ and I’ such that [ >, I,
for each member u € Dom(l) there is exactly one member u’ €
Dom(l") such thatu >, u’. A cube schemais a couple C = (H, M)
where:

(i) H is a set of hierarchies;

(if) M is a set of numerical measures, where each measure
m € M is coupled with one aggregation operator op(m) €
{sum, avg,...}.

Example 2.2. For our working example we will use the SALES
cube, whose conceptual schema is depicted in Figure 2 using the
DFM [16]. Formally, it is SALES = (H, M) with

H = {hpate, hproduct> Pstore };
M = {quantity, revenue, cost};
date > month > year;
product > type > category;

store > city > country

!Since the term correlation in statistics is mainly used to denote linear relationships,
to avoid misunderstandings we will use the general term relationship instead.
2The presence of branches and diamonds in the hierarchies only affects the defini-
tion of group-by sets and, consequently, the definition of roll-up partial order and
the computation of derived cubes; it has no impact within the scope of this paper
since we focus on regression-based models which operate at a fixed group-by set,
the one stated in each intention.
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Figure 2: A conceptual schema for the SALES cube

and op(quantity) = op(revenue) = op(cost) = sum. In the part-
of order of the Product hierarchy it is, for instance, Orange >p;oduct
Fresh Fruit >p,odyct Fruit. O

Aggregation is the basic mechanism to query cubes, and it
is captured by the following definition of group-by set. As nor-
mally done when working with the multidimensional model, if
a hierarchy h does not appear in a group-by set it is implicitly
assumed that a complete aggregation is done along h.

Definition 2.3 (Group-by Set and Coordinate). Given cube schema

C = (H,M), a group-by set of C is a set of levels, at most one
from each hierarchy of H. The partial order induced on the set
of all group-by sets of C by the roll-up orders of the hierarchies
in H, is denoted with >p. A coordinate of group-by set G is a
tuple of members, one for each level of G. Given coordinate y
of group-by set G, another group-by set G’ such that G > G/,
and the coordinate y’ of G’ whose members are related to the
corresponding members of y in the part-of orders, we will say
that y roll-ups to y’. Conventionally, each coordinate roll-ups to
itself.

Example 2.4. Two group-by sets of SALES are G; = {date, type,
country} and Gz = {month, category}, where G; >g G. G ag-
gregates sales by date, product type, and store country, Gz by
month and category. Example of coordinates of the two group-by
sets are, respectively, y1 = (2022-04-15, Fresh Fruit, Italy) and
Y2 = (2022-04, Fruit), where y; roll-ups to y;. O

The instances of a cube schema are called cubes and are defined
as follows.

Definition 2.5 (Cube). A cubeover Cisatriple C = (Ge, Mc, wc)
where:
(i) Gc is a group-by set of C;
(ii) Mc C M;
(iii) wc is a partial function that maps the coordinates of G¢ to
a numerical value for each measure m € Mc.

Each coordinate y that participates in wc, with its associated
measure values, is called a fact of C. With a slight abuse of nota-
tion, we will write y € C to state that y is a fact of C. The value
taken by measure m in the fact corresponding to y is denoted as
y-m. A cube whose group-by set G¢ includes all and only the di-
mensions of the hierarchies in H and such that M- = M, is called
a base cube, the others are called derived cubes. In OLAP terms, a
derived cube is the result of either a roll-up, a slice-and-dice, or
a projection made over a base cube; this is formalized as follows.

Definition 2.6 (Cube Query). A query over cube schema C is a
triple g = (Ggq, Pg, Mg) where:
(i) Gq is a group-by set of H;



(ii) Pq is a (possibly empty) set of selection predicates each
expressed over one level of H using either a comparison op-
erators (=, >, etc.) or the set inclusion operator (e.g., country
in 'Ttaly’, ‘France’);

(iii) Mg € M.

Let Cy be a base cube over C. The result of applying g to Cp is
a derived cube C = q(Co) such that (i) Gc = Gy, (ii) Mc = Mg,
and (iii) wc assigns to each coordinate y € C satisfying the
conjunction of the predicates in Py and to each measure m € Mc
the value computed by applying op(m) to the values of m for all
the coordinates of Cy that roll-up to y.

Example 2.7. The cube query over SALES used in Example 1.1
is ¢ = (Gg, Pq, My) where G4 = {type}, Pq = {year = '2022’},
and Mg = {revenue}. A coordinate of the resulting cube is
(Batteries) with associated value 3320 for revenue. O

3 ENHANCED CUBES

Models are concise, information-rich knowledge artifacts [39]
that represent relationships hiding in the cube facts. The possible
models range from simple functions and measure correlations to
more elaborate techniques such as decision trees, clusterings, etc.
A model is bound to (i.e., is computed over the levels/measures
of) one cube, and is made of a set of components, each component
being a specific relationship among cube facts.

Definition 3.1 (Model). A model is a tuple M = (t, alg,C, m, In,
Out) where:

(i) t is the model type;
(ii) alg is the algorithm used to compute Out;
(iii) C is the cube to which the model is bound;
(iv) m is the measure in C to be explained;
(v) Inis the tuple of levels/measures of C and parameter values
supplied to alg to compute the model;
(vi) Out is the set of model components.

In this paper, to give a proof-of-concept of the explain operator,
we restrict to consider a single type of model, namely, the one
that establishes a polynomial relationship between two measures
via regression analysis. In this case, In is the set of measures
whose relationship with m is described; besides, each component
¢; € Out shows the relationship of m with one measure m; € I n3

Definition 3.2 (Component). For a model of type polynomial, a
component c; is a triple ¢; = (m;, d;, coeff ;) where:

(i) m; is the measure in C whose relationship with m is de-
scribed;
(ii) d; is the degree of the polynomial used to describe the rela-
tionship between m and m;;
(iii) coeff; is an array of the d; + 1 coefficients of the polynomial
a% (m;) that best approximates m with reference to the facts
in C.

3We represent each polynomial with a component of the same model rather than
as a stand-alone model to be compatible with the IAM approach and with the
formalization of the describe and assess operators.

Example 3.3. A possible model over the SALES cube is charac-
terized by

t = regression;
alg = Polyfit;
C = SALES;
m = revenue;
In = {quantity, cost};
Out = {c1,c2}
where
c1 = (quantity, 1, [0.98,4909.52]);
¢z = (cost, 2, [1.1,22.78, 1409.33])

According to this model, the relationships of revenue with quan-
tity and cost are described, respectively, as

revenue = a! (quantity) = 0.98 - quantity + 4909.52
revenue = a?(cost) = 1.1 - cost? — 22.78 - cost + 1409.33

]

As the last step in the IAM approach, cube C is enhanced by
associating it with a set of models bound to C and with a highlight,
i.e., with the most interesting model component:

Definition 3.4 (Enhanced cube). An enhanced cube E is a triple
of a cube C, a set of models {M;,..., M} bound to C, and a
highlight

c= argmaxc,e\ J2_, Out; } (interest(c;))

In our scenario only polynomial models are considered, so
an enhanced cube includes a single model with one component
for each measure in In. Let ¢; be the component associated to
m;; we evaluate the interest of ¢;, interest(c;), as the coefficient
of determination R2 [37], which measures how well the values
of m are replicated by the model in m; via the variation in the
dependent variable m that is predictable from the independent
variable m;. The better the model, the closer the value of R2 to 1.

Example 3.5. With reference to Example 3.3, it is
interest(c1) = 0.61
interest(cy) = 0.99
Thus, the highlight is c3.

4 THE EXPLAIN OPERATOR

The explain operator provides an answer to the user asking “why
is this happening?” “why does measure m show these values?”
by describing the relationship between m and the other cube
measures, possibly focused on one or more level members, at
some given granularity. The cube is enhanced by showing the
polynomials that best approximate these relationships, with a
highlight on the most interesting one.

4.1 Syntax

Let Cp be a base cube over cube schema C = (H, M). The syntax
for explain is (optional parts are in brackets):

with Cp explain m
[forP]byl,....In
[ against mq [ degree d; ], ..., m, [ degree d, ] ]

where m € M is a measure of C; P is a set of selection predi-
cates, each over one level of H; {1, ..., I} is a group-by set of H;



my, ..., my are measures of M (different from m); the d;’s (d; > 0)
are integers denoting, for each m;, the degree of the polynomial
to be computed.

Example 4.1. Examples of explain intentions on the SALES
cube are, besides the one in Example 1.1,

with SALES explain cost by date, product
against quantity degree 1
with SALES explain revenue by year

against cost

4.2 Semantics

The execution plan corresponding to a fully-specified intention,
i.e., one where all optional clauses have been specified, is as
follows:

1. Execute query q = (Gg, Pq, Mgq), where Gg = {l1,...,In}, Pg =
P, and My = {m,my,...,m;}. Let C = q(Cp) be the cube
resulting from the execution of q over Cy.

2. Compute model M = (polynomial, Polyfit, C, m, {my, ..., m,},
{c1,...,¢r}), where ¢; = (mj, d;, coeff ;). The best approximat-
ing polynomial of degree d; is determined via ordinary least
squares [38], which finds —with a complexity of O(di2|C|),
where |C| is the number of facts in C— the polynomial coeffi-
cients that minimize the sum of squared errors between each
m; (independent variables) and m (dependent variable).

3. For each ¢; compute interest(c;).

4. Find the highlight ¢ = argmax(; <;<,) (interest(c;)).

5. Return the enhanced cube E consisting of C, { M}, and c.
Partially-specified intentions are interpreted as follows:

e If the for clause is not specified, we consider P4 = TRUE.

e If the against clause is not specified, a component is cre-
ated for each measure in M (except m).

o If the degree clause is not specified for one or more mea-
sures, the value of d; is determined automatically by poly-
nomial fitting as discussed in Section 4.3.

Example 4.2. The first intention in Example 4.1 is executed
by first computing the derived cube C that aggregates SALES
by {date, product} and projects on measures cost and quantity.
Then, a model M including a single component c (a linear poly-
nomial approximating cost in function of quantity) is determined.
Finally, the enhanced cube including C, M, and the highlight ¢
is returned.

4.3 Finding the optimal degree

Given two variables in a dataset, polynomial fitting (or simply
Polyfit) summarizes their relationships by the polynomial func-
tion of the lowest degree that best approximates their values
[28]. Finding the best polynomial function requires minimizing
an error function that balances the approximation error and the
polynomial degree (the higher the degree, the lower the error
but the higher the overfitting).

In our scenario, the goal is to approximate m with a polyno-
mial in m;, and the dataset is the set of facts of cube C. Let ad
denote the polynomial of degree d in m; that best approximates
m; then, the fitting error (namely, the mean squared error) can
be expressed in function of d as [3]

Syec(@?(y.mi) —y.m)?
ICl—d—1

error(m, mj,d) =

where the y’s are the coordinates of C. Intuitively, this formula
measures the average squared approximation error with a penalty
on the degree d: among the polynomials with similar approxima-
tion errors, the one with the lowest degree is preferred?.

To find the best degree d; for each m; we follow a step-wise
forward-selection regression approach. We start with a constant
polynomial, then we iteratively test the addition of higher-degree
coefficients in the polynomial with a chosen fitness criterion (as
suggested in [21]). Specifically, we divide the query result into
train and test, with 70% and 30% facts respectively. We fit the
polynomial to the training data, then we assess its error() against
the test set. We stop when, after reaching a good model, the error
increases again; intuitively, we test how well the polynomial
generalizes and we stop when higher-degree polynomials are
overfitting the query result. Note that there is a possibility that
a local minimum is reached by following this approach. For in-
stance, when fitting quadratic data, a cubic polynomial a® could
be worst than the quadratic one a?; so the search would stop,
while a quartic polynomial a* whose cubic and quartic terms
tend to 0 might be (slightly) better than . However, we argue
that in this case a simple model should be preferred to a more
complex one, i.e., to a polynomial with a higher degree.

To ensure that a polynomial is trained on a “sufficient” amount
of facts, we apply the one-to-ten rule of thumb’: the polynomial
with degree d is considered only if the query result contains at
least d - 10 tuples. The pseudocode is sketched in Algorithm 1.
Given the measure m to be explained, we first initialize the ap-
proximation error (Line 1), the initial degree (Line 2), and the
Boolean stop condition (Line 3); then, the iteration begins (Lines
4-12). We compute the best polynomial with the given degree
d through ordinary least squares optimization (Line 5) and the
error of the polynomial (Line 6). If the current error is better than
the one obtained so far (Line 7), we update it (Line 8), increase
the polynomial degree (Line 9), and continue with the iteration
(Line 13). Otherwise, we terminate the iteration (Line 11). In any
case, the iteration stops if |C| < 10d (Line 13) [30]. Finally, we
return the best polynomial (i.e., the one computed before the
current iteration).

Example 4.3. The intention in Example 1.1,
with SALES explain revenue by type for year="2022

is executed by first computing the derived cube C that aggregates
sales by type for 2022. Then, the model seen in Example 3.3
(featuring two components, one for quantity and one for cost)
is determined. To this end, since no degree clause is declared in
the intention, the optimal degree must be determined both for
quantity and one cost as in Algorithm 1. Algorithm 1 iteratively
finds the following polynomials with degrees from 0 to 3 (see
Figure 3):

revenue = 10737.6

revenue = 191.74 - cost — 8098.16

revenue = 1.1 - cost? — 22.78 - cost + 1409.33

revenue = 0.01 - cost® — 1.73 - cost® + 215.22 - cost — 4027.88

As shown in Figure 4, the quadratic polynomial is returned since

4If |C| < d + 1, no polynomial of degree d can be fitted, hence the error is not
computed.

5“One to ten” or “one in ten” is a rule of thumb for how many parameters can be
estimated from data when doing regression: a minimum of 10 observations per
parameter is deemed necessary to avoid overfitting [30].
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Figure 3: Approximating polynomials with degrees 0 (a), 1 (b), 2 (c), and 3 (d) for the cost measure from Example 4.3

Algorithm 1 Polyfit

Require: m: measure to explain; m;: measure used for explana-
tion
Ensure: «a: optimal polynomial

1: "« +oo > Approximation error

2de«0 > Degree
3: stop « False > Stop condition
4. do

5 > Find the best polynomial of degree d...

6: a? — OrdinaryLeastSquares(m, m;, d)

7: e «— error(m, mj,d) > ..and compute its error
8 if e <e* then  »If abetter approximation is found...
9: e —e > ..update the error, ...
10: d«—d+1 »..increment the degree and iterate, ...
11: else

12: stop « True > ...otherwise stop
13: while !stop A (|C| > 10d)

d-1

14: return o > Return the polynomial
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Figure 4: Error in function of the degree for the polynomi-
als in Figure 3

the cubic one has a higher error.®

5 VISUALIZING ENHANCED CUBES

As previously done for the describe and assess IAM operators,
to give an effective visualization of the enhanced cubes built
for explain intentions we couple a text-based representation (a
pivot table and a ranked component list) with a graphical one
(a chart) and with an ad-hoc interaction paradigm. Specifically,
the visualization of enhanced cube E = (C, M, ¢) relies on three
distinct but inter-related areas: a table area that shows the facts of
C using a pivot table; a component area that shows a list of model
components (i.e., approximating polynomials) sorted by their

The polynomial of degree 3 resembles a parabola since the cubic term tends to 0,
hence, its sum of squared errors is similar to the one of the polynomial of degree 2.
However, the error function penalizes it due to the higher degree.

ic| Complexity (numb. of char.) Time (sec.)
Intention Query ‘ Model Query Total
36 59 397 0.31 0.04 0.35
323 42 265 0.32 0.03 0.35
540 61 403 0.32 0.05 0.37
1224 64 412 0.32 0.05 0.37
12113 60 400 0.34 0.05 0.39
16949 56 395 0.34 0.07 0.41
18492 55 385 0.35 0.06 0.41
20525 55 392 0.35 0.07 0.42
77832 54 382 0.40 0.07 0.47
86832 67 509 0.41 0.09 0.50

Table 1: Test results in function of the cube cardinality

interest, with ¢ at the top; a chart area that uses a scatter chart to
display, for each component ¢; of M, the relationship between
m and m; as well as the function plotting the approximating
polynomial.

The interaction paradigm we adopt is component-driven: click-
ing on one component ¢; in the component area leads to show
the corresponding approximating polynomial in the chart area.
The highlight is selected by default.

Example 5.1. Figure 5 shows the visualization obtained when
the intention in Example 1.1 is formulated. On the left, the table
area; on the right, the chart area; in the middle, the component
area. The highlight is a quadratic polynomial that approximates
revenue in function of cost, so the chart area shows the rela-
tionship between these two measures and the approximating
parabola.

6 EVALUATION

The prototype we developed to test our approach uses the sim-
ple multidimensional engine described in [8], which in turn re-
lies on the MySQL DBMS to execute queries on a star schema
based on multidimensional metadata (in principle, the proto-
type could work on top of any other multidimensional engine).
The algorithms used for regression analysis are imported from
the Scikit-Learn Python library. Finally, the web-based visu-
alization is implemented in JavaScript and exploits the D3 li-
brary for chart visualization. The code is publicly available at
https://github.com/big-unibo/explain.

To verify the feasibility of our approach from the computa-
tional point of view, we made some scalability tests. Two main
factors affect performances: the cardinality of the cube to which
a model is bound, |C| (which determines the time required to
compute a single model component), and the number of cube
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Figure 6: Scalability test

measures, |M| (which determines the number of model compo-
nents to be computed).

To evaluate scalability with reference to cube cardinality, we
populated the SALES cube using the FoodMart data (https://
github.com/julianhyde/foodmart-data-mysql) and considered 10
intentions with increasing cardinalities; in each intention we
explained the revenue measure against both quantity and cost.
Intentions were computed on cubes obtained by progressively
including in the group-by set levels from the time, product,
and customer hierarchies; for regression, polynomials up to the
5th degree were considered. The tests were run on an Intel(R)
Core(TM)i7-6700 CPU@3.40GHz CPU with 8GB RAM; each inten-
tion was executed 10 times and the average results are reported.
Table 1 shows the time (in seconds) necessary to query the base
cube and to compute the models. Remarkably, it turns out that
less than one second is necessary to explain a cube of almost
87000 facts.” Additionally, we measured the complexity (as the
number of characters [19]) of writing explain intentions vs. the
underlying cube query. It turns out that our approach saves 85%
of complexity with respect to writing cube queries (and with-
out considering the complexity of extracting regression models,
which would make our approach even more convenient).

To evaluate scalability with reference to the number of mea-
sures, we created a cube with |C| = 10° facts and |[M| = 10
measures (one randomly generated, my, and 9 more measures

7Since explain intentions are formulated over analytical workloads, cardinalities |C|
of OLAP query results in the order of 10? are already large enough to be considered
unrealistic [11]).

whose values we generated using polynomials in my with in-
creasing degrees). Figure 6 shows the performance when mg
is explained against an increasing number of measures, up to
M| — 1. As expected, our approach scales linearly in the number
of measures, and given 9 measures and 10° facts, the computa-
tion of an explanation takes less than 7 seconds, thus fulfilling
the requirement of near-real-time response typical of analytical
workloads.

7 RELATED WORK
7.1 OLAP + analytics

The idea of coupling data and analytical models was born in the
90’s with inductive databases, where data were coupled with
patterns meant as generalizations of the data [31]. Later on, data-
to-model unification was addressed in MauveDB [7], which pro-
vides a language for specifying model-based views of data using
common statistical models. However, achieving a unified view of
data and models was still seen as a research challenge in business
intelligence a few years later [29]. More recently, Northstar [20]
has been proposed as a system to support interactive data science
by enabling users to switch between data exploration and model
building, adopting a real-time strategy for hyper-parameter tun-
ing. Finally, the coupling of data and models is at the core of
the IAM vision [40], on which this paper relies. The three basic
pillars of IAM are (i) the redefinition of query as expressing the
user’s intention rather than explicitly declaring what data are to
be retrieved, (ii) the extension of query results from plain data
cubes to cubes enhanced with models and highlights, and (iii) the
characterization of model components in terms of their interest
to users.

The coupling of the OLAP paradigm and data mining to create
an approach where concise patterns are extracted from multi-
dimensional data for user’s evaluation, was the goal of some
approaches commonly labeled as OLAM [18]. In this context, k-
means clustering is used in [2] to dynamically create semantically-
rich aggregates of facts other than those statically provided by
dimension hierarchies. Similarly, the shrink operator is proposed
in [15] to compute small-size approximations of a cube via ag-
glomerative clustering. Other operators that enrich data with
knowledge extraction results are DIFF [34], which returns a set
of tuples that most successfully describe the difference of values
between two facts of a cube, and RELAX [35], which verifies
whether a pattern observed at a certain level of detail is also
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present at a coarser level of detail, too. Finally, in [5] the OLAP
paradigm is reused to explore prediction cubes, i.e., cubes where
each fact summarizes a predictive model trained on the data
corresponding to that fact.

7.2 Query explanation

In an attempt to develop tools for helping users understand data,
there have been several efforts in the research community to de-
vise techniques to model explanations for observations made on
data [25]. See [14] for a comprehensive analysis of the literature
and of the trends in explanation.

A common way to give an explanation is to identify the actual
cause of the observed outcome [33]. Given the result of a database
query, which database tuple(s) caused that output to the query?
One way to answer this question is to quantify the contribution
that each tuple has to the result and identify the tuples with the
highest contributions [23, 24]; the intuition is that tuples with
high contribution tend to be interesting explanations to query
answers. Similarly, in [33] causality is defined in terms of in-
tervention: an input is a cause to an output if we can affect the
output by changing the value of that input. Thus, an explanation
is defined as a predicate such that, when we remove from the
database all tuples satisfying that predicate, the output is signifi-
cantly affected. Along this direction, techniques were devised to
make the search for explanations more efficient by precomputing
the effects of potential explanations [32] or to return more spe-
cific explanations concerning subgroups of answers determined
via clustering [27]. Other approaches to query explanation rely
on ontologies [6, 41].

Causality poses additional challenges when the query con-
tains aggregates [23], as in our scenario. The DIFF operator [34]
tells users why a given aggregated quantity is lower or higher in
one cube fact than in another by returning the set of rows that
best explains the observed increase or decrease at the aggregated
level. In Scorpion [42], outliers are explained in terms of prop-
erties of the tuples used to compute these outliers. Specifically,
this explanation determines the predicates that, when applied to
the input data, cause the outliers to disappear. LensXPlain [26]
explains why some measure value is high or low by identifying
subsets of facts that contributed the most toward such observa-
tion. The contributions are measured either by intervention (if the
contributing facts are removed, the value changes in the opposite
direction), or by aggravation (if only the contributing facts are
kept, the value changes more in the same direction).

A different approach to query explanation is taken in [13]. The
authors focus on multidimensional data where a binary dimen-
sion is present, and explain query results by building explanation
tables which provide an interpretable and informative summary
of the factors affecting the binary dimension.

7.3 Regression

A completely different direction to represent how some data
(measures, in our case) is derived and infer causal relationship
is to use models built by regression analysis [36]. In statistical
modeling, regression analysis is a set of statistical processes for
estimating the relationships between a dependent variable and
one or more independent variables. A common form of regression
analysis is polynomial regression, which we adopt in this paper;
although polynomial regression may use a non-linear model (e.g.,
a parabola) to fit the data, as a statistical estimation problem it
is considered to be linear, since the regression function is linear

in the unknown parameters that are estimated from the data.
The method we use for polynomial regression is ordinary least
squares, which computes the unique line (or hyperplane) that
minimizes the sum of squared differences between the true data
and that line (or hyperplane) [38].

Regression is used to explain query results in the XAXA ap-
proach [36]. The authors focus on aggregate queries with a center-
radius selection operator, and give explanations using a set of
parametric piecewise-linear functions acquired through a statis-
tical learning model. Remarkably, model training is performed
by only monitoring queries and their answers online; thus, expla-
nations for future queries can be computed without any database
access.

7.4 Discussion

The approach we propose is not competing with the ones men-
tioned above, but should rather be seen as a modular framework
where any approach to explanation of aggregate data could be
plugged. The added value lies in the IAM paradigm, i.e., in giving
users the possibility of explicitly expressing intentions, in letting
the system select the most interesting/suitable explanations, and
showing these explanations together with data.

8 CONCLUSION

In this paper we have given a proof-of-concept for explain inten-
tions formulated inside the IAM framework. The explain syntax
is flexible enough to suit users who wish to verify a specific hy-
pothesis they made about an inter-measure relationship, as well
as users who have no clue so they will let the system find the
most interesting relationship. Intention processing takes a few
seconds even on very large query results, thus performances are
perfectly in line with the interactivity requirements of OLAP
sessions.

The main directions for future research we wish to pursue are:
(i) evaluate the effectiveness of the approach by experimenting it
with real users; (ii) shift towards multivariate regression models
to explain relationships between one measure and two or more
other measures; (iii) generalize the definition of model to cope
with the additional model types mentioned in Section 1; (iv) ex-
tend the syntax to allow two or more cubes in the with clause (so
as to support drill-across queries) and the declaration of derived
measures in the explain clause; and (v) experiment other interest
metrics [4]. In particular, as to the last point, we plan to consider
the framework proposed in [14] to evaluate explanations in terms
of succinctness (large explanations will probably we not well un-
derstandable), interpretability (the suitability of an explanation
will depend on the target users), and actionability (explanations
should point to actionable suggestions).
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