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ABSTRACT
In this paper, we come with a model for multidimensional spaces

with hierarchically structured dimensions in several layers of

abstractions, data cubes and cube queries. Themodel serves as the

basis to offer the main contribution of this paper which includes

a theorem and an algorithm for being able to decide and facilitate

the computation of the contents of a new cube query from a

previous one, defined at a different level of abstraction.

1 INTRODUCTION
Multidimensional spaces with hierarchically structured dimen-

sions over several levels of abstraction, along with data cubes,

(i.e., structured collections of data points at the same level of

detail in the context of such spaces), provide a paradigm for data

management whose simplicity is hard to match.

The problem that this paper addresses can be summarized as

the principled answering of the question: how can we compute the
contents of a new cube query, by reusing the existing contents of the
result of a previous cube query? Traditionally, related work has

handled the problem of query containment and view usability for

the relational case (see [14] for the general problem of answering

queries using views, a survey of aggregate query containment

in [4] and two lemmas [5] and [21]); also works on Query Con-
tainment( [1], [18], [7], [8]) [9]); View usability( [16], [10], [14]);
Query rewriting( [17], [2], [13], [3], [9], [12], [11], [6], [7]) ). How-
ever, the existence of hierarchically structured dimensions in the

case of multidimensional spaces with different possible levels of

aggregations as a context for the determination of cube usability,

has not been extensively dealt with by the database community

(see [23], [20] for two early attempts). We attempt to fill this gap
by providing a comprehensive rigorous basis and the respective
theorems and algorithms for being able to solve the problem of cube
usability for a very powerful class of queries.

Contribution. In this paper, we start in Section 2, with a brief

presentation of the core components of a model for multidimen-

sional hierarchical spaces, cubes and cube queries. Based on the

intrinsic property of the model that all query semantics are de-

fined with respect to the most detailed level of aggregation in the

hierarchical space, and in contrast to all previous models of mul-

tidimensional hierarchical spaces, in Section 3, we accompany

the proposed model with definitions of equivalent expressions

at different levels of granularity. We introduce the necessary

terminology and notation, too, to solidify these concepts in the

vocabulary of multidimensional modeling. Specifically, we intro-

duce (a) proxies, i.e., equivalent expressions at different levels of

abstraction, (b) signatures, i.e., sets of coordinates specifying a

"border" in the multidimensional space that specifies a sub-space

pertaining to a model’s construct, and, (c) areas, i.e., set of cells

enclosed within a signature.
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In Section 5, we address the usability problem of computing a

new cube query 𝑐𝑛 from the cells of a previous one, 𝑐𝑏 , defined at

a different level of abstraction; we introduce the respective test

as well as a rewriting algorithm. As a pre-requisite to address

the problem, which comes with the complexity of having to deal

with grouper dimensions where selections have also been posed,

in Section 4 we introduce the notion of rollability which refers

to the property of the combination of a filter and a grouper level

at the same dimension to produce result coordinates that are

fully covering the respective subspace at the most detailed level.

Section 6 provides issues for future work.

We encourage the reader to refer to the long version of the

paper [22] that comes with (1) a comprehensive model for hier-

archical multidimensional spaces and query expressions in them

(including all the typical OLAP operations), (2) more explana-

tions, rigorous definitions and proofs for the current paper, and,

(3) a principled set of tests and algorithms for the problem of

cube query containment at various level of detail (specifically:

foundational, same-level, and, different level containment), query

intersection (at various levels of detail), and query distance.

2 FORMALIZING DATA, DIMENSION
HIERARCHIES CUBES AND CUBE
QUERIES

In this Section, we give the background of our modeling concern-

ing multidimensional databases, hierarchies and queries (see [19]

for a survey of models). We assume data in a multidimensional

space, where dimensions provide a context for facts [15]. Each
dimension comes with a hierarchy of levels. Each dimension (e.g.,

𝑇𝑎𝑥𝐷𝑎𝑡𝑒) is a lattice of levels (e.g., 𝐷𝑎𝑦,𝑊𝑒𝑒𝑘 , 𝑀𝑜𝑛𝑡ℎ, 𝑌𝑒𝑎𝑟 ).

Each level comes with a domain of values; values in different

levels are mapped via an 𝑎𝑛𝑐 () function for higher levels and

and 𝑑𝑒𝑠𝑐 mapping for lower levels (e.g., 𝑎𝑛𝑐
𝐶𝑜𝑢𝑛𝑡𝑟𝑦

𝐶𝑖𝑡𝑦
(𝐴𝑡ℎ𝑒𝑛𝑠) =

𝐺𝑟𝑒𝑒𝑐𝑒). Each dimension includes a single most detailed level,

and, a single top level 𝐴𝐿𝐿 with a single-valued domain {𝑎𝑙𝑙}.
Facts are structured in cubes. A cube is defined over the Carte-

sian Product of several levels from discrete dimensions along

with a number of measures to hold the measurable aspects of its

facts. Each cell is a point in the multidimensional space of the

cube’s dimensions hosting a set of measures. A detailed cube is a
cube having all its dimensions fixed at the lowest possible level.

A conjunctive selection condition is a conjunction of atoms,

each of the form 𝐷.𝐿 ∈ {𝑣1, . . . , 𝑣𝑛}, where the values 𝑣𝑖 belong
to the domain of 𝐿.

The user can submit cube queries to the system. A cube query

specifies (a) the detailed data set over which it is imposed, (b)

the selection condition that isolates the records that qualify for

further processing, (c) the aggregator levels, that determine the

level of coarseness for the result, and (d) an aggregation over the

measures of the underlying cube that accompanies the aggrega-

tor levels in the final result. More formally, a cube query, is an
expression of the form:



𝑞 =
〈
DS0, 𝜙, [𝐿1, . . . , 𝐿𝑛, 𝑀1, . . . , 𝑀𝑚], [𝑎𝑔𝑔1 (𝑀0

1
), . . . , 𝑎𝑔𝑔𝑚 (𝑀0

𝑚)]
〉

where

(1) DS0 is a detailed data set over the schema S =[𝐿0
1
, . . ., 𝐿0𝑛 ,

𝑀0

1
, . . . ,𝑀0

𝑘
],𝑚 ≤ 𝑘 .

(2) 𝜙 is a multidimensional conjunctive selection condition,

with a single atom per dimension (for a non-filtered di-

mension 𝐷 , atom 𝐷.𝐴𝐿𝐿 ∈ {𝑎𝑙𝑙} is equivalent to 𝑡𝑟𝑢𝑒)
(3) 𝐿1, . . . , 𝐿𝑛 are grouper levels such that 𝐿0

𝑖
⪯ 𝐿𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

(4) 𝑀1, . . . , 𝑀𝑚 ,𝑚 ≤ 𝑘 , are aggregatedmeasures (without loss

of generality we assume that aggregation takes place over

the first𝑚 measures – easily achievable by rearranging

the order of the measures in the schema),

(5) 𝑎𝑔𝑔1, . . . , 𝑎𝑔𝑔𝑚 are aggregate functions from the set {𝑠𝑢𝑚,

𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑐𝑜𝑢𝑛𝑡}.

Example. Assume a tax office has a cube on the income tax

collected and the effort invested to collect it on its allocated

citizens. Due to anonymization, the tax office analyst is pre-

sented with a detailed cube without the identity of the citi-

zens and has some (pre-aggregated) information along the fol-

lowing dimensions: 𝐷𝑎𝑡𝑒 ,𝑊𝑜𝑟𝑘𝐶𝑙𝑎𝑠𝑠 , and 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, and two

measures 𝑇𝑎𝑥𝑃𝑎𝑖𝑑 by the citizens in thousands of Euros and

𝐻𝑜𝑢𝑟𝑠𝑆𝑝𝑒𝑛𝑡 . Each dimension is accompanied by hierarchies of

dimension levels. Date is organized in Months, Quarters, Years
and ALL. Education has 5 levels, and Workclass 4 levels. A de-

tailed datasetDS0 is defined over these dimensions with a schema

DS0 [𝐷.𝐿0,𝑊 .𝐿0, 𝐸.𝐿0,𝑇𝑎𝑥𝑃𝑎𝑖𝑑, 𝐻𝑜𝑢𝑟𝑠𝑆𝑝𝑒𝑛𝑡].

A query that can be posed to the abovementioned detailed

data set can be:

𝑞 =
〈
DS0, 𝜙, [𝑀𝑜𝑛𝑡ℎ,𝑊 .𝐿1, 𝐸.𝐴𝐿𝐿, 𝑠𝑢𝑚𝑇𝑎𝑥𝑃𝑎𝑖𝑑], [𝑠𝑢𝑚(𝑇𝑎𝑥𝑃𝑎𝑖𝑑)]

〉
with𝜙 expressed as𝜙 = 𝑌𝑒𝑎𝑟 ∈ {2019, 2020}∧𝑊 .𝐿2 ∈ {𝑤𝑖𝑡ℎ−

𝑝𝑎𝑦} and actually implying an expression with a single atom

per dimension in the form: 𝜙 = 𝑌𝑒𝑎𝑟 ∈ {2019, 2020} ∧𝑊 .𝐿2 ∈
{𝑤𝑖𝑡ℎ − 𝑝𝑎𝑦} ∧ 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛.𝐴𝐿𝐿 ∈ {𝑎𝑙𝑙}

3 EQUIVALENT EXPRESSIONS FOR
REFERRING TO SUBSETS OF THE
MULTIDIMENSIONAL SPACE

In this Section, we deal with two fundamental characteristics of

the multidimensional space: (a) the fact that the same data can be

viewed from different levels of detail, and (b) the fact that each

query in the multidimensional space applies a border of values

of the dimensions, thus "framing" a subset of the space. Fig. 1

provides a summary of notation as well as a short description for

each of the important concepts involved in our discourse.

A proxy is an equivalent expression at a different level of detail
that by construction covers exactly the same subset of the multidi-
mensional space, albeit at different level of coarseness. For example,

given a value, its proxy at a lower level of detail is the set of its

descendants at this level. The detailed proxy of an aggregate cell

is the set of detailed cells who generate it. As another example,

the detailed proxy of a query expression is an expression whose

schema is at the most detailed level for each of the dimensions

participating in the schema of the query, and whose selection

condition is equivalent to the one of the query, but at the most

detailed level. Moreover, apart from ’the most detailed level’,

proxies are definable at arbitrary levels of coarseness. Observe

also that proxies are of the same type as their "arguments": the

proxy of a cell is a set of cells, the proxy of an expression is an

expression, etc.

The signature of a construct is a set of coordinates that char-
acterize the subset of the multidimensional space "framed" by the
construct. For example, the signature of a cell are its coordinates

at the level of coarseness that the cell is defined, whereas the sig-

nature of its detailed proxy are the coordinates produced by the

Cartesian product of the descendant values of these coordinates

at the most detailed level. Similarly, the signature of a selection

condition is the set of coordinates of the multidimensional space

for which the selection condition evaluates to true.

Areas are sets of cells within the bounds of a signature. For
example, the detailed area of a cell is the set of its detailed proxies.

Similarly, for a given query 𝑞, the expression 𝑞.𝑐𝑒𝑙𝑙𝑠 refers to

the cells belonging to the result of the query and 𝑞0 .𝑐𝑒𝑙𝑙𝑠 is the

detailed area of the query, referring to the cells of the most detail

level that produce the query result.

The grouper domains of atoms and formulas practically trans-
form the "accepted" values by the filter to the grouper levels. Assume

a selection atom for a dimension level 𝐿𝜎 and a grouper level

for the same dimension, say 𝐿𝛾 : we can compute a set of high-

level values at level 𝐿𝛾 produced by (a) applying the filter to the

respective dimension level 𝐿𝜎 , and, (b) grouping the surviving

values at the target grouper level 𝐿𝛾 . This can also be generalized

to a selection condition.

4 PERFECT ROLLABILITY: HOW DO
SELECTIONS AND GROUPERS RELATE?

In this Section, we discuss a subtle, but most important aspect of

computing a new cube query from the pre-existing results of a

previous query: the combination of the selection condition and

the grouping levels.

Definition 4.1. Given a query 𝑞 with a schema comprising a

set of levels [𝐷1 .𝐿1, . . . , 𝐷𝑛 .𝐿𝑛], over the respective dimensions:

• A dimension 𝐷 is a non-grouper, when it’s respective

schema level is (rolled-up to) the level 𝐴𝐿𝐿.

• A dimension 𝐷 is a grouper, when its respective level in

the schema is not rolled-up to 𝐴𝐿𝐿.

By extension of the terminology, we will also refer to the

respective levels as groupers and non-groupers, too.

How can two queries, aggregated at the same level of coarse-

ness, be incompatible for usability? The first possible reason can

be different filters in non-grouper levels: e.g., two queries group

by 𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦.𝐴𝐿𝐿, but the old one applies the filter 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 =

𝐽𝑎𝑝𝑎𝑛 and the new has the filter𝐶𝑜𝑢𝑛𝑡𝑟𝑦 =𝐶ℎ𝑖𝑛𝑎 (thus, the cells

of the result of the two cubes will have the same coordinates, but

the measure values will be different, due to the different filters

in the non-groupers). The same happens even if the relationship

of the two filters is a superset (e.g., the old query has 𝐶𝑜𝑢𝑛𝑡𝑟𝑦

∈ {𝐶ℎ𝑖𝑛𝑎, 𝐽𝑎𝑝𝑎𝑛}. A second reason concerns problematic partial
filters in groupers. Assume that an old query selects months in

[𝐽𝑎𝑛𝑢𝑎𝑟𝑦 2020 .. 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟 2020] and the new query selecting

𝐷𝑎𝑦 in [1/1/2020 .. 15/11/2020]. The problem here is in Novem-

ber: both queries will roll up at the level of month, and thus will

report the month November 2020, but the new query is filtering

a subset of this month, and thus the aggregate measures will

be different. Practically, we need to have identical selections for

non-grouper levels, and "rollable" selection subsumption with

respect to the grouping levels, for grouper levels.



Figure 1: Notation and central notions for proxies, signatures and areas.

Figure 2: Perfect Rollability

Definition 4.2. Given a multidimensional schema 𝑆 and a sim-

ple selection condition 𝜙 to which it participates, a dimension 𝐷

with a grouper level 𝐷.𝐿𝛾 at the schema level and a filter level

𝐷.𝐿𝜎 at 𝜙 , is characterized as follows:

• unbound, if 𝐷.𝐿𝜎 = 𝐷.𝐴𝐿𝐿 and the atom of 𝑝ℎ𝑖 is 𝐷.𝐴𝐿𝐿

∈ {𝐷.𝑎𝑙𝑙} (equiv., 𝑡𝑟𝑢𝑒)
• pinned grouper, if both 𝐷.𝐿𝛾 and 𝐷.𝐿𝜎 ≠ 𝐷.𝐴𝐿𝐿

• pinned non-grouper, if 𝐷.𝐿𝛾 = 𝐷.𝐴𝐿𝐿 and 𝐷.𝐿𝜎 ≠ 𝐷.𝐴𝐿𝐿

Example. Assume a cube over 𝐷𝑎𝑡𝑒 , 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑊𝑜𝑟𝑘𝑐𝑙𝑎𝑠𝑠

with𝑇𝑎𝑥𝑃𝑎𝑖𝑑 asmeasure. Assume that two queries roll-up𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦

at level 𝐴𝐿𝐿, and report sales per month and product family. Let

𝑞𝑜 =
〈
DS0, 𝜙𝑜 , [𝑀𝑜𝑛𝑡ℎ,𝑊 .𝐿1, 𝐸.𝐴𝐿𝐿, 𝑠𝑢𝑚𝑇𝑎𝑥𝑃𝑎𝑖𝑑], [𝑠𝑢𝑚(𝑇𝑎𝑥𝑃𝑎𝑖𝑑)]

〉
be a query over this cube.

Then, Month and𝑊 .𝐿1 are groupers and Education is a non-

grouper.

Concerning Education:

• if the atom 𝐸.𝐴𝐿𝐿 ∈ {𝐴𝑙𝑙} is part of 𝜙 than the dimen-

sion is unbound, i.e., all the members of the education

dimension are computed for the final result

• if an atom like 𝐸.𝐿3 ∈ {𝑃𝑜𝑠𝑡−𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦} is part of 𝜙 , then
the dimension is a pinned non-grouper

Concerning Date:

• if the atom 𝐷𝑎𝑡𝑒.𝐴𝐿𝐿 ∈ {𝐴𝑙𝑙} is part of 𝜙 than the dimen-

sion is unbound

• if an atom like 𝐷.𝑌𝑒𝑎𝑟 ∈ {2019, 2020} is part of 𝜙 , then
the dimension is a pinned grouper

Definition 4.3 (Perfectly Rollable Dimension / Perfectly Rollable
atom). Assume a grouper level 𝐷.𝐿𝛾 and an atom 𝛼 :𝐷.𝐿𝜎 ∈ 𝑉 ,𝑉

= {𝑣1, . . . , 𝑣𝑘 }. Then, the dimension 𝐷 is perfectly rollable with
respect to the tuple (𝐿𝛾 , 𝐿𝜎 , 𝑉 ), or, equivalently, 𝛼 is perfectly
rollable with respect to 𝐿𝛾 , if one of the following two conditions

holds:

(a) 𝐿𝛾 ⪯ 𝐿𝜎 (which implies that every grouper value of 𝐿𝛾 that

qualifies is entirely included, as the selection condition is put at

a higher level that the grouping, e.g., group by month, for year =

2020)

(b) 𝐿𝜎 ≺ 𝐿𝛾 , and for each value 𝑢𝑖 ∈ 𝑑𝑜𝑚(𝐿𝛾 ): 𝑢𝑖 = 𝑎𝑛𝑐𝐿
𝛾

𝐿𝜎
(𝑣𝑖 ), all

𝑑𝑒𝑠𝑐𝐿
𝜎

𝐿𝛾
(𝑢𝑖 ) ∈ 𝑉 (i.e., the entire set of children of a grouper value

𝑢 is included in the computation of 𝑢).



Definition 4.4 (Perfectly Rollable Schema / Perfectly Rollable sim-
ple selection condition). Assume a schema 𝑆 : [𝐷1 .𝐿1, . . ., 𝐷𝑛 .𝐿𝑛]

over a set of dimensions [𝐷1, . . ., 𝐷𝑛] with each grouper level be-

longing to a different dimension and a simple selection condition

𝜙 :
𝑛∧
𝑖=1

𝛼𝑖 , with each atom 𝛼 of the form𝐷.𝐿𝜎 ∈𝑉 ,𝑉 = {𝑣1, . . . , 𝑣𝑘 },
and exactly one atom per dimension. Then, the schema 𝑆 is per-
fectly rollable with respect to the tuple (𝑆 , 𝜙), or, equivalently, 𝜙

is perfectly rollable with respect to 𝑆 , if each atom 𝛼𝑖 is perfectly

rollable with respect to its respective grouper level 𝐿𝑖 .

The perfectly rollable condition is a "clean" characterization

stating that if we group by a level 𝐿 on any possible data set,

then, the resulting grouper values of 𝐿 will be produced by the

entire population of their descendants at lower levels (in fact,

as far as the semantics are concerned: the most detailed one –

see Figure 2). Perfect rollability guarantees that, given a simple
selection condition on a dimension and a grouper level, there are
no grouper cells in the result of a cube that could be computed on
the basis of only a subset of their detailed descendants, but rather,
the entire range of descendant values are taken into consideration
for their computation.

5 CUBE USABILITY: COMPUTING A CUBE
FROM ANOTHER CUBEWHOSE RESULT IS
AVAILABLE

In this Section, we address the main problem for this paper: as-

sume we have computed a previous query 𝑞𝑏 and we want (a)

to check whether the contents of a new query 𝑞𝑛 are derivable

from the cells of 𝑞𝑏 , and (b) if this is the case indeed, to actually

perform the computation. To support our discussion, in the se-

quel, we assume two queries, to which we refer to as 𝑞𝑏 (with

the hidden implication of "broad" in terms of selection condition,

"below" in terms of the level of the grouping, and, "before" in

terms of creation) and 𝑞𝑛 (with the hidden implication of "nar-

row" in terms of selection condition, "not lower" in terms of the

level of the grouping, and, "new" in terms of creation). As in

all other cases, we will assume that the selection conditions are

simple selection conditions, including 𝑛 atoms, each of the form

𝐷.𝐿 ∈ {𝑣1, . . . , 𝑣𝑘 }. We also assume that all aggregate func-

tions are distributive (e.g., sum, max, min, count). To simplify the

presentation even more, we assume that there is a one-to-one

mapping between the measures of the two queries and the re-

spective aggregate functions that produce them (thus, the two

queries differ only at the levels of their schema and their selection

conditions). See the long version of the paper [22] for the proof

and the formalization of distributive functions.

Theorem 5.1 (Cube Usability). Assume the following two
queries:

𝑞𝑛 =
〈
DS0, 𝜙𝑛, [𝐿𝑛

1
, . . . , 𝐿𝑛𝑛 , 𝑀1, . . . , 𝑀𝑚], [𝑎𝑔𝑔1 (𝑀0

1
), . . . , 𝑎𝑔𝑔𝑚 (𝑀0

𝑚)]
〉

and

𝑞𝑏 =

〈
DS0, 𝜙𝑏 , [𝐿𝑏

1
, . . . , 𝐿𝑏𝑛, 𝑀1, . . . , 𝑀𝑚], [𝑎𝑔𝑔1 (𝑀0

1
), . . . , 𝑎𝑔𝑔𝑚 (𝑀0

𝑚)]
〉

The query 𝑞𝑏 is usable for computing, or simply, usable for

query 𝑞𝑛 , meaning that Algorithm 1 correctly computes 𝑞𝑛 .𝑐𝑒𝑙𝑙𝑠
from 𝑞𝑏 .𝑐𝑒𝑙𝑙𝑠 , if the following conditions hold:

(1) both queries have exactly the same underlying detailed cube
DS,

Algorithm 1: Answer CubeQuery from a Pre-Existing
Query Result

Input: A new query expression 𝑞𝑛 and a previously

computed query 𝑞𝑏 along with its result 𝑞𝑏 .𝑐𝑒𝑙𝑙𝑠

Output: The result of 𝑞𝑛 , 𝑞𝑛 .𝑐𝑒𝑙𝑙𝑠
1 begin
2 𝑞𝑛 .𝑐𝑒𝑙𝑙𝑠 ← compute 𝑞𝑛

+
and for every coordinate,

create a new cell with all measures initialized to ∅
3 if 𝑞𝑏 and 𝑞𝑛 satisfy all conditions of Theorem 5.1 then
4 forall dimensions 𝐷𝑖 do
5 𝛼

𝑛@𝑏
𝑖
← the transformed atom of the new

query at the schema grouper level 𝐿𝑏
𝑖
of 𝑞𝑏

6 end
7 𝜙𝑛@𝑏

= ∧ 𝛼𝑛@𝑏
𝑖

8 𝑞𝑛@𝑏 .𝑐𝑒𝑙𝑙𝑠 ← apply 𝜙𝑛@𝑏
to 𝑞𝑏 .𝑐𝑒𝑙𝑙𝑠

9 𝑞𝑛
𝐺
= group the cells of 𝑞𝑛@𝑏 .𝑐𝑒𝑙𝑙𝑠 according to

𝑞𝑛
+

10 forall measures𝑀𝑗 do
11 𝑞𝑛 .𝑐𝑒𝑙𝑙𝑠 .𝑀𝑗 ← apply 𝑎𝑔𝑔𝐹

𝑗
to the j-th measure

of the members of the groups of 𝑞𝑛
𝐺

12 end
13 end
14 return 𝑞𝑛 .𝑐𝑒𝑙𝑙𝑠

15 end

(2) both queries have exactly the same dimensions in their
schema and the same aggregate measures 𝑎𝑔𝑔𝑖 (𝑀0

𝑖
), 𝑖 ∈

1 .. 𝑚 (implying a 1:1 mapping between their measures),
with all 𝑎𝑔𝑔𝑖 belonging to a set of known distributive func-
tions. To simplify notation, we will assume that the two
queries have the same measure names,

(3) both queries have exactly one atom per dimension in their
selection condition, of the form 𝐷.𝐿 ∈ {𝑣1, . . . , 𝑣𝑘 } and
selection conditions are conjunctions of such atoms,

(4) both queries have schemata that are perfectly rollable with
respect to their selection conditions, whichmeans that grouper
levels are perfectly rollable with respect to the respective
atom of their dimension,
• (for convenience) for both queries, for all dimensions 𝐷
having 𝐷.𝐿𝑔 as a grouper level and 𝐷.𝐿𝜙 as the level
involved in the selection condition’s atom for𝐷 , we assume
𝐷.𝐿𝑔 ⪯ 𝐷.𝐿𝜙 , i.e., the selection condition is defined at a
higher level than the grouping

(5) all schema levels of query 𝑞𝑛 are ancestors (i.e, equal or
higher) of the respective levels of 𝑞𝑏 , i.e., 𝐷.𝐿𝑏 ⪯ 𝐷.𝐿𝑛 , for
all dimensions 𝐷 , and,

(6) for every atom of 𝜙𝑛 , say 𝛼𝑛 , if (i) we obtain 𝛼𝑛@𝐿𝑏 (i.e., its
detailed equivalent at the respective schema level of the pre-
vious query 𝑞𝑏 , 𝐿𝑏 ) to which we simply refer as 𝛼𝑛@𝑏 , and,
(ii) compute its signature 𝛼𝑛@𝑏+ , then (iii) this signature is a
subset of the grouper domain of the respective dimension at
𝑞𝑏 (which involves the respective atom 𝛼𝑏 and the grouper
level 𝐿𝑏 ), i.e., 𝛼𝑛@𝑏+ ⊆ 𝑔𝑑𝑜𝑚(𝛼𝑏 , 𝐿𝑏 ).



Figure 3: An example of cube usability

6 CONCLUSIONS
In this paper we have provided a method for computing a new

cube from a previous one, defined at a different level of abstrac-

tion. The basis of the method is perfect rollability, a property char-

acterizing the combination of selection conditions and groupers

that guarantees the correct computation of aggregate measures.

Future work can also target operators comparing cubes for

intrinsic properties of their cells (e.g., hidden correlations, predic-

tions, classifications) that have to be decided via the application

of knowledge extraction operators to the results, or the detailed

areas, of the contrasted cubes.
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