
Data source connectors layer as a service - design patterns
industrial experience report

Michał Bodziony
IBM Poland, Software Lab Kraków

Kraków, Poland
michal.bodziony@pl.ibm.com

Robert Wrembel
Poznan University of Technology

Poznań, Poland
robert.wrembel@put.poznan.pl

ABSTRACT
In data integration architectures connectors to data sources are
key components. Traditionally, connectors are organized into
a library of connectors. Such an approach has various draw-
backs, which we discuss in this paper. In order to mitigate these
drawbacks, we propose to implement the library of connectors
as a service (LCS) by means of design patterns. These patterns
summarize the experience gained over years, while designing
integration architectures in R&D projects run at IBM Poland.

KEYWORDS
data integration, common connectivity layer, design patterns

1 INTRODUCTION
A common connectivity layer (CCL) is a software component
that allows different systems or applications to communicate
with heterogeneous data sources in a unified way. It provides a
standard interface for sending and receiving data and it acts as a
bridge between different systems that may use different protocols
or data formats. One of the well-known examples of a CCL are
database connectors (a.k.a. drivers).

One of the most common forms of a CCL is a library of con-
nectors (LC). These connectors follow an adapter pattern, which
translates a native interface of a data source into a common in-
terface of a CCL. Connectors designed as libraries have some
significant limitations, like poor maintainability, limited scala-
bility, and challenging security (cf. Section 3.1). There are many
functional and non-functional requirements for a CCL, which
are difficult to be met when a CCL is implemented as a LC (these
requirements are described in more details in Section 3.2).

In this paper, we propose to build a LC used as a service
(denoted as LCS), rather than as an embedded library. To this end
we apply design patterns.With these patternsmany requirements
(cf. Section 3.2) can be more easily and clearly addressed. The
proposed patterns summarize the experience gained over years
while designing connectivity architectures of products like IBM
Cloud Pak for Data.

2 RELATEDWORK ON A CONNECTIVITY
LAYER

In this section, we outline the fundamental data integration tech-
nologies, including: (1) virtual, i.e., federated and mediated, (2)
physical, i.e., a data warehouse and a data lake, and (3) a data
mesh and a data fabric.

In early 80s, two fundamental virtual data integration archi-
tectures were developed, namely federated [4] and mediated [9].
Both of them share a common feature of storing data only in data
sources (DSs), which are typically heterogeneous and distributed.

Copyright © 2023 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

These data are integrated on demand by a software layer located
between a user and DSs.

One of the most popular approaches to physical data inte-
gration is a data warehouse architecture [8], where data from
distributed and heterogeneous sources are ingested and inte-
grated by means of data integration processes, commonly known
as ETL processes [1]. Integrated data are then stored in a data
repository called a data warehouse (DW).

Another approach to a unified access to huge volumes of data
is a data lake architecture. A data lake (DL) is a large, repository
capable of integrating, storing, and processing data of arbitrary
complexities and sizes [2, 6]. DLs are typically built on a dis-
tributed file system and can store data in arbitrary formats. DLs
are often used in conjunction with physical or virtual data ware-
houses, where a DL is serving as a repository for raw data and a
DW is providing a structured view on the data.

In recent years, another technological concept was coined -
it is called a data mesh (DM). It is a data architecture and data
governance approach that promotes the decentralization of data
ownership within an organization [5]. It is based on the idea that
data is a shared asset that should be owned and governed by
teams with domain expertise, rather than being controlled by a
central data organization.

A concept strongly related to a data mesh is called a data fabric.
It is used to describe a data architecture for supporting the flow
of data within an organization [7]. By default, the architecture
should be flexible, scalable, and resilient, with a goal to make data
available for multiple teams and systems across an organization.

3 COMMON CONNECTIVITY LAYER
CHALLENGES

An often-used approach to implement a common connectivity
layer is the aforementioned library of connectors (LC). This li-
brary is a collection of software components that are used to
connect to and to interact with various types of data sources. A
data source connector is a specific type of software that provides
a set of APIs or other programming interfaces that an application
can use to manipulate the content of a data source.

A LC typically includes connectors to a variety of different
types of data sources, such as relational databases, NoSQL databases,
file systems, and cloud storage platforms. Connectors in a LC
are typically designed to be used in a standardized way and may
include features such as pooling and load balancing, to help im-
prove the performance and scalability of an application.

3.1 Limitations of a library of connectors
In this section we outline some drawbacks of using a LC.

Limited support for specific data sources: a LC may not include
connectors for every possible type of a data source that an or-
ganization might need to use. In some cases, a data source is
supported by one library but is not supported by another. Com-
bining a few different libraries in the same integration software is

usually problematic because of different interfaces and different
prerequisites.

Reduced flexibility: by using a LC, an organization may be
limited to the capability that is provided by connectors in the
library. This can make more difficult to fully utilize features
specific to one or the other data sources.

Dependency on third-party software limitations: a LC is typically
developed and maintained by third parties, which means that the
organization using the library is dependent on the vendor to fix
a problem or to provide updates and new features.

Performance and scalability limitations: connectors in a LCmay
not be optimized for every possible use case, and may not provide
the best performance or scalability for a particular application. In
some cases, it would be efficient to combine two or more different
implementations of the same connector, in order to achieve the
required performance and scalability.

Complexity limitations: if a LC is used by many services/ ap-
plications/ processes, the library has to be embedded in many
places. It results in a large number of interactions and depen-
dencies that are hard to control. As presented in Fig. 1, each
application embedding the LC has a direct dependency on all the
services required by the LC. High design complexity can lead to
issues such as increased development time, higher maintenance
costs, and a higher likelihood of misconfigurations or bugs.

Data source

Vault
provider

Tunneling
service

Monitoring
service

Data consuming app A
Library of Connectors

Data source
Data source

Data source
Data consuming app B
Library of Connectors

Data consuming app B
Library of Connectors

Governance
catalog

Figure 1: Complexity of integration of data sources with a
library of connectors

Dependencies explosion: in a more mature solution, data source
connectors depend on many other software components (e.g.,
data governance catalog, vault providers, tunneling providers,
governance policy repositories). In micro-services architectures,
usually plenty of services need access to data. Each such service
has to embed a LC and therefore has to inherit all the dependen-
cies to other services.

Maintenance costs: data source connectors have to be patched
or upgraded regularly (e.g., security patches, new capabilities,
licensing). If a LC is used in multiple services, then it has to
be maintained in all those services. This often means that ser-
vices that embed a LC have to be recycled after connectors were
upgraded or patched.

Reduced portability: a LC is usually available in a single pro-
gramming language but in micro-services architectures, services
of the same functionality may be written in different program-
ming languages. In order to have all the data source types sup-
ported by all the services, one would need data source connectors
to be re-implemented for all the languages used by client services.

3.2 Requirements for common connectivity
layer

There are several types of requirements to be met by a well-
designed CCL. These requirements are especially important when
a solution is in line with the principles of micro-services archi-
tectures. In this section, we outline these requirements.

Portability. Software components portability is a feature that
refers to the degree to which software components can be mi-
grated between platforms. The following aspects of portability
can be essential for a connectivity layer: adaptability, replaceabil-
ity, and installability.

Security. A CCL typically plays a crucial role in ensuring
a secure access to data sources that often contain confidential
data. The most important aspects of security in a CCL include:
encryption, authentication, access control, data integrity, non-
repudiation (auditing), and denial of service protection.

Scalability. For a CCL, scalability refers to the ability of the
layer to handle increasing amounts of data and/or users without
experiencing a decrease in the quality of data access (throughput,
delays, and a number of errors). A CCL can be usually scaled in
two dimensions: vertical and horizontal.

Reliability. Reliability refers to the ability of a CCL to enable
interactions with data consistently and without errors. A CCL
that is reliable will be able to handle a wide range of inputs and
conditions without failing or producing incorrect output. There
are a few factors that can affect the reliability of the layer, namely:
robustness, error handling, testing, and documentation.

Usability. Usability is a measure of how easy a system or
product can be used. In the context of a CCL, good usability
would involve making it easy for users to work with data but
also easy for developers to integrate their applications with data
sources. There are a few important aspects of the CCL usability,
namely: simplicity, consistency, flexibility, and feedback.

Performance. A CCL with good performance is able to han-
dle large data volumes and/or a large number of user requests
without experiencing a significant decrease in throughput or sta-
bility. There are a few factors that can affect the performance of
the layer, including: data volume, the number of users, network
latency, and hardware.

4 LIBRARY OF CONNECTORS AS A SERVICE
Many data integration solutions nowadays are designed as micro-
services architectures. This motivates to design a CCL as a single
service or plurality of services with common interfaces.

D
at

a
co

ns
um

in
g

ap
pl

ic
at

io
n

LCS (Library of Connectors as a Service)

DB2

Library of Connectors

DB2 Teradata BigQuery ...S3

Teradata BigQuery S3

API Server Dispatcher

...

Figure 2: LCS - the library of connectors as a service

A library of connectors service (LCS) is composed of a LC and at
least two facilitating components (as depicted in Fig. 2). Connec-
tors from the LC are responsible for adapting native interfaces
of data sources into a common interface. An API Server exter-
nalises this common interface to data consuming applications. A

dispatcher is responsible for instantiating a connector of a given
type and forwarding request to this connector.

There may exist multiple services that serve the LCS function-
ality. These services can be implemented to ensure scalability,
workloads isolation (security), performance optimization, and
workload isolation (monitoring). If multiple services provide con-
nectors capabilities, one could consider integrating them together
into a chain of responsibilities design patterns combined with a
command design pattern (c.f., Section 5 for more detailed examples
of combining a LCS).

5 APPLICABLE DESIGN PATTERNS
In this section we contribute core design patterns that support
designing the common connectivity layer as the library of con-
nectors as a service.

5.1 Integration with data governance catalog
A data governance catalog (DGC) is a centralized repository of
metadata about an organization’s data assets. It can include meta-
data about: (1) data sources that are used within an organization,
(2) data structures and relationships that are defined, (3) business
terms and definitions that are used to describe data, (4) policies
and procedures that govern the use of and access to data, (5)
data lineage and flow, as well as (6) any metadata or annotations
that have been added to data. Yet another metadata often main-
tained in DGCs are properties, which are necessary to establish
a connection to DSs (a.k.a. connection strings, database URLs,
or connection assets). When a user wants to access data from
any governed data asset, he/she needs to know only an ID of the
data asset in a DGC (of course, access to the DGC itself has to be
properly authorized).

In the proposed LCS architecture, a user whowants access data
sends a request to the LCS. The request contains only an ID of a
data asset in a DGC and an instruction how to interact (e.g., read,
write, filter, degree of parallelism) with the asset. A user does not
need to provide details like connection strings, table names, paths,
schemas, credentials. It significantly increases user experience
in accessing data. Since a user does not have to deal with DS
credentials, the overall security can be increased as well. It is
the LCS that retrieves all the information necessary to establish
connections (including credentials).

Data
source

1.getData(assetID)

Data consuming
application

2.getConnProps(assetID)

3. getData(connProps)LCS

Data governance
catalog

Data
source

Figure 3: The integration with a data governance catalog
pattern

As shown in Fig. 3, an application interacts with a DS by send-
ing a request to the LCS (cf. step 1). This request identifies a
subject data asset by its assetID. In step 2, assetID is fetched and
transformed into connection properties. Then, a specific connec-
tor is fed with the connection properties in order to establish a
connection to the data source and retrieve data (cf. step 3).

To sum up, there are some advantages of using this approach.
First, a system complexity is reduced by limiting a dependency
of a consuming application to the LCS only. Second, a system

security is improved byminimising a set of services with access to
data sources credentials (subset of connection properties). Third,
a user experience is improved by accessing only assets IDs rather
than all assets connection metadata.

5.2 Integration with a vault provider
Vault providers are often used in enterprise environments to store
and manage secrets that are used by applications and services.
For example, a vault provider might be used to store database
passwords, API keys, or encryption keys, which are used by
various applications and services within a company.

In some implementations of data governance catalogs, a man-
agement of credentials can be delegated to a vault provider. In
this case, data governance maintains only a reference to secrets
in a vault. This reference needs to be resolved to a secret retrieved
from the vault, in order to establish a connection to a data source.

1.getData(assetID)

Data consuming application

2.getConnProps(assetID)

4. getData(connProps)

3.getCredentials(refID)

LCS

Data governance catalog

Data
sourceData

source

Vault provider

Figure 4: The pattern for integrating with a vault provider

A design pattern proposed in Fig. 4 decouples data consumers
from vault providers. It is a LCS that retrieves all necessary se-
crets/credentials from a vault provider and applies them to estab-
lish a connection to a DS. In the case of a dynamic security (e.g.,
one-time passwords) it is the LCS that ensures that every new
connection is established with fresh credentials retrieved from a
vault.

Applying the discussed pattern allows to: (1) reduce complex-
ity by limiting dependency only on a vault provider; (2) increase
security by minimizing a set of services that request access to
the vault provider; (3) enhance functionality, since dynamic se-
curity is handled by a LCS; (4) increase portability by a simple
replacement of a vault provider.

5.3 Tunneling
In a networking context, tunneling refers to the practice of encap-
sulating one network protocol inside another protocol. Tunneling
can be used to connect to a DS in situations where it is not possi-
ble to connect directly to the DS. This might be because the DS
is behind a firewall that blocks incoming connections. A client
can then use this connection to send commands to the DS as if it
were directly connected to the DS.

With the proposed design pattern (as shown in Fig. 5), the
LCS ensures a proper configuration of tunneling, necessary to
establishing a secure connection to a DS specified in a request.
Metadata necessary to configure such a tunnel can be maintained
in a DGC and referred to by data assets. The other responsibility
of the LCS can be: purging unused tunnels, refreshing credentials
or certificates used by existing tunnels.

The proposed design pattern offers the following advantages:
(1) reduced complexity by limiting the number of services di-
rectly depending on a tunneling service; (2) improved security
by minimizing a set of services with an access to a tunneling ser-
vice and maintaining a single path of tunneling management; (3)

5. getData(connProps)

Data consumer

data
source

1.getData(assetID)

Data consumer

2.getConnProps(assetID)

3. addTunnel()
LCS

Governance catalog

Data
sourceTunneling service fir

ew
al

l

4. createTunnel()

Figure 5: The integration with the tunneling services pat-
tern

improved performance by maintaining tunnels pools and tunnels
re-using for a plurality of connections.

5.4 Custom drivers
There are cases where a user needs to plug in some specific
database drivers, e.g., custom JDBC drivers. However, there are
some risks (like compatibility, security, performance) that have
to be properly addressed when creating an extensible system that
allows users to add a custom code.

The pattern shown in Fig. 6 proposes that a custom driver is
wrapped with a service (further called custom LCS). The custom
LCS is chained with the LCS. If a request is targeted to a data
source supported by the custom LCS, then the LCS delegates the
request to the custom LCS. The custom service uses the same
interface and data format as the LCS.

1.getData(assetID)

2.getConnProps(assetID)
5. getData(cProps)

3. ensureCLCS()

LCS

Data governance catalog

4. createCLS()

Custom LCS operator

6. getData(connProps)

Custom LCS

Data source

Data consuming applicationData consuming application

Figure 6: The pattern for extensibility with custom drivers

The pattern offers two main advantages, namely: (1) improved
security by a maximal isolation of custom code; (2) improved
performance and security by ensuring that only pre-defined quota
of resources (e.g., computing units, memory, network) can be
consumed by the custom LCS.

5.5 Data locality
Data locality refers to the concept of storing data in a close prox-
imity to where they are used. This can improve performance of
applications because it reduces time and resources required to
access the data. There are a few different types of data locality,
including: (1) spatial locality, typically in distributed systems,
when data are accessed from nearby memory locations, (2) tem-
poral locality, when data are accessed multiple times in a short
period of time, and (3) cache locality, when data are stored in
cache memory.

A promising technique used to achieve data locality is the so-
called push down optimisation [3]. Push down consists in moving
the most selective tasks (typically queries) towards DSs.

In some implementations, a DS connector can offer processing
that reduces the footprint of returned data. It is obviously better
to have such processing closer to a DS. If connectors are wrapped

Data consuming application

1.getData(assetID)
Data consuming application

2.getConnProps(assetID)
3.getData(cProps)

LCS

Data governance catalog

4.getData(connProps)

LCS
(delegate)

Data source

Applications location Data location

Figure 7: The pattern for data and computing co-location

with a service, then it is easier to provision them collocated with
a DS (cf. Fig. 7).

The presented pattern offers the following advantages: (1)
improved performance by co-locating a DS connector with a data
source; (2) improved performance by reducing a volume of data to
be transferred between a DS and a client application; (3) improved
security by enabling push-down of masking, encryption, or other
security related techniques.

5.6 Policy enforcement
In the context of data governance, policy enforcement refers to
the process of ensuring that data policies and rules are obeyed
within an organization. Data governance policies typically cover
a wide range of topics, including data quality, security, privacy,
retention, and access.

There are several different ways that a policy enforcement
can be implemented as part of data governance. For example, an
organization may use automated tools for monitoring data access
and usage as well as for enforcing policies around data retention
and data privacy. Mechanisms for centralized or federated policy
enforcement can be part of a data fabric architecture.

Examples of policies, which can be enforced on data access
are: denying some data for certain roles, masking data and data
anonymisation, encryption, pre-processing, and cleaning.

In the proposed architecture, a LCS is a central component,
enhanced with capabilities of policies enforcement. The design
pattern proposed here adds a proxy service in front of the LCS.
The proxy is responsible for loading policy rules evaluation and
enforcing the policies on data transferred to/from a DS.

Data consuming application

1.getData(assetID)
Data consuming application

5.getConnProps(assetID)
3.getData(assetID)

Enforcement Proxy

Data governance catalog

6.getData(cProps)

LCS

Data sourceData governance policies repo

2.getRules(assetID)

Figure 8: The pattern for federated policies enforcement

Advantages of the pattern for federated policies enforcement
include: (1) improved reliability by centralizing enforcement of
global and federated policies; (2) improved maintainability by
reducing dependencies between a repository of policies and com-
ponents of a system where the policies are enforced.

5.7 Data access monitoring and auditing
Data access monitoring and auditing refers to the process of track-
ing and recording access to data in a system, e.g., who and when

is accessing data, what data are accessed, and what commands are
executed. There are different ways that data access monitoring
and auditing can be implemented, including the use of logging,
auditing, and monitoring tools, as well as the implementation of
access controls and user authentication systems.

Monitoring and auditing is very challenging if data source
connectors are implemented as libraries, since a monitoring capa-
bility has to be part of a library. Every host of such a library needs
to be configured for monitoring (e.g., a granularity of monitoring
or access to a repository that stores monitoring data).

In the proposed LCS architecture, monitoring can be again
implemented as a proxy service in front of the LCS. The proxy
sends notifications to a monitoring service that describes the
context of requests handled by the LCS. The monitoring service
combines information from the proxy with metrics collected in
continuous way (represented by symbol∞ in Fig. 9).

Yet another interesting pattern is to have a dedicated LCS for
every connection. This way, every data processing executed by
a connector are encapsulated by its own process/ container and
can be monitored as a black box. Detailed resource utilization can
be measured for data processing. The results of such monitoring
can be used afterwards for modeling profiles of data processing
or identifying common patterns of data access.

Data consuming
application

1.getData(assetID)

Data consuming
application

4.getConnProps(assetID)
3.getData(assetID)

Monitoring
Proxy Data governance

catalog

5.getData(cProps)LCS Data source

∞.collectMetrics()

Monitoring
Service

2.instrument(assetID)

Monitoring
data

Figure 9: The centralized monitoring and auditing pattern

The presented pattern offers the following advantages: (1) im-
proved maintainability, since there is only one component in a
system where monitoring is configured; (2) improved security
by having a reliable auditing of data access events; (3) enhanced
performance monitoring by having a very detailed resource con-
sumption measuring.

5.8 Chain of responsibility with bypassing
A design pattern called a chain of responsibility is used to process
requests or handle events in a decoupled way. In this pattern, a
request is passed through a chain of services, each of which has
the opportunity to process the request or pass it on to the next
component in the chain.

The patterns presented in the previous sections can be com-
bined together, which produces longer chains (e.g., Fig. 10). Hav-
ing such a longer chain of responsibilities brings all the benefits
of each individual pattern, but it may negatively affect perfor-
mance. A performance penalty is caused by adding extra hops in
data access request handling, but the penalty can be reduced by
the approach proposed below.

In many cases, access to data is done in two phases, namely: (1)
data preparation (e.g., preparing statements in JDBC or getting
flight info in Apache Arrow Flight) and (2) data access itself. Let
us consider a preparation phase (steps 1-4 in Fig. 10) followed by

a data access phase (step 5). Although the preparation phase runs
through the whole chain, the data access phase can bypass some
nodes. For example, in Fig. 10 monitoring, enforcing, and the
main LCS are bypassed in step 5, which directly leads (connects)
to the LCS co-located with the data source.

1.prepare()

2.
pr

ep
ar

e(
)

Monitoring
Proxy

6.getData()

LCS
delegate

Data
source

3.prepare()

Enforcement
Proxy

4.
pr

ep
ar

e(
)

LCS

Data consuming
applicationData consuming

application

5.getData()

Figure 10: An exemplary chain of responsibilities

6 SUMMARY
The existing implementations of a CCL have significant limita-
tions. By identifying these limitations (cf. Section 3.1) and by
specifying a comprehensive set of requirements for good and
modern CCL (cf. Section 3.2) we were able to work out a set of
design patterns for common use cases (cf. Section 5).

Designing data source connectors as a service brings all the
benefits of a service-oriented architecture, including loose-coupling,
modularity, versioning, availability, security, and scalability. Most
of the proposed patterns and ideas have already been deployed in
the architecture of the common connectivity layer of IBM Cloud
Pak for Data.

Acknowledgements. The work of Michał Bodziony is related
to his employment at IBM Polska Sp z o.o. Additionally, his work
is supported by the Applied Doctorate grant no. DWD/4/24/2020
from the Polish Ministry of Education and Science. The work of
Robert Wrembel is supported by IBM Shared University Reward
2019.

REFERENCES
[1] SyedMuhammad Fawad Ali and RobertWrembel. 2017. From conceptual design

to performance optimization of ETL workflows: current state of research and
open problems. The VLDB Journal 26, 6 (2017), 777–801.

[2] Antonia Azzini, Sylvio Barbon Jr., Valerio Bellandi, Tiziana Catarci, Paolo
Ceravolo, Philippe Cudré-Mauroux, Samira Maghool, Jaroslav Pokorný, Monica
Scannapieco, Florence Sèdes, Gabriel Marques Tavares, and Robert Wrembel.
2021. Advances in Data Management in the Big Data Era. InAdvancing Research
in Information and Communication Technology - IFIP’s Exciting First 60+ Years,
Views from the Technical Committees and Working Groups (IFIP AICT), Vol. 600.
Springer, 99–126.

[3] Michal Bodziony, Rafal Morawski, and Robert Wrembel. 2022. Evaluating push-
down on NoSQL data sources: experiments and analysis paper. In Int. Workshop
on Big Data in Emergent Distributed Environments (BiDEDE), in conjunction with
the ACM SIGMOD/PODS Conference. ACM, 4:1–4:6.

[4] A. Bouguettaya, B. Benatallah, and A. Elmargamid. 1998. Interconnecting Hetero-
geneous Information Systems. Kluwer Academic Publishers, ISBN 0792382161.

[5] Zhamak Dehghani. 2022. Data Mesh: Delivering Data-Driven Value at Scale.
O’Reilly, ISBN 1492092398.

[6] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. VLDB
Endowment 12, 12 (2019), 1986–1989.

[7] Piethein Strengholt. 2023. Data Management at Scale: Modern Data Architecture
with Data Mesh and Data Fabric. O’Reilly, ISBN 1098138864.

[8] Alejandro A. Vaisman and Esteban Zimányi. 2022. Data Warehouse Systems -
Design and Implementation. Springer, ISBN 3662651661.

[9] Gio Wiederhold. 1992. Mediators in the Architecture of Future Information
Systems. Computer 25, 3 (1992), 38–49.

	Abstract
	1 Introduction
	2 Related work on a connectivity layer
	3 Common connectivity layer challenges
	3.1 Limitations of a library of connectors
	3.2 Requirements for common connectivity layer

	4 Library of connectors as a service
	5 Applicable design patterns
	5.1 Integration with data governance catalog
	5.2 Integration with a vault provider
	5.3 Tunneling
	5.4 Custom drivers
	5.5 Data locality
	5.6 Policy enforcement
	5.7 Data access monitoring and auditing
	5.8 Chain of responsibility with bypassing

	6 Summary
	References

