
Scalable Hierarchical Metadata Classification in Heterogeneous
Large-scale Datasets

𝐵ℎ𝑖𝑚𝑒𝑠ℎ 𝐾𝑎𝑛𝑑𝑖𝑏𝑒𝑑𝑎𝑙𝑎1, 𝐴𝑛𝑛𝑎 𝑃𝑦𝑎𝑦𝑡2,𝐶ℎ𝑟𝑖𝑠𝑡𝑜𝑝ℎ𝑒𝑟 𝐶𝑎𝑏𝑎𝑙𝑙𝑒𝑟𝑜1, 𝑀𝑖𝑐ℎ𝑎𝑒𝑙 𝐺𝑢𝑏𝑎𝑛𝑜𝑣1

𝐹𝑙𝑜𝑟𝑖𝑑𝑎 𝑆𝑡𝑎𝑡𝑒 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦1,𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑜 𝑓 𝑆𝑜𝑢𝑡ℎ 𝐹𝑙𝑜𝑟𝑖𝑑𝑎2

ABSTRACT
Tabular metadata identification and classification is a fundamen-
tal problem for large-scale structured corpora, especially for com-
plex tables, rich in hierarchical metadata. Millions of scientific
tables, Web tables have hierarchical metadata, but most often
have none or noisy labels for their metadata rows or columns.
Missing or incorrect metadata labels or tags prevent many fun-
damental downstream tasks such as query processing, data fusion,
indexing, analytics, visualization, and many other. Different au-
thors position and structure metadata differently inside a table,
which makes its accurate identification very challenging.

In this work we describe our scalable binary metadata classifi-
cation architectures. The first is using Machine-learning with our
novel positional features. The second one is an ensemble of BiGRU
models with parallel layers of embeddings. We have performed
an extensive evaluation on large-scale datasets, including WDC
and CORD-19 with millions of tables. We observed F-measure of
up to 97% with the Δ of up to 6%-18.7% compared to the state of
the art. The effect of our novel positional features was substantial
- up to 55% in F-measure Δ observed when models were trained
with them.

1 INTRODUCTION
Large-scale heterogeneous, structured datasets are ubiquitous -
WDC [29], CORD-19 [36], Census Buerau[1] are just a few ex-
amples. Such corpora exhibit a wealth of useful structured data
originating from millions of different sources. Even the tables on
the same topic (e.g. Songs, Vaccines side-effects, etc) are repre-
sented differently, hence efficiently accessing or deriving insights
from them is very complicated [2, 12, 15, 16, 30–33]. Some sources
use only relational tables, other (e.g. medical, scientific, finan-
cial) are dominated by more complex non-relational tables with
hierarchical vertical and/or horizontal metadata [14, 17–20].

Because of the differences in format and metadata variety,
accurate and scalable metadata identification and annotation is
a popular subject of recent ongoing research [5, 8, 10, 21, 28].
Although the recent systems showed promising performance,
the evaluation sets used in their experiments have relatively
small number of sources, hence are very homogeneous - do not
exhibit high variety of tabular and metadata representations
compared to the large-scale, heterogeneous datasets composed
from millions of sources. Each source has a liberty to choose the
table and metadata format, hence an algorithm or model, which
fits one source, usually performs much worse on another source
unless the formats are significantly similar. To justify that the
approach is robust for diverse sources, the evaluation sets should
be composed from as many sources as possible [3, 12, 13, 15, 16,
30, 32, 33].

Copyright © 2023 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Here, we describe and evaluate two scalable learning-based
approaches suitable for classification of metadata both in re-
lational and non-relational tables with hierarchical metadata
[4, 22–24, 26, 27, 35]. To gauge scalability and generality, we
have evaluated them on six different publicly available corpora,
two beingWeb-scale - CORD-19 [36] (≈400K sources, 1.5M tables)
and Web Data Commons (WDC) [29] (millions of sources, hun-
dreds of millions of tables). The first is a Machine-learning based
approach with novel positional features that we designed to take
into account the tuple horizontal and vertical contexts, unlike
most of the previous approaches that are limited to only cell-level
features. Our first model takes the 2D context of the tuple into
account along with the position of the tuple and its surroundings
in the table. The second approach is a BiGRU ensemble with two
different layers of embeddings. BiGRU is order-sensitive as order
matters for the terms inside a cell (i.e. First Name is different from
Name First). The following flatten and concatenate and drop-out
layers are order-insensitive as the order of attribute values does
not matter in a tuple. For example, a tuple having artist and then
album value is the same as vice versa.

Figure 1: An Example of a Relational Table with One Level
of Horizontal Metadata.

Finally, wemade sure to evaluate our models on different kinds
of metadata - both relational and hierarchical prevalent in non-
relational medical tables. To summarize, the main contributions
of this paper are the following:

(1) A scalable Machine-learning model with novel positional
features enabling high accuracy even onWeb-scale datasets.

(2) A novel Deep-learning BiGRU-based architecture with par-
allel dual-layer embeddings especially efficient on large-
scale datasets with non-relational tables exhibiting hierar-
chical metadata.

(3) Extensive evaluation and comparison to the state of the art
on six publicly available datasets, including twoWeb-scale
datasets with tables coming from hundreds of thousands
to millions of sources from a a wide variety of domains.

The rest of the paper is structured as follows. First we define
the terminology that we used throughout the paper. Then we
describe the methodology, followed by the description of both
models and experimental study with comparative evaluation



Figure 2: A Table with Multiple Levels of Horizontal, Vertical, and Central Hierarchical Metadata and its Encoding.
against the state of the art. We finish with the related work
discussion and conclusion.

2 DEFINITIONS
Relational tables, defined in [9], have the following properties:
values are atomic, each column has values of the same type,
each column has unique name (i.e. attribute name). The set of all
attribute names is called table schema or metadata. An example
of a relational table is illustrated in Figure 1.
𝐷𝑒𝑓1: Metadata is a set of attributes of a table. Metadata can be
stored in a row - e.g. row №1 in Figure 1, or in a column - e.g.
column №1 in Figure 2.
𝐷𝑒𝑓2: Cell is a data value (i.e. can be a number, string, etc) found
at the intersection of a row and a column in a table. A relational
table has C*R cells total, where C number of columns and R
number of rows.
𝐷𝑒𝑓3: A table with hierarchical metadata is a table that similar
to a relational table has metadata (i.e. attributes), but unlike a
relational table it may be found not only in a row, but also in
a column. It may also take several rows or columns. Such rows
with metadata are called horizontal metadata and are denoted
as 𝑀𝐻𝑥𝑦 in Figure 2, where 𝑀𝐻 is short for "MetadataHori-
zontal", 𝑥 and 𝑦 represent the row/column indices respectively.
Horizontal metadata rows are colored yellow in Figure 2. On
the other hand, such columns with metadata are called vertical
metadata and denoted as𝑀𝑉𝑥𝑦 in Figure 2, where𝑀𝑉 is short
for "MetadataVertical", 𝑥 and 𝑦 represent the row/column indices.
Vertical metadata columns are colored blue in Figure 2. A ta-
ble may have many horizontal and vertical metadata rows and
columns, which is illustrated by arrows in Figure 2. Furthermore,
metadata may also exist in the middle of the table, called central
horizontal metadata and denoted𝑀𝐶𝐻𝑥𝑦 in Figure 2, where𝑀𝐶
is short for "MetadataCentral", 𝑥 and 𝑦 represent the row/column
indices. Central horizontal metadata is colored pink in Figure 2.
All data cells in the table are denoted as𝐷𝑥𝑦 , where𝐷 is short for
"Data", 𝑥 and 𝑦 correspond to the row/column indices. Data rows
are colored violet in Figure 2. The table’s metadata rows have a
relationship with the preceding metadata rows, creating a hier-
archical structure which are denoted in the form of superscript

for the element . We also call tables with hierarchical metadata -
non-relational.

Figure 2 illustrates an example of a table with hierarchical
metadata, where the first element of the horizontal metadata
is denoted as 𝑀𝐻00 and the first element of vertical metadata
is denoted as 𝑀𝑉10. The parent-child relationship between the
metadata cells is denoted in the superscript for both horizontal
metadata𝑀𝐻11 and vertical metadata𝑀𝑉1𝑦 . For instance, in the
horizontal metadata, the cell denoted as𝑀𝐻11 has a parent-child
relationship with the cells𝑀𝐻02 and𝑀𝐻03 as indicated by the
superscript 02,03 in 𝑀𝑉11. Similarly, in the vertical metadata,
the cells denoted as𝑀𝑉10,𝑀𝑉20, and𝑀𝑉30 have a parent-child
relationship with𝑀𝑉1𝑌 , as indicated by its superscript 10,20,30.

3 METHODOLOGY
Now, we describe a our novel positional features that can be used
with any Machine- or Deep-learning model a new Deep-learning
ensemble with parallel embedding layers for high-accuracy Meta-
data classification in both relational and non-relational tables
at scale. Both models can classify apart tabular metadata from
data rows and columns. Before, researchers worked mostly on a
single cell level, i.e. have analyzed table cells, their position, data
value types, and whether the neighboring cells are blank or not
[5, 11, 21, 28]. By contrast, we take into account the context for
all cells in a tuple or column as well as term-level and cell-level
contexts separately in the embedding layers of our custom BiGRU
Deep-learning ensemble.

3.1 Positional Features
We construct the feature vector that is passed to the input of
a model, by calculating the positional features for each row or
column of the table. The feature vector is composed of 13 features
{𝑓1, 𝑓2, ..., 𝑓13} where 𝑓1 contains the entire tuple/column after
the pre-processing step, 𝑓2 indicates to the number of cells in the
row/column, 𝑓3 is a Boolean value indicating if there is a row
above the current row, 𝑓4 is a Boolean value indicating if there is
a row below the current row, 𝑓5 is the number of cells in the row
above, 𝑓6 is the number of cells in the row below, 𝑓7 - is a Boolean
label indicating if it is a metadata row. It is set for all rows in the



training set and blank for the incoming instances to be classified,
𝑓8 is the № of rows/columns, 𝑓9 - true if the table row or column
number equals 2, 𝑓10 - true if the table row or column number
equals 3, 𝑓11 - true if the table row or column number equals 4,
𝑓12 - true if the table row or column number equals 5, 𝑓13 - true
if the table row or column number equals 6.
𝑓1: The content of this feature ensures the statistical depen-

dency between terms appearing as tuple/cell data and metadata
and the classification label can be inferred.
𝑓2: The number of cells in the row, especially compared with

the number of cells in the neighbouring rows is often indicative
of a row being the metadata row.
𝑓3-𝑓6: The numbers of cells in the rows directly below and

above the current row and the difference with the current row is
often indicative whether the row is data or metadata, especially
for non-relational tables. For example, often the number of cells
is the same in the top horizontal metadata rows, but it changes
immediately when the data rows start.
𝑓7 to 𝑓13: These features affect the probability of a row to be

a metadata row. The maximum number of horizontal metadata
rows we have encountered in practice in our large-scale datasets
is 6. The inclusion of row number as a feature allows the model
to assign higher probability to top rows to be metadata rows.

Algorithm 1 illustrates the feature vector construction. The
input is a tuple/column, the output is the feature vector hav-
ing positional features. Each feature carries a certain semantic
weight and affects the classification decision. The experimental
results comparing models trained with and without such features,
justifying their value are illustrated in Tables 1 and 2.

3.2 Machine- and Deep-learning Models
We trained a variety of Machine-learning models and evaluated
performance on 5 large-scale datasets. For Machine-learning, we
present here the results only for the SVM model with polynomial
kernel, since we found out it is superior to all other classifiers
that we tried including Logistic Regression, Naive Bayes, Random
Forest, AdaBoost, Linear Regression, K-means, KNN, XGBoost,
CatBoost. The details on the Training sets composition, training,
and evaluation processes are in Section 4.

Algorithm 1: Feature Vector Construction with Posi-
tional Features.
1 Input: a tuple
2 Output: a feature vector with positional features.
3 begin
4 F1 = Concatenation of tuple cells
5 F2 = Number of cells
6 F3 = 1 if the row above exists, 0 otherwise
7 F4 = 1 if the row below exists, 0 otherwise
8 F5 = Number of cells in the row directly above
9 F6 = Number of cells in the row directly below

10 F7 = Row number
11 F8 = 1 if the row number = 2, 0 otherwise
12 F9 = 1 if the row number = 3, 0 otherwise
13 F10 = 1 if the row number = 4, 0 otherwise
14 F11 = 1 if the row number = 5, 0 otherwise
15 F12 = 1 if the row number > 5, 0 otherwise
16 end

The architecture of our new BiGRU Deep-learning ensemble
consists of three main stages. In the first stage, a data or meta-
data tuple/column, {𝑥1, 𝑥2, ..., 𝑥𝑛}, where 𝑥𝑖 is the 𝑖𝑡ℎ term from
the tuple, is processed to create both cell-wise and term-wise
representations. It includes data cleaning along with the replace-
ment of numbers and ranges in data with placeholders such as
NUM, RANGE. The pre-processed feature vectors are used to to
train two kinds of Word2Vec embeddings [34] - cell-level and
term-level. At term-level, for each term there is a correpond-
ing embedding vector learned. At cell-level, each cell, even if
it has several terms, has one corresponding embedding vector,
not several as at term-level. It is because for tabular data - cells
are atomic semantic entities, not terms like in Natural Language
Processing (NLP), where the standard NLP embeddings were first
created and trained at term-level. For tabular data, this differ-
ence is important. For example a cell may have an artist name,
such as "Britney Spears" and the embedding vector should be
trained for the whole cell - "Britney Spears", not just for one term,
e.g. "Britney". Similarly, the context unlike for NLP term-level
embeddings for tabular data are cells - i.e. "Britney Spears" may
be neighbouring with her song title in the next cell - "Born to
Make You Happy" and this cell, not just one term from it should
contribute to the cell context. This is why we trained cell-level
embeddings. At the same time, term-level context inside a cell is
also important - i.e. it is remarkable that "Britney" appears next
to "Spears", hence we also trained the term-level embeddings and
used both types of embeddings in our architecture, capturing
both kinds of context. Our architecture has two parallel branches
that are initalized with these two kinds of pre-trained embed-
dings, running both inputs in parallel. This sequence is passed
through a BiGRU layer with 200 BiGRU units and the result is
concatenated with the original embeddings {𝑣1, 𝑣2, ..., 𝑣𝑛} to cre-
ate our enriched contextualized vectors, {𝑐1, 𝑐2, ..., 𝑐𝑛}. We flatten
the output of each path to create both cell- and term-wise input
representations. The final stage of the model concatenates the
two representations and passes them through a dense layer, a
batch normalization layer, and a dropout layer.

4 EXPERIMENTAL STUDY
In this section, we first describe the training sets construction
followed by the experimental evaluation on several large-scale
datasets.

Infrastructure: We run our experiments on a cluster of servers
with Intel Xeon CPUs, from 192GB to 1TB of RAM, 10TB disk
space each. For implementing the BiGRU model, we have used
Tensorflow framework. The SVM model was implemented using
Apache Spark MLLib. We have used 100’000 dimensional feature
space, i.e. 100K English terms in our vocabulary that we have se-
lected by taking all terms from our datasets, sorting by frequency
and discarding the noise words and spam [35]. Increasing the
dimensionality further led to significantly slower training time,
without a noticeable gains in accuracy.

Evaluation Datasets: To evaluate our models and compare to
the state of the art we used 5 publicly available datasets, including
CORD-19[36] andWeb Data Commons [29], both having millions
of tables from different sources on different topics. The CORD-19
dataset is a collection of papers related to COVID-19 [36]. Tables
used in the papers are extracted from PDF and stored in JSON
in HTML format. CORD-19 has mostly medical non-relational
tables with hierarchical metadata of all formats - vertical meta-
data, horizontal metadata, both regular and hierarchical. From
the latest CORD-19 snapshot, we extracted ≈1.5 Million tables.



Another large-scale dataset that we have used in this work is
WDC [29]. This dataset consists of more than 100M Web tables
from 265K sources, including information about their source URL,
table type, text before and after the table. The tables are from a
variety of domains, including scientific, news articles, product
information and many other, so it is very attractive choice for
evaluating our models, scalability, and generalizability across
domains.

Training the Models: We trained both models on WDC and
CORD-19 large-scale datasets. The models achieve F-measure of
97%-98% for 1𝑠𝑡 level, 93%-98% for the 2𝑛𝑑 level metadata classi-
fication. These are the best results among all recent solutions to
the best of our knowledge.

First, we have selected only English tables from the WDC
dataset as the dataset is multilingual and we wanted to experi-
ment first on the English subset, which is still millions of tables.
From our experiments, we have observed that one source main-
tains a common format for most of its tables. So if we compose
the training set from one source it will be biased to that source.
Hence, we have uniformly sampled at random an equal number
of tables from all sources and constructed the training set.

We amended the positively labeled training instances with the
same number of negative instances (i.e. regular data rows and
columns, without Metadata) by sampling tables from the entire
dataset and taking the second last row from each table in the
sample, since we never saw a metadata row in such position in
practice. To ensure the training set is balanced, we made sure
there is an equal number of positively and negatively labeled
instances.
5 EVALUATION
Here we evaluate Precision, Recall, and F-measure of our trained
models to classify Metadata in 6 large-scale datasets, including
two large-scale corpora - WDC [29] and CORD-19 [36] as well as
four other popular structured corpora used in the recent related
works for evaluation, such as T2D, T2Dv2, SAUS, and CIUS [7, 8,
10, 28].

Table 1 illustrates Metadata classification accuracy for horizon-
tal and vertical Metadata types. We observe high F-measure for
top metadata levels for the Machine-learning model and BiGRU.
The Machine-learning model starts degrading on the 2𝑛𝑑 level
of the metadata hierarchy as well as especially on the vertical
metadata. We attribute it to the fact that is not trained on the 2𝑛𝑑
level hierarchy of the horizontal metadata - only the 1𝑠𝑡 level is
included in our training sets. Similarly, it is not trained on the
vertical metadata. However, we observe the F-measure for BiGRU
is slightly higher in these cases, despite the fact it was also not
trained on those types of metadata. We attribute it to the fact that
the contextual information is leveraged by the BiGRU ensemble.

Table 2 illustrates Precision, Recall, and F-measure of our mod-
els trained without including the positional features in the feature
vector. We can see a substantial drop in all three measures. Com-
pared to Table 1 we can see that the effect of having our novel
positional features in the feature vector is very substantial - up
to 55% (97%-22%) in F-measure of the models trained with and
without those features.

In recent related work [7, 8, 10, 28], the authors evaluated
their Metadata classification models on much smaller datasets,
composed from much fewer sources. By contrast, CORD-19 and
especially WDC are ultra large-scale heterogeneous datasets and
we would like to highlight high accuracy and generalizability of
our approach in such challenging context.

𝐷𝑎𝑡𝑎𝑆𝑒𝑡𝑀𝑜𝑑𝑒𝑙 MDP MDL TR Precision,Recall,F

𝐶𝑂𝑅𝐷𝑀𝐿
19

Horiz.
Top Lev. 1 315K 97% 98% 97%

𝐶𝑂𝑅𝐷𝑀𝐿
19

Horiz.
Top Lev. 2 60K 96% 89% 91%

𝐶𝑂𝑅𝐷𝐵𝑖𝐺𝑅𝑈
19

Horiz.
Top Lev. 2 60K 94% 93% 93%

𝐶𝑂𝑅𝐷𝑀𝐿
19

Vertical
Left Lev. 1 38K 97% 65% 66%

𝑊𝐷𝐶𝑀𝐿 Horiz.
Top Lev. 1 200k 98% 98% 98%

𝑇 2𝐷𝑀𝐿 Horiz.
Top Lev. 1 13k 99% 97% 97%

𝑇 2𝐷𝑉𝑀𝐿
2

Horiz.
Top Lev. 1 13k 99% 97% 97%

SAUS Horiz.
Top Lev. 1 200K 98% 97% 97%

CIUS Horiz.
Top Lev. 1 200K 99% 97% 97%

Table 1: Models Performance With Positional Features.
MDP abbreviates the Meta data Position, MDL - Meta Data
Level, TR - the training set).
DataSet MDP MDL TR Precision,Recall,F

CORD𝑀𝐿
19

Horizontal
Top Level 1 315k 82% 35% 30%

CORD𝑀𝐿
19

Horizontal
Top Level 2 60k 41% 21% 22%

CORD𝑀𝐿
19

Vertical
Left level 1 38k 82% 35% 30%

Table 2: Models Performance Without Positional Features.
MDP abbreviates the Meta Data Position, MDL - Meta Data
Level, TR - training set). We can see the effect of the posi-
tional features by comparing to Table 1.

Purely cell-based approaches that consider and classify just a
single table cell in isolation [7, 8, 10, 28] without treating them
sequentially as a row or a column, unlike our approach, do not
scale and generalize very well across domains, datasets, and
sources.

We concluded that our approach outperforms the latest state
of the art solutions on the datasets that were used by the recent
works [7, 8, 10, 28] on location and classification of metadata of
different complexity. Our work is similar to the header detection
in verbose CSV files having complex hierarchical metadata. We
picked 2 datasets (SAUS and CIUS), used by the recent studies to
comparatively evaluate our approach. Other two datasets were
not available for public access as well as are manually crawled
and post-processed, which makes them more customized and
less attractive for comparison. Table 1 illustrates performance of
our first model on these datasets.

6 RELATEDWORK
Accurate, scalable, generalizable Metadata location and classifica-
tion inWeb Tables, CSV files, tables, extracted from scientific pub-
lications, other large-scale structured corpora is starting gaining
momentum in the Data Management and Science communities
[7, 8, 10, 28]. It is due to both fundamental nature of Metadata
and it being of critical importance for many downstream data
management tasks.

Here, we presented a Machine-learning model with novel po-
sitional features and a Deep-Learning ensemble with parallel



two-layer embeddings for location and classification of Metadata
rows, columns as well as more complex hierarchical Metadata in
structured data at scale. Several recent works study discriminat-
ing between relational and non-relational tables, which is related
to metadata classification [6], [37]. Except being capable to do the
same and at scale, our approach is also useful for precise Meta-
data rows or columns location and Metadata type identification.
In [8], authors proposed Pytheas, a line classification system for a
CSV files. Using fuzzy logic, it determines whether a field is data
or not and based on the rules, it detects table border and hence it
can differentiate table from metadata to some extent. Their algo-
rithm uses two phases for the task, offline (training) phase and
online table discovery (inference) phase. In the offline phase, the
algorithm learns the weights for the rule set and in the inference
phase, using fuzzy logic it computes confidence value for each
line whether it belongs to data or not data. They have evaluated
their algorithm on two manually annotated datasets containing
a total of 4500 CSV files with a recall value of 95.7%. Although
the recall is high, the evaluation set size is much smaller and
less heterogeneous (composed only from two different sources)
unlike the Web-scale corpora that we have used to evaluate our
approaches. Size and the number of sources used for training
and validation sets drastically affect classification performance
at scale especially in presence of heterogeneity [11, 25].

The authors in [10] used Random Forest classifier to detect
and classify table headers. They have proposed two heuristic
strategies to separate data and the header. As a baseline, they
have used the first row and first table columns as default headers.
Their evaluation set contains only 255 tables, which is remark-
ably small compared to all recent works and our datasets. They
have achieved 92% accuracy on their test set, which does not
unfortunately mean it will remain the same when the validation
set becomes larger and more heterogeneous, even slightly.

To finalize the discussion, the authors in a very recent work
[28] performed line and cell classification in verbose CSV. In this
work, authors have focused on CSV structure detection and for
this purpose, they have detected various cell types like metadata,
header, group, data, derived, notes etc. Our work is similar to
the part of their work on cell classification, more precisely, the
header cell classification. For cell classification, they have used
content, contextual and computational features of the cell. That
is they have analyzed the number of empty cells, position of row
or column, is there any empty column besides the column being
analyzed, block size, data type etc. This analysis is, however, is
purely cell-based and does not take into account compositional
features of cells when they become tuples or columns as well as
the context, which we do. Our Machine-learning model leverages
novel positional features that enable its scalability. These features
proved to be very valuable at scale, they are absent in [28] as
well as all other recent works on metadata/header identification
and classification in (semi-)structured datasets.

7 CONCLUSION
Here, we presented a Machine-learning model with novel po-
sitional features and a Deep-Learning ensemble with parallel
two-layer embeddings for location and classification of Metadata
rows, columns as well as more complex hierarchical Metadata
in structured data at scale. Our both architectures achieve high
accuracy on six publicly available datasets, including large-scale
datasets - WDC [29] and CORD-19 [36].

REFERENCES
[1] Census bureau. https://www.census.gov/data/datasets.html.
[2] B. Alexe, , M. A. Hernandez, H. Ho, J.-W. Huang, Y. Katsis, and L. Popa. Sim-

plifying information integration: Object-based flow-of-mappings framework
for integration. In BIRTE, 2009.

[3] B. Alexe, M. Gubanov, M. A. Hernández, C. T. H. Ho, J. Huang, Y. Katsis,
L. Popa, B. Saha, and I. Stanoi. Simplifying information integration: Object-
based flow-of-mappings framework for integration. In BIRTE, 2008.

[4] B. Alexe, M. Gubanov, M. A. Hernandez, H. Ho, J.-W. Huang, Y. Katsis, and
L. Popa. Simplifying information integration: Object-based flow-of-mappings
framework for integration. In Business Intelligence for the Real Time Enterprise.
Springer, 2009.

[5] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:
exploring the power of tables on the web. In VLDB, 2008.

[6] M. J. Cafarella, A. Halevy, Y. Zhang, D. Wang, and E. Wu. Uncovering the
relational web. In WebDB, 2008.

[7] Z. Chen, S. Dadiomov, R. Wesley, G. Xiao, D. Cory, M. Cafarella, and J. Mackin-
lay. Spreadsheet property detection with rule-assisted active learning. CIKM.
ACM, 2017.

[8] C. Christodoulakis, E. B. Munson, M. Gabel, A. D. Brown, and R. J. Miller.
Pytheas: Pattern-based table discovery in csv files. PVLDB, July 2020.

[9] E. F. Codd. A relational model of data for large shared data banks. CACM,
13(6), June 1970.

[10] J. Fang, P. Mitra, Z. Tang, and C. L. Giles. Table header detection and classifi-
cation. AAAI, 26(1), Jul. 2012.

[11] A. L. Gentile, P. Ristoski, S. Eckel, D. Ritze, and H. Paulheim. Entity matching
on web tables: a table embeddings approach for blocking. In EDBT, 2017.

[12] M. Gubanov. Hybrid: A large-scale in-memory image analytics system. In
CIDR, 2017.

[13] M. Gubanov, C. Jermaine, Z. Gao, and S. Luo. Hybrid: A large-scale linear-
relational database management system. In MIT NEDB, 2016.

[14] M. Gubanov, M. Priya, and M. Podkorytov. Cognitivedb: An intelligent navi-
gator for large-scale dark structured data. In WWW, 2017.

[15] M. Gubanov and A. Pyayt. Readfast: High-relevance search-engine for big
text. In ACM CIKM, 2013.

[16] M. Gubanov and A. Pyayt. Type-aware web search. In EDBT, 2014.
[17] M. Gubanov, A. Pyayt, and L. Shapiro. Readfast: Browsing large documents

through ufo. In IRI, 2011.
[18] M. Gubanov and L. Shapiro. Using unified famous objects (ufo) to automate

alzheimer’s disease diagnostics. In BIBM, 2012.
[19] M. Gubanov, L. Shapiro, and A. Pyayt. Learning unified famous objects (ufo)

to bootstrap information integration. In IRI, 2011.
[20] M. Gubanov and M. Stonebraker. Large-scale semantic profile extraction. In

EDBT, 2014.
[21] B. Hancock, H. Lee, and C. Yu. Generating titles for web tables. In WWW,

New York, NY, USA, 2019. ACM.
[22] R. Khan and M. Gubanov. Nested dolls: Towards unsupervised clustering of

web tables. In IEEE Big Data, 2018.
[23] R. Khan and M. Gubanov. Towards unsupervised web tables clustering. In

IEEE BigData, 2018.
[24] R. Khan and M. Gubanov. Weblens: Towards interactive large-scale structured

data profiling. In CIKM, 2020.
[25] R. Khan and M. Gubanov. Weblens: Towards interactive large-scale structured

data profiling. In CIKM. ACM, 2020.
[26] R. Khan and M. Gubanov. Weblens: Towards interactive web-scale data

integration, training the models. In IEEE Big Data, 2020.
[27] A. Kola, H. More, S. Soderman, and M. Gubanov. Generating unified famous

objects (ufos) from the classified object tables. In IEEE Big Data, 2017.
[28] F. N. Lan Jiang, Gerardo Vitagliano. Structure detection in verbose csv files.

EDBT, March 2021.
[29] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A large public corpus of

web tables containing time and context metadata. In J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, editors, WWW, 2016.

[30] S. Ortiz, C. Enbatan, M. Podkorytov, D. Soderman, and M. Gubanov. Hy-
brid.json: High-velocity parallel in-memory polystore json ingest. In IEEE
Bigdata, 2017.

[31] M. Podkorytov, D. Soderman, and M. N. Gubanov. Hybrid.poly: An interactive
large-scale in-memory analytical polystore. In ICDM Workshops, pages 43–50.
IEEE Computer Society, 2017.

[32] M. Simmons, D. Armstrong, D. Soderman, and M. Gubanov. Hybrid.media:
High velocity video ingestion in an in-memory scalable analytical polystore.
In IEEE Bigdata, 2017.

[33] S. Soderman, A. Kola, M. Podkorytov, M. Geyer, and M. Gubanov. Hybrid.ai:
A learning search engine for large-scale structured data. In WWW, 2018.

[34] M. T., S. I., C. K., and C. G. D. J. Distributed representations of words and
phrases and their compositionality. In NIPS, 2013.

[35] S. Villasenor, T. Nguyen, A. Kola, S. Soderman, and M. Gubanov. Scalable
spam classifier for web tables. In IEEE Big Data, 2017.

[36] L. L. Wang and K. L. and. The covid-19 open research dataset. ArXiv, 2020.
[37] Y. Wang and J. Hu. A machine learning based approach for table detection on

the web. WWW ’02, page 242–250, New York, NY, USA, 2002. ACM.

https://www.census.gov/data/datasets.html

	Abstract
	1 Introduction
	2 Definitions
	3 Methodology
	3.1 Positional Features
	3.2 Machine- and Deep-learning Models

	4 Experimental Study
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

