
Learning Circular Tabular Embeddings for Heterogeneous
Large-scale Structured Datasets
𝑀𝑖𝑐ℎ𝑎𝑒𝑙 𝐺𝑢𝑏𝑎𝑛𝑜𝑣1, 𝐴𝑛𝑛𝑎 𝑃𝑦𝑎𝑦𝑡2, 𝑆𝑜𝑝ℎ𝑖𝑒 𝑃𝑎𝑣𝑖𝑎1

𝐹𝑙𝑜𝑟𝑖𝑑𝑎 𝑆𝑡𝑎𝑡𝑒 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦1,𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑜 𝑓 𝑆𝑜𝑢𝑡ℎ 𝐹𝑙𝑜𝑟𝑖𝑑𝑎2

ABSTRACT
Deep-learning models, most recently with embeddings have been
used and yield promising results for many data fusion problems.
Some methods directly use the embeddings, pre-trained on large
corpora, such as Wikipedia and naively treat table tuples as sen-
tences, when it comes to structured data1. This leads to loss of
valuable 2D contextual information, inherent to structured data.
Other methods partially take into account 2D context, but insuf-
ficiently to attain high accuracy on downstream tasks, such as
classification on Web-scale datasets, known to exhibit extreme
heterogeneity.

In this paper, we propose scalable algorithms to construct and
train embeddings, fully embodying complex 2D tabular context,
unique to structured data, which turns out to be especially impor-
tant to attain high accuracy at scale. Compared to the baselines,
we report a substantial gain in F-Measure of up to 34.4%. We also
observed that not only the average downstream classification
task accuracy is much higher with our embeddings, but also clas-
sification of some categories completely fail with state of the art
embeddings.

1 INTRODUCTION
Word embeddings [15, 24, 28] is a popular dimensionality reduc-
tion technique producing vectors corresponding to words that
capture their context. These vectors have a variety of impor-
tant downstream applications such as clustering similar terms
[10], retrofitting [3], machine translation [8], classification [6],
etc. One of the main advantages of using the embedding vectors
instead of words is that the embedding vectors, corresponding
to words also encode their context, which is valuable. However,
standard embedding learning or construction algorithms are built
for natural language text, which is inherently one dimensional,
i.e. is composed of sentences having "flat" sequences of words.

Here we propose a new scheme to construct embeddings pur-
posed for structured data and exploiting its inherent 2D context.
We evaluate them on a fundamental task in large-scale structured
data management, such as table tuple classification [20]. This
task plays a key role in downstream applications, such as schema
matching [21, 22], data cleaning and discovery [12], data fusion
and transformation, all at scale [5, 7, 18, 23, 26, 27, 29].

Table tuple classification is not only fundamental, but also very
challenging task at scale. For example, Table 1 illustrates how
different tuple schemas are at scale, even within one category
Job postings. Without AI models, trained to recognize all such
Job postings, one would need, first, to somehow find out all their
schemas, and then write hundreds of different structured queries,
each conforming to a specific schema in order to get access all
postings. In this paper we make the following contributions:
1I.e. "TABERT linearizes the structure of tables to be compatible with a Transformer-
based BERT model." [33]

Copyright © 2023 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

• We define our embeddings for relational tables, and de-
scribe an algorithm that we call a "circular walk" that
allows capturing a rich set of relationships inherent to a
table cell and generates a "sentence", embodying its 2D
context incorporated into our circular embeddings.

• We evaluate our new embeddings by performing extensive
experiments on twoWeb-scale structured datasets, having
millions of relational and medical tables from hundreds of
thousands of sources and compare performance against
the state of the art baselines.

We begin with definitions in Section 2, continue with method-
ology, Neural Network and Evaluation architectures in Section
in Section 3. After it we proceed to describe the training process
in Section 4 and our experimental evaluation in Section 5. We
finish with discussion of related work in Section 6 and conclude
in Section 7.

2 DEFINITIONS
2.1 Large-scale Structured Datasets
Def 1: Let T be a (very large) set of relational "entity-centric" ta-
bles. We define "entity-centric" tables as tables, where each tuple
represents some real-world entity 𝑒 of category 𝐸. For example,
Songs would be an "entity-centric", relational table, where each
tuple stores a specific song.

We assume that table names might be missing or incorrect,
which is often the case at scale [20], and that information about
the same entity can be scattered among many tables from mul-
tiple sources, and that those tables can have different schemas.
In that case, for example, a relation of Songs category can be
identified by a combination of a song title and the singer name in
the relation’s Meta-data. We call such combination of attributes
- "core attributes", as they can be used to identify entities of a
certain category.

Def 2: Let {𝑎𝑐𝑜𝑟𝑒1 .. 𝑎𝑐𝑜𝑟𝑒𝑛 } be a set of 𝑛 attributes that is
inherent to all entities of a specific category. For example, each
Song must have {album, artist, and title}, so these 3 attributes
would be core attributes for all Songs.

Notice a remarkable difference with the traditional relational
database setting [13]. There, a relational database was meant
to store a dataset in its entirety, a table storing one category
of entities had one fixed schema. Here, at scale, entities of the
same category are very likely to be scattered among multiple
relations in different sources, all having different schemas, which
is drastically different from the standard expectations in the
relational world [13]. In large-scale structured datasets, such as
T , especially from the Web, each entity-centric table for entities
of the same category (i.e. Companies, People, Songs, Products, etc)
can have different combination of columns with different labels
for the same domain.
Def. 3. We call a dataset 𝐷𝐻𝑜 ⊂ 𝑇 - homogeneous if it consists
of a set of tuples of the same category, all having the same fixed
schema.



Job Postings Attributes
Position Title, Position Number, Location, Position Type, Required Skill Set, Position Description, Department/Team description,
Position summary, Position duties, Requirements, Skill & Competency Requirements, Preferences, Benefits
Salary, Job Type, Number of hires for this role, Full job description, Department, Location, Salary range, Status, Reports to,
Duties & responsibilities, Related functions, Skills & abilities, Requirements, Minimum education, Competencies,
Other, Physical demands and work environment, Benefits, Schedule, Work remotely
Job description, Overview of Global Risk Analytics, Overview of the Role, Position Overview, Required Education,
Skills and Experience, Desired Skills and Experience

Table 1: Different set of attributes in Job postings tables on the Web.

Def. 4. We call a dataset 𝐷𝐻𝑒 ⊂ 𝑇 - heterogeneous if it consists
of a set of tuples of the same category, where tuples can have
different schemas. The number of columns can vary among tuples,
columns, carrying the same semantics can have different labels,
columns being order-insensitive.

2.2 Tuple classification
We evaluate our circular embeddings on a downstream task of
binary table tuple classification at scale (i.e. if a given tuple be-
longs to a category). It is central to a variety of structured data
management applications, such as data cleaning and fusion [12],
transformation [5], schema extraction [16], entity matching [17],
and many other [21, 30].

In tuple classification, the goal is to identify all tuples (even
having different schemas) that belong to a category 𝐸 of entities
𝑒 ∈ T . Columns having the same semantic meaning (e.g. artist,
singer) can have different labels -𝑀1 ..𝑀𝑛 . The data values stored
in these columns can be found in multiple tables. For each column
labeled𝑀𝑗 , we label corresponding data items 𝑑 𝑗1 − 𝑑 𝑗𝑖 . At the
same time, each data item 𝑑𝑘𝑚 might be in multiple columns,
labeled with different labels: (𝐶1, ..,𝐶𝑚).

2.3 Embeddings and Circular Walk

Figure 1: A Schematic for a "Circular Walk" and the Corre-
sponding Generated Embedding "Sentence".

Our circular tabular embeddings training "sentence" is com-
posed by performing a circle-like walk around a table cell in order
to capture not only 1D context like a standard embedding would
do, but also the context in a perpendicular dimension. The walk
takes into consideration the rows directly above and below each
cell. For columns it traverses the width of the table, to the left and
right of the cell of interest. During the walk, not only data cells,
but also their attribute labels are added. As a result a contextual
sentence is formed for a cell from the table. An example of this
walk is found in Figure 1. It is important to note that the walk is
done in triples (three tuples at a time), the walk’s width expands
with the tables. For a table for more than three columns, each col-
umn thereafter is also included in the walk. The contextual cell’s
metadata is added along with the contextual cell. You can see
in Figure 1 the sentence is formed by traversing the row above,

following by the column to the right, row below, and finally the
column to the left, thus forming a circular pattern. For the cell
"Saturday Night Fever", the contextual sentence, Saturday Night
Fever, Album, Thriller, Album, Stayin’ Alive, Title, My World 2.0,
Album, Bees Gees, Artist, is formed. The sentences formed are
used to train our circular embeddings. Figure 2 demonstrates the
walk. The number of rows remains the same for all walks, as
walks are performed in triples, however the number of columns
pertains to the number of attribute-data pairs present in the table.
For example a table with at least three rows and exactly three
columns is shown in Figure 2. However, the number of columns
could increase, which would result in more horizontal contextual
terms being added to the walk.

Figure 2: Examples of "Circular Walks" Depending on the
Term Position.

3 METHODOLOGY
First we generate the training sets to train our circular embed-
dings by performing the circular walks in a manner defined in
Section 2 over each tuple in the training sets constructed for tu-
ple classification (see Section 4.3). The latter are composed from
sets of relational tables of a certain category 𝐸 extracted from T
(i.e. WDC or CORD-19 here) . Then we train a Neural Network
(a sequential model with an Embedding layer, Global Average
Pooling layer, and two dense layers on this generated training set
and extract the trained embedding layer. It has our "circular em-
bedding vectors", which are ready to use in a separately trained
model. To have state of the art baselines to compare against, we
fune-tuned the embeddings such as Word2Vec [24] and ELMo
[28] on the same training sets.

Next, we train several Neural Networks, already having these
pre-trained embeddings as an embedding layer, for our validation
task - binary tuple classification. We first load the pre-trained

2



embeddings layer, then train the model on the same training sets.
In Section 5, we compare performance of the model trained with
our circular embeddings used as an embedding layer against the
same model, but pre-loaded with the baseline embedding layers
and then trained for the same task.

Neural Network Architecture:We used an Artificial Neural
Network (ANN) - a feed-forward Multi-Layer Perceptron (MLP)
[3], for our models, because of its known top performance on
short text documents [2, 3]. The first layer is the Keras Embedding
layer [11] and is pre-loaded either with the standard - Word2Vec,
ELMo or our circular embeddings; the 2nd layer is Global Average
Pooling, followed by 2 dense layers.

Evaluation Architecture:We used twoWeb-scale structured
datasets to train and evaluate our embeddings and models -WDC,
havingmore than 15Million relational EnglishWeb tables coming
from more than 248 thousand Web sources [20] and CORD-19
[32], composed of more than 300,000 medical papers on COVID-
19, altogether having more than 1.5 Million medical research
tables.

Figure 3: Scalable Experimental Evaluation Architecture.
Our scalable evaluation architecture components are depicted

in Figure 3. WDC and CORD-19 datasets are stored in sharded
MongoDB - a scalable distributed JSON storage [1]. The JSON
data from MongoDB is converted and ingested into a parallel
column store [31] for further efficient query processing. Col-
umn stores are known to be efficient in processing the queries
having selection conditions on columns, which turns out to be
the most popular workload pattern for sampling and training
data generation queries. The training data generation box corre-
sponds to selection queries, slicing the dataset by source, sets of
attributes, and patterns in order to produce the training sets for
the next step. The Machine/Deep Learning Training and Classifi-
cation boxes correspond to training the Neural Networks with
different embedding layers using TensorFlow [4] and further clas-
sification of the test sets using these models. The classification
step produces 𝑁 categories (e.g. COVID-19 vaccine side-effects,
jobs, songs, etc) that can be examined by the user using the
"interactive visualization component".
Hardware: For training and validation we used P3dn.24xlarge
Amazon AWS EC2 instances having 96 Intel Xeon CPUs, 8 NVidia
Tesla V100 Tensor Core GPUs, and 768GB or RAM.

4 TRAINING EMBEDDINGS AND MODELS
4.1 Training Circular Embeddings
First we generate the training sets to train our circular embed-
dings by performing the circular walks in a manner defined in
Section 2 over each tuple in the training sets constructed for tuple
classification (see Section 4.3). The latter are composed from sets
of relational tables of a certain category 𝐸 extracted from T (i.e.
WDC or CORD-19 here) . Then we train a Neural Network (a

sequential Keras model with an Embedding layer [11]) on this
generated training set and extract the trained embedding layer. It
has the trained "circular embedding vectors", which are ready to
use. To have state of the art baselines to compare against, we also
fune-tuned the most popular NLP embeddings such as Word2Vec
[24] and ELMo [28] on the same training sets.

Next, we train several Neural Networks, already having these
pre-trained embeddings as an embedding layer, for binary tuple
classification. We first load the pre-trained embeddings layer,
then train the model on the same training sets. In Section 5, we
compare performance of the model trained with our circular
embeddings used as an embedding layer against the same model,
but pre-loaded with the baseline embedding layers.

4.2 Training the Models
We are training two kinds of models, where the feature vector
includes and excludes tuple attribute names (metadata). We refer
to them as "with" and "without" metadata further below. The
models trained without metadata are useful for classifying tables
with missing metadata. In some cases, we also observed them
outperform models trained with metadata, more details will be
discussed below.

The feature vector for models trained with metadata includes
both the attribute names and a sequence of all attribute val-
ues from the tuple. The models marked "without metadata" are
trained using feature vectors having no attribute names, just
a sequence of the attribute values from the tuples. All models
are binary classifiers, i.e. are trained to recognize only one tuple
category (e.g. Books).

4.3 Homogeneous Training Sets
An algorithm generating training sets requires only one sample
table from a known large source to initialize for a category of
interest. All further steps are unsupervised, i.e. do not need any
human intervention. All tables with the same attribute set are
extracted from that source and used as a positively labeled homo-
geneous training set. For example, for Books, ≈362K tuples can
be extracted from Amazon.com by following this approach. For
categories, heavily represented in at least one large source, this
method results in a large amount of clean training data with one
fixed attribute set. Hence, we call it homogeneous training set.

Negatively labeled training data of the same size (to ensure
the training set is balanced) is drawn uniformly at random from
other sources in WDC or CORD-19, excluding the sources used
for positively labeled data. We observed that this method to
balance the training set works well for large-scale datasets and
used it to create 20 large-scale balanced training sets each having
more than ≈4K tuples per set. We created such training sets for
20 different categories, purposely from a variety of application
domains (i.e. COVID-19 Side-effects, COVID-19 impact on Mental
health, COVID-19 impact on fertility, Job postings, Patents, Books,
Cars, Cities, and other) present inWDC and CORD-19 to evaluate
our models and embeddings and also validate generality of our
approach.

4.4 Heterogeneous Test Sets
For evaluation of generalizability of our trained embeddings and
models we first drew 20 uniform samples from WDC and CORD-
19, one per category, then hired two independent annotators
to manually label these heterogeneous test sets. The test sets
have 500 labeled tables per category - 50% positive, 50% negative

3



Models Circular Embeddings Word2Vec ELMo
With Metadata W/Out Metadata With Metadata W/Out Metadata With Metadata W/Out Metadata

Songs 88%, 87%, 88% 66%, 96%, 78% 9%, 7%, 8% 53%, 11%, 18% 80%, 84%, 82% 68%, 77%, 72%
Books 100%, 34%, 51% 78%, 52%, 62% 100%, 33%, 50% 83%, 51%, 63% 61%, 64%, 62% 54%, 57%, 51%
Cities 99%, 95%, 97% 91%, 72%, 81% 96%, 95%, 95% 86%, 60%, 71% 51%, 54%, 52% 53%, 67%, 52%
𝐴𝑣𝑒𝑟𝑎𝑔𝑒20 97.6%, 74%, 80.6% 80.3%, 75.3%, 75.6% 63.3%, 40.6%, 46.3% 72%, 38.6%, 48.6% 70%, 54%, 61% 78%, 47%, 52%

Table 2: Precision/Recall/F-measure of Scalable Tuple Classification Models Trained with Circular, Word2Vec, and ELMo
Embeddings on WDC [20] and CORD-19 [32]. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒20 provides an average for 20 different categories from both datasets.

Models Metrics Balanced Pos./Neg. № of Unique Sources
With Metadata W/Out Metadata

Songs 46k 88%, 87%, 88% 66%, 96%, 78% yes 58
Songs 46k 53%, 3%, 40% 66%, 26%, 38% no 62
Songs 67k 100%, 98%, 99% 64%, 8%, 14% yes 67
Songs 420k 71%, 46%, 56% 72%, 9%, 16% yes 43
Songs 600k 57%, 51%, 54% 72%, 34%, 46% yes 52

Table 3: Precision/Recall/F-measure of Scalable Songs Tuple Classification Models Trained with Circular Embeddings using
Training Sets Composed from Different Number of Sources in WDC [20].

Embeddings Time to Train
Word2Vec: Cities (800k) 125 Minutes
Circular Embeddings: Cities (800k) 23 Hours

Table 4: Time to Train Circular and Baseline Embeddings
for WDC Cities.

labels, since it is infeasible (and unnecessary) to manually label
large-scale datasets such as WDC. Since, labeling is known to
be expensive and time consuming, it is understood that it is
infeasible to create such test sets for all categories in WDC and
CORD-19.

To ensure that the models are not overfitting and to preserve
fair evaluation on the test sets, unseen before, none of the models
were trained on the test sets, which were instead used exclusively
for evaluation. To create the test sets representative of both WDC
and CORD-19, two uniform samples were drawn per category.
The first sample, used by two independent annotators to pro-
duce the positively labeled instances, was obtained by taking a
uniform sample from the entire dataset. For example, one out of
every N tables starting from the beginning of the dataset. N was
chosen to ensure the annotators get enough data to produce 250
positive labels. The negative data of the same size was obtained
by similarly taking a uniform sample, so that the annotators can
produce 250 negative labels. The overlap with the training data
was avoided by excluding the training data source. To exclude all
incorrect labels, whenever two annotators disagreed, the label
was discarded.

Such heterogeneous test set has a much wider variety of table
representations within the category, because it was purposely
drawn from the entire dataset composed from hundreds of thou-
sands of sources. Hence, we expect it to be a more "challenging"
for our models, but also more indicative of their real-world perfor-
mance and generalizability. In other words, we expect it should
be harder for a model with embeddings to perform well on the
heterogeneous test set having a variety of different table repre-
sentations of a certain category, compared to a homogeneous test
set having just one static representation (i.e. the same attribute
set). We created such test sets for 20 different categories from
different application domains and report in Tables 2,3 Precision,
Recall, and F-measure of models, trained with our circular and
baseline embeddings, evaluated on all these different test sets.

5 EXPERIMENTAL EVALUATION
We evaluated our embeddings on tables from WDC [20] and
CORD-19 [32], on 20 various table categories. To measure the
performance of our circular embeddings we conducted baseline
experiments with the state of the art Word2Vec [24] and ELMo
[28] embeddings for comparison. We report a substantial gain in
F-Measure of up to 34.4%2 due to the usage of our circular embed-
dings. We also see that some categories completely failed when
using standard state of the art embeddings (i.e. Songs Word2Vec
with Metadata has 8% F-Measure, which is very low).

Table 2 illustrates Precision/Recall/F-Measure we got for mod-
els trained to recognize Songs, Books, Cities tuples with our em-
beddings versus models with Word2Vec or ELMo embeddings.
Note that the 𝐴𝑣𝑒𝑟𝑎𝑔𝑒20 row is calculated for 20 different cate-
gories from both datasets, excluded from Table 2, not just for the
three categories reported above. Each experiment has a model
trainedwith andwithoutmetadata. The training set used for Songs
contained a wide variety of sources, which led to better general-
ization of the trained Neural Network model with our circular
embeddings. We observed with Books that the F-measure tended
to be lower due to poor generalization, because of lesser variety
in the training set. Cities performed the best as the training set
had a substantial variety of data from many sources.

Table 3 demonstrates more experiments conducted for Songs,
when varying the number of sources used to compose the training
set. We started training our embeddings with a training set that
lacked heterogeneity, and found as we increased the number
of unique sources that we used to compose it, the performance
improved. We also noticed that increasing just the size of the
training set did not necessarily increase performance as metrics
lacked for the models trained with our embeddings on Songs 420k
and 600k training sets, having 420,000 and 600,000 song tuples
respectively.

Finally, we also conducted 20 experiments to compare the time
it takes to train our circular embeddings, compared to Word2Vec.
We observed the training time was the same for all 20 categories,
so we report it for one of the categories - Cities in Table 3. We
can see the difference is substantial - training Word2Vec is 11
faster than our circular embeddings. Classification was both very
2Table 2:𝐴𝑣𝑒𝑟𝑎𝑔𝑒20 - 20 models trained/averaged with our circular embeddings
versus with Word2Vec embeddings.

4



fast (under one second) for both regular and circular embeddings.
For training and validation we used P3dn.24xlarge Amazon AWS
EC2 instances having 96 Intel Xeon CPUs, 8 NVidia Tesla V100
Tensor Core GPUs, and 768GB or RAM.
6 RELATEDWORK
The authors in [9] construct embeddings from structured data
specifically purposed for data integration tasks. Our embeddings
are designed to scale up table classification, which is very differ-
ent from data integration tasks. Our algorithm ("circular walk") to
generate a "sentence", used to train the embeddings fully embod-
ies 2D context around a cell in a table, which leads to substantial
gains in generalization, hence table classification accuracy at
Web scale. The sentence generation algorithm in [9] uses a graph,
constructed per entity found in tables (i.e. Paul in Figure 1). It
does not take into account vertical (contextual cells in the same
column) context or metadata, which play significant role in Web-
scale datasets and omitting this information negatively affects
generalization ability of the trained models.

TABERT [33] trains a Language Model (LM) on Wikitables
and shows it outperforming NLP BERT [15] on two benchmarks
- SPIDER text-to-SQL [34] and WikiTableQuestions, "where a
system has to infer latent DBqueries from its execution results"
[25]. Both benchmarks are substantially different fromWeb-scale
table classification that we focus on. Finally, "TABERT linearizes
the structure of tables to be compatible with a Transformer-based
BERT model", which wipes out 2D context, present in a table.

TAPAS [19] and is a weakly-supervised question answering
model trained over tabular data. Both the target task and eval-
uation datasets - conversational SQA, WikiSQL, WikiTQ are
substantially different fromWEb-scale table classification as well
as our evaluation datasets.

TURL [14] - a structure aware transformer encoder, trained
and evaluated on tasks for table understanding, such as relation
extraction, row population, cell filling, schema augmentation, en-
tity linking, column type annotation. All of them are substantially
different from table classification at Web-scale. Finally, TURL is a
transformer encoder, which is quite different from the embedding
layer in a Deep-Learning model for scalable table classification
that we are constructing.

7 CONCLUSION
We introduced, defined, and evaluated new circular embeddings,
specifically designed for structured data on twoWeb-scale datasets
- WDC [20] having hundreds of millions of tables and CORD-19
[32] having 1.5 million tables from hundreds of thousands of
sources. Compared to the state of the art baseline embeddings,
we report a gain in F-Measure of up to 34.4% on a downstream
tuple classification task. We also report that not only our average
classification accuracy of structured tuples is higher, but also clas-
sification of some categories of tuples completely failed when we
used state of the art baselines. This justifies our initial hypothesis
that 2D context, inherent to structured data and embodied by
our embeddings is valuable.

REFERENCES
[1] online: http://www.mongodb.com.
[2] When to use mlp cnn and rnn neural net-

works. https://machinelearningmastery.com/
when-to-use-mlp-cnn-and-rnn-neural-networks/.

[3] Multilayer perceptrons for classification and regression. Neurocomputing,
2(5):183–197, 1991.

[4] M. Abadi. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[5] Z. Abedjan, J. Morcos, M. Gubanov, I. F. Ilyas, M. Stonebraker, P. Papotti, and
M. Ouzzani. Dataxformer: Leveraging the web for semantic transformations.
In CIDR, 2014.

[6] H. S. Alex Judea and S. Brügmann. Unsupervised training set generation for
automatic acquisition of technical terminology in patents. In ICCL, 2014.

[7] P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer
mappings. In SIGMOD ’07, pages 1–12, New York, NY, USA, 2007. ACM Press.

[8] F. Camastra and A. Vinciarelli. Machine learning for audio, image and video
analysis.

[9] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan. Creating embeddings
of heterogeneous relational datasets for data integration tasks. In SIGMOD,
2020.

[10] S. Cen, H. Zhang, Y. Chi, W. Chen, and T. Liu. Convergence of distributed
stochastic variance reduced methods without sampling extra data. CoRR,
abs/1905.12648, 2019.

[11] F. Chollet. Keras. https://keras.io, 2015.
[12] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara:

A data cleaning system powered by knowledge bases and crowdsourcing. In
SIGMOD, 2015.

[13] E. F. Codd. A relational model of data for large shared data banks. CACM,
26(1):64–69, Jan. 1983.

[14] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu. Turl: Table understanding through
representation learning. Proc. VLDB Endow., 14(3):307–319, nov 2020.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In arXiv:1810.04805v2,
2019.

[16] X. Dong and A. Y. Halevy. Malleable schemas: A preliminary report. InWebDB
’05, 2005.

[17] Gentile, A. Lisa, P. Ristoski, S. Eckel, D. Ritze, andH. Paulheim. Entitymatching
on web tables: a table embeddings approach for blocking. In EDBT, 2017.

[18] M. N. Gubanov, P. A. Bernstein, and A. Moshchuk. Metadata management
engine for data integration with reverse-engineering support. In ICDE, 2008.

[19] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. Eisenschlos. TaPas: Weakly
supervised table parsing via pre-training. In ACL, July 2020.

[20] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A large public corpus of
web tables containing time and context metadata. In J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, editors, WWW, 2016.

[21] J. Madhavan, P. A. Bernstein, K. Chen, A. Halevy, and P. Shenoy. Corpus-based
schema matching. In IJCAI, 2003.

[22] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based schema
matching. In ICDE, 2005.

[23] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: a programming platform for
generic model management. In SIGMOD, 2003.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, 2013.

[25] P. Pasupat and P. Liang. Compositional semantic parsing on semi-structured
tables. In ACL, pages 1470–1480, Beijing, China, July 2015. Association for
Computational Linguistics.

[26] S. Pavia, R. Khan, A. Pyayt, and M. Gubanov. Learning tabular embeddings at
web scale. In BigData. IEEE, 2021.

[27] S. Pavia, R. Khan, A. Pyayt, and M. Gubanov. Towards unveiling dark web
structured data. In BigData. IEEE, 2021.

[28] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. In arXiv:1802.05365v2,
2018.

[29] R. Pottinger and P. A. Bernstein. Merging models based on given correspon-
dences. In VLDB, 2003.

[30] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. VLDB JOURNAL, 10:2001, 2001.

[31] M. Stonebraker, D. Abadi, and A. B. et al. C-store: A column-oriented dbms.
In VLDB, 2005.

[32] L. L. Wang, K. Lo, and Y. C. et al. Cord-19: The covid-19 open research dataset.
In arXiv, cs.DL 2004.10706, 2020.

[33] P. Yin, G. Neubig, W.-t. Yih, and S. Riedel. TaBERT: Pretraining for joint
understanding of textual and tabular data. In ACL, pages 8413–8426, Online,
July 2020. Association for Computational Linguistics.

[34] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao,
S. Roman, Z. Zhang, and D. Radev. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In EMNLP, Oct.-Nov. 2018.

5

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://keras.io

	Abstract
	1 Introduction
	2 Definitions
	2.1 Large-scale Structured Datasets
	2.2 Tuple classification
	2.3 Embeddings and Circular Walk

	3 Methodology
	4 Training Embeddings and Models
	4.1 Training Circular Embeddings
	4.2 Training the Models
	4.3 Homogeneous Training Sets
	4.4 Heterogeneous Test Sets

	5 Experimental Evaluation
	6 Related work
	7 Conclusion
	References

