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ABSTRACT
Recommender systems are notoriously complex systems forwhich
providing a local explanation on why a certain item is proposed
to a specific user is still a challenging task. Most explanation
approaches focus on predicting the rating of items thereby min-
imizing some discrepancy with the real ratings by means of
traditional loss functions (e.g., sum of squares error). However,
most of the times, ratings may not fully embrace user preferences
concerning the ranking of items. To better embrace user pref-
erences, methods based on ranking losses have been proposed
either to recommend or to explain why an item is recommended.
Although effective at identifying the most prominent items, these
methods fail to capture a realistic value for the rating attached to
their explanation. This loss attached to the semantic of the recom-
mendation can in turn arm the trust of a user in the explanation.
In this paper, we propose and discuss experimental results of a
simple yet effective novel loss schema that balances ranking and
rating losses to provide a best of both world explanation.

1 INTRODUCTION
Recommender systems (RS) are decision systems that help users
to decide between several options or items. In their classical form,
RS are formalized as a function which inputs a user and an item
and whose final objective is to produce an ordered list of items,
otherwise called a permutation (or ranking), for this particular
user. As stated in [2], the scoring function at the core of each RS
can be expressed as follows:

𝑓 : 𝑈 × 𝐼 → R (1)

where 𝑈 is the set of users, 𝐼 is the set of items and R is the
definition domain of the scores as a totally ordered set.

These systems are ubiquitous in our everyday life and they
span numerous domains from entertainment [7, 10, 15] to more
high stakes domain such as medicine [19]. However, as these
systems rely on complex models such as matrix factorization
or deep learning methods optimizing complex loss functions
[14, 22], it is very difficult for the end user to get the rationale
for a particular recommendation.

As a consequence, as noted by [24], this non-transparency of
RS (termed as black-boxes) and new regulation such as GDPR and
its “right to explanation” call for the development of explainable
recommender systems (denoted as XRS hereafter). [20] identify
6 main objectives for XRS as it might: improve the adequacy of
retrieved items to user interests and facilitate the whole process
((i) effectiveness, (ii) efficiency, (iii) satisfaction), persuade users
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to access / buy new items ((iv) persuasiveness), reinforce confi-
dence in the RS ((v) trust), and finally make the rationale of each
recommendation more explicit to the user ((vi) transparency).

There exists a large field of study for XRS [23] ranging from
intrinsic methods - improving a RS by enriching its ordered
list of items with an explanation - to post-hoc model agnostic
approaches - whose goal is solely to generate explanations based
on the output of an external RS.

In the present work, we are interested in post-hocmodel agnos-
tic explanation models, following the extension of the traditional
LIME approach [18] to the RS domain [4, 6, 17]. These systems
build a local surrogate model of a recommender system by deter-
mining a simple (generally a linear) relation between features of
an interpretable space composed of additional features qualifying
users and/or items. All these surrogate models are trained based
on a loss that minimizes the rating prediction error between the
ground truth as represented by the original user-item matrix
and the output of the surrogate model. In the end, the weights
attached to the interpretable features of the surrogate model are
the expected local explanation for a specific user-item rating.

Interestingly, we have shown in [4] that it is possible to im-
prove the relevance of these explainer systems, i.e. their ability
to discover the important interpretable features, by replacing the
rating error loss by a pairwise ranking loss. This loss is based on
a cross-entropy measure that better preserves the order of the
items for a specific user rather than the actual ratings.

However, the observed discrepancy in the predicted ratings,
even if the identified features are correct, induces a loss in the
semantic attached to the recommendation and thus may hamper
the trust in the system. This mechanism is studied in [12] where
an explanation should be faithful to the model it explains (in
our case minimizing the rating error) while being plausible to
the users (in our case preserving ranking of items). Moreover, in
[4], we show that a simple sigmoid-based normalization of the
ratings, although effective, does not produce acceptable errors
compared to other post-hoc explainers based on rating loss.

For these reasons, we study in this paper the possibility to
improve the pairwise ranking loss and we contribute with a
simple yet effective regularization term to achieve a “best of both
world” optimization that maintains the relevance of interpretable
features as well as a reduced rating error.

The paper is organized as follows: Section 2 introduces the con-
clusions of [4] needed to understand the contribution presented
in Section 3. Finally, Section 4 presents promising preliminary
results and Section 5 concludes and discusses future works.

2 PREREQUISITES
In this section, we briefly describe the main principles behind
the post-hoc explanation approach for RS that we developed in
[4], and illustrated in Figure 1. We also position the contribution
with regard to recent counterfactual works on RS.



2.1 Problem statement
In [4, 6], we consider the case of an explanation instance
⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩ where the aim is to explain why the rating 𝑓 (𝑢, 𝑖) is
produced by the black-box 𝑓 for the user 𝑢 ∈ 𝑈 and item 𝑖 ∈ 𝐼 .

The idea of post-hoc explanation methods consists in training
a surrogate model 𝑔 defined in an interpretable feature space 𝑍 .

When 𝑔 is a simple linear model, explaining ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩ re-
duces to a regression problem where a loss L is minimized
between the black-box output 𝑓 (𝑢, 𝑖) and the surrogate model
𝑔 = w.𝜙 (𝑢, 𝑖), where 𝜙 : 𝑈 × 𝐼 → 𝑍 projects any user-item (𝑢, 𝑖)
into the interpretable feature space 𝑍 .

Considering that a training set T (𝑢 )
𝑡𝑟𝑎𝑖𝑛

⊂ 𝑍 is available, the
problem of determining the best explanation 𝑒𝑓 (𝑢, 𝑖) is formalized
as follows in [4]:

𝑒𝑓 (𝑢, 𝑖) = argmin
w∈R𝑛

∑︁
𝑧∈T (𝑢)

𝑡𝑟𝑎𝑖𝑛

(
𝑓 (𝜙−1 (𝑧)) −w.𝑧

)2
+ _∥w∥1 (2)

where the last term ∥w∥1 achieves the simplest explanation by
only retaining the most interesting features, acting as in a LASSO
regression model.

The core idea of [4] consists in replacing the pointwise loss of
Equation 2 by a pairwise loss that better captures the preferences
over items ranking rather than ratings for user 𝑢.

2.2 Introducing a pairwise loss
The main intuition of the pairwise loss proposed in [4] is that
if it is possible for a surrogate model 𝑔 to estimate the ratings,
then it is possible, considering the pair of training instances 𝑧𝑖
and 𝑧 𝑗 , 𝑖 ≠ 𝑗 from the training set T (𝑢 )

𝑡𝑟𝑎𝑖𝑛
to train 𝑔 so that the

ground truth in user-item matrix 𝑅 is preserved by the ratings
𝑔(𝑧𝑖 ) = w · 𝑧𝑖 and 𝑔(𝑧 𝑗 ) = w · 𝑧 𝑗 as estimated by the surrogate
model.

More precisely, it is possible to build a preference ground truth
for training instances 𝑧𝑖 and 𝑧 𝑗 by defining the target probability
that item 𝑖 is preferred to item 𝑗 for the black-box 𝑓 as:

𝑃 (𝑧𝑖 ≻𝑓 𝑧 𝑗 ) =
{

1 if 𝑓 (𝜙−1 (𝑧𝑖 )) > 𝑓 (𝜙−1 (𝑧 𝑗 ))
0 otherwise. (3)

Similarly, it is possible to express the probability that reflects
the preference over items 𝑖 ≠ 𝑗 for the same training instances
𝑧𝑖 and 𝑧 𝑗 for the surrogate model as follows:

𝑃 (𝑧𝑖 ≻w 𝑧 𝑗 ) =
1

1 + 𝑒 (w·𝑧𝑖−w·𝑧 𝑗 )
(4)

where the computation of estimated ratings w · 𝑧𝑖 for instance
𝑧𝑖 and w · 𝑧 𝑗 for instance 𝑧 𝑗 is similar to the linear explanation
model presented in the previous section.

Based on the previous two equations, it is possible to define
a new loss function that measures the discrepancy between the
ground truth probabilities and the surrogate probabilities, for any
recommender system 𝑓 and surrogate model 𝑔 over a training
set T (𝑢 )

𝑡𝑟𝑎𝑖𝑛
as follows:

L(𝑓 , 𝑔,T (𝑢 )
𝑡𝑟𝑎𝑖𝑛

) =
∑︁

(𝑧𝑖 ,𝑧 𝑗 ) ∈T (𝑢)
𝑡𝑟𝑎𝑖𝑛

𝐶 (𝑃 (𝑧𝑖 ≻𝑔 𝑧 𝑗 ), 𝑃 (𝑧𝑖 ≻𝑓 𝑧 𝑗 )) (5)

with 𝑧𝑖 and 𝑧 𝑗 are two instances drawn from T (𝑢 )
𝑡𝑟𝑎𝑖𝑛

and 𝐶 is a
cross-entropy defined as follows:

𝐶 (𝑆𝑖, 𝑗 , 𝑌𝑖, 𝑗 ) = −𝑌𝑖, 𝑗 𝑙𝑜𝑔(𝑆𝑖, 𝑗 ) − (1 − 𝑌𝑖, 𝑗 )𝑙𝑜𝑔(1 − 𝑆𝑖, 𝑗 ) (6)

where, for the sake of readability, we set 𝑆𝑖, 𝑗 = 𝑃 (𝑧𝑖 ≻w 𝑧 𝑗 )
and 𝑌𝑖, 𝑗 = 𝑃 (𝑧𝑖 ≻𝑓 𝑧 𝑗 ).

2.3 Implementation of the explainable RS
We detail here the main steps presented in [4] to implement such
an explanation system.

Definition of an interpretable feature space. This feature space
is a reduction of the original user-item ratings space. Here the
interpretable feature space is the set of items 𝐼\{𝑖} as illustrated in
Figure 1- (1). As such, this space allows for a simple representation
of any user over a set of directly understandable dimensions,
without the need for external metadata.

Setting a training set for the surrogate model. Although several
types of locality definitions are envisioned such as clustering or
gradual perturbations on ratings (Figure 1- (2)), the pointwise
and pairwise methods, named LIRE-P and LIRE-PP respectively,
(see Figure 1- (3)) relies on feature perturbations.

These perturbations are defined for an explanation instance
⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩ as random modifications of the values of the vector,
denoted tu, that corresponds to a projection of the row 𝑢 of the
user-itemmatrix 𝑅 in the interpretable space 𝐼 \{𝑖}. Perturbations
are based on a Gaussian distribution N(0, 𝜎 𝑗 ). The value of 𝜎 𝑗
for each item 𝑗 ≠ 𝑖 ∈ 𝐼 is computed as the average observed
deviation of all ratings in the training sample. Then, we model as
a Bernoulli process the chance to modify each non-zero element
of tu.

Figure 1: LIRE explanations [4] are presented in an inter-
pretable feature space (1), constructed locally (2) and using
a pairwise loss (3).

Implementation of the pairwise loss. In [4], the loss function in
Equation 5 is implemented and optimized as an improved 1-layer
RankNet [5] model without bias.

This RankNet architecture, during its training, inputs two
instances 𝑧𝑖 and 𝑧 𝑗 from the surrogate training set T (𝑢 )

𝑡𝑟𝑎𝑖𝑛
, then

re-adjusts its parameters w which are feature weights so that the
corresponding score for each instance, w · 𝑧𝑖 and w · 𝑧 𝑗 , does not
violate the pairwise preference relation implied by the black-box
ratings.

Interestingly, in [4], we add to this generic 1-layer RankNet
model a sigmoid activation function ensuring that the computed
scoresw ·𝑧𝑖 andw ·𝑧 𝑗 are constrained in the range of the use case.



This activation function 𝑔(𝑟 ) is traditionally defined as follows:

𝑔(𝑟 ) = 1
1 + 𝑒−𝑟 ,∀𝑟 ∈ R (7)

2.4 Positionning
Explanations for RS should help users better understand why
an item has been recommended, or qualities of items to decide
whether to accept them or not [20]. One way to achieve the best
faithfulness to RS is to develop intrinsic models [23]. Such as [1],
tailored to match more specifically matrix factorization models ,
or [8] focusing on Bayesian Pairwise Recommendations, while
taking care of the exposure bias of these models.

In this paper we focus on model-agnostic post-hoc local ex-
planation models such as LIME-RS [3, 17], a direct adaptation
of LIME [18] to RS, where each cell of the user-item matrix is
encoded as a 1-hot vector decomposed in three parts: user, item
and metadata information. This design causes multiple weak-
nesses, noticeably results depend on the availability and quality
of metadata information. In our method, we only rely on the user-
item matrix used to train the RS without the need for external
data. Moreover, in order to be also plausible [12] to the user, we
aim at optimizing the ranking of all items while simultaneously
improving faithfulness to the original ratings.

One way to further explain RS is to produce counterfactual
explanations [21], i.e. to determine the minimal set of scored
items or actions that if not undertaken by the user, would have
changed the recommendation. [9] present a method that operates
on heterogeneous information networks (HIN), that are graphs
representing users and items (nodes) and several types of actions
(edges) and for which explanations are computed as randomwalk
inspired by PageRank-like scores. This approach needs all RS
training data (all available user item interactions) and can only
work within the HIN formalism. In [13], authors propose to limit
the accessed data and adapt the counterfactual explanation to
any RS as in our case. Their model relies on heuristics to explore
efficiently the powerset of user actions based on a time budget.
However, in collaborative RS settings, their solution should also
take into account actions of other users to explain why a recom-
mendation was made to a user. In this case, the size of the set of
possible interventions explodes becoming intractable.

This still justifies the need for approximate methods like ours
that provide a rationalization of plausible explanations. These
approximations can be more efficiently computed and already
take into consideration possible relations between users and
items and are thus more aligned with collaborative RS.

3 CONTRIBUTION
In [4], it is shown that, while normalization greatly helps to
reduce the error on the predicted ratings, this error remains too
high to fully capture the semantics attached to the ratings.

Our contribution aims at preserving the high interpretable fea-
ture relevance of the pairwise explainer proposed in [4], while im-
proving its ability to correctly estimate the ground truth ratings
so as to maintain the semantic attached to the recommendation.

Interestingly, in [16], regularization of neural networks ar-
chitecture is discussed as a mean to preserve generalization and
avoid overfitting. According to the findings of this paper, it seems
more beneficial to control regularization during training of the
neural network. The general schema of such regularization is
to add a penalty term LH to the standard loss function L. The
modified cost function LI is as follows:

LI = L + _LH (8)

where _ is a scalar that determines the influence of LH .
In this, our primary objective is not to reduce overfitting but

to gain an additional property to the produced explanation: (i) we
want our solution to rely primarily on the pairwise loss defined
in Equation 5, to preserve the ranking of interpretable features,
but (ii) we also aim at minimizing errors in the rating predictions
so as to reduce the semantic loss attached to our surrogate model.

For these reasons, we propose to set L as in Equation 5 and
to regularize with a penalty term derived from Equation 2, that
accounts for the error in the ratings. More precisely, as the main
term L of the loss relates to pairwise preferences, the second
term LH that accounts for errors in ratings should take care of
minimizing this error for both training instances 𝑧𝑖 and 𝑧 𝑗 as
follows:

LH =

(
𝑓 (𝜙−1 (𝑧𝑖 )) −w.𝑧𝑖

)2
+
(
𝑓 (𝜙−1 (𝑧 𝑗 )) −w.𝑧 𝑗

)2
(9)

Experiments section analyses to which extent, introducing a
regularization term can be beneficial to produce more meaningful
explanations.

4 EXPERIMENTS
This section describes the experiments conducted to assess the
effectiveness of our approach in terms of explanations quality
and the way our regularization impacts the behaviour of the
pairwise explanation algorithm. To do so, we have set up sev-
eral experiments reported hereafter that answer the following
research questions:

Q1 How our approach compares in terms of explanation “qual-
ity" with the approaches detailed in [4]? Noticeably, do
we reach a better balance between predicted rating error
and predicted interpretable features ranking as expected
by the introduction of a regularization term?

Q2 Does this approach still scale to larger datasets? As in [4],
we run a test on MovieLens 20M entries to evaluate the
impact of the regularization term on the performances.

Q3 How the value of hyper-parameter _ in Equation 8 impacts
the results?We run comparative experiments with parame-
ter _ ∈ {100, 50, 10, 5, 1, 0.8, 0.6, 0.4, 0.2, 0.010, 0.008, 0.006,
0.004, 0.002, 0} that ranges from a strong regularization of
the optimization towards the respect of rating errors, to a
situation where the optimization is only based on respect
of ranking preferences similar to the LIRE-PP algorithm
[4] described in Section 2.2.

We present hereafter our experimental protocol: the datasets,
the black-boxes, and finally the evaluation metrics.

4.1 Experimental protocol
Datasets. To ease the comparisons with [4, 6], we consider

the same 2 well-known datasets from MovieLens. Each dataset
describes 5-star ratings and free-text tagging activity fromMovie-
Lens website. We limit our main tests to the 100𝐾 MovieLens
dataset [11] with 610 users and 9, 724 items, as we aim at test-
ing several scenarios and parameters. An evaluation on the
MovieLens 20M entries dataset (20, 000, 263 ratings generated by
138, 493 users for 27, 278 movies) is done to attest that our newly
regularized approach can scale to larger volumes of data.



Black-boxes. In our setup, we want to determine to which
extent our method is able to identify correctly the most impor-
tant interpretable features as well as reducing the discrepancy in
the ratings prediction. To this end, we consider a linear white-
box model playing the role of the complex predictor. Similar to
[4, 6], the idea is to simulate a linear black-box recommender
system, for which we know by advance the relative weights of
the features and that can rate an item based on a weighted linear
combinations of scores on other items. Then, we expect a good
surrogate model to be able to learn a linear model very close to
this simulated “black-box”. Here, the objective is to challenge a
surrogate model in a controlled environment where it is possible
to precisely estimate to which extent relevant features are iden-
tified. Interestingly, the task of predicting ratings from a linear
black-box model, even if it is simpler than estimating the output
of a complex black-box RS, is still challenging for the pairwise
approach as reported by [4, 6]. More precisely, for a given expla-
nation instance ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩, we pick at random 10 items that are
evaluated by user 𝑢 (excluding item 𝑖). These items are assigned
random non-zero weights uniformly chosen in ]0, 1].

Evaluation metrics. Similar to [4, 6], in our tests, for each con-
figuration of parameter _, 50 explanations are produced to esti-
mate the evaluation metrics.

• the accuracy to the “black-box” model is computed as a
Mean Absolute Error (MAE) between the prediction of the
black-box and the prediction of the surrogate model in the
interpretable space;

• the recall is expressed as the ratio of features from the
white-box model 𝑓 that are discovered by the surrogate
model 𝑔 (i.e. features whose weights exceed 0 in the model
𝑔). With F being the set of features of a model, then the
𝑟𝑒𝑐𝑎𝑙𝑙 (𝑓 , 𝑔) is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑓 , 𝑔) = F (𝑓 ) ∩ F (𝑔)
F (𝑓 ) (10)

• the feature ranking quality considers the ordering of the
relevant features in the explanation. To achieve the com-
parison between the orders of features in the white-box
model and in the surrogate model, we use the Normalized
Discounted Cumulative Gain (NDCG) measure at rank 𝜌
(NDCG@𝜌) for values of 𝜌 ∈ {3, 5, 10}.

• the computation time is estimated in seconds as the
average duration for one explanation. All experiments
were conducted on a 512GB RAM RTX A6000 GPU paired
with dual xeon Gold 6240R processors.

4.2 Sensitivity to _ parameter value
Results of the first experiment are reported in Table 1 that
presents the average recall, ndcg@10, MAE and computation
times when varying the weight _ of the regularization term.
These scores are estimated over 50 distinct explanation instances.

First, it can be seen, as expected, that preference-based mea-
sure scores (recall and ndcg@10) increase as _ decreases. Indeed,
the higher _, the stronger the regularization of the ranking loss
based on the respect of true rating values. Note that when _ = 0,
the algorithm is similar to LIRE-PP. As a consequence, without
any regularization, our algorithm shows an even stronger limit
in capturing a credible rating, hence exhibiting a very large MAE
error around 6.671 as shown in Table 2.

Conversely, the value of _ does not seem to have a strong
impact on the MAE score (unless _ = 0, see Table 2). Interestingly,

this means that even a small regularization weight on the rating
errors is enough to counterbalance the influence of the pairwise
ranking term of the loss in Equation 8. This could be explained
by the fact that, as the ranking loss term is expressed as a cross-
entropy, its values are generally close to 0 (even if in theory not
bounded on its highest achievable scores). As a consequence, any
_ value for the second loss term, different from 0, may bring some
effective regularization.

Finally, computation times are also mostly invariant in our
tests when varying _. Interestingly, larger values of _ = 10 or
_ = 100 lead to an increase in the observed computation times.
This can be due to the loss function complexity that exhibits
more conflicting objectives for higher values of _. This, in turns,
may cause the optimization process to get stuck more often into
local solutions and thereby would need more restarts to find an
appropriate solution. We leave as future work an in depth study
of the relation between the loss function and _ as observed results
pertain to the data, the optimizer (ADAM in our case) and the
way it balances loss terms according to _.

From all these tests, we observed that introducing our new
regularization term can lead to substantial improvements of the
solution. For example, when _ = 0.0002 our approach captures
correctly user preference with very high scores (𝑟𝑒𝑐𝑎𝑙𝑙 = 0.794
and 𝑛𝑑𝑐𝑔@10 = 0.931) while minimizing the MAE error (𝑚𝑎𝑒 =
0.079). In following experiments, we set the value of _ = 0.0002.

4.3 Comparative experiments
Table 2 details comparative experiments between the pointwise
loss algorithm LIRE-P [4, 6] and 3 distinct pairwise loss configu-
rations: (i) with no sigmoid normalization denoted LIRE-PP-NS,
(ii) with sigmoid normalization denoted LIRE-PP and finally, (iii)
with our new error rating regularization term denoted LIRE-PP-R.
Interestingly, only LIRE-P and LIRE-PP are detailed originally
in [4], with only recall and ndcg@10 scores provided. As the
focus of the paper is on pairwise approaches, results from [4] for
LIRE-PP have been completed and re run on the same conditions
so as to assess a fair comparison. Scenarios (i) and (iii) are new
to this paper.

First, it can be seen from Table 2 that pointwise loss method
is unable to capture the user preferences as measured by recall
and ndcg@10 scores. Only pairwise methods achieve very good
performance in this regards.

Second, it can be observed that LIRE-PP-NS and LIRE-PP do
not achieve a good estimation of the real ratings that the black-
box outputs, hence causing very large MAE scores. Of course the
sigmoid normalization helps keeping rating errors under control
with a MAE of around 6.671 that is much below the score of
around 15 otherwise, but this is not enough to capture realistic
rating values. Only our novel LIRE-PP-R manages to minimize
the MAE score around 0.079 thanks to the new normalization.

Although, we notice the introduction of regularization drasti-
cally reduces standard deviation around MAE while preserving
low deviation around recall and ndcg@10 scores.

Finally, introducing a regularization term does not seem to
affect computation times as attested by the last column of Table 2.

4.4 Large scale analysis
Finally, Table 2 reports experiments on MovieLens with 20 mil-
lions ratings and for 50 explanations. It can be seen that, similarly
to LIRE-P and LIRE-PP [4], LIRE-PP-R can also run effectively
on larger size datasets. Moreover, the expected balance between



_ 100 10 1 0.2 0.01 0.002 0
Recall 0.516 ± 0.180 0.528 ± 0.170 0.604 ± 0.171 0.614 ± 0.157 0.794 ± 0.115 0.794 ± 0.113 0.810 ± 0.140
ndcg@10 0.687 ± 0.173 0.667 ± 0.148 0.742 ± 0.161 0.747 ± 0.141 0.869 ± 0.092 0.931 ± 0.054 0.933 ± 0.050
MAE 0.138 ± 0.123 0.125 ± 0.107 0.113 ± 0.108 0.202 ± 0.281 0.105 ± 0.110 0.079 ± 0.063 6.671 ± 4.563
Time (s.) 42.070 ± 0.953 38.841 ± 4.052 33.410 ± 1.999 33.944 ± 2.212 35.082 ± 2.649 34.405 ± 2.403 34.947 ± 2.425

Table 1: Sensitivity of our approach to the _ parameter value. Evaluation metrics are preference-based (recall and ndcg@10),
rating-based (MAE rating error) and time-based. Provided results are averaged over 50 runs.

Methods Recall ndcg@10 MAE Time (s.)
Lire-P 0.212 ± 0.206 0.255 ± 0.250 NA NA
LIRE-PP-NS 0.780 ± 0.231 0.861 ± 0.230 15.009 ± 4.304 37.079 ± 10.852
LIRE-PP [4] 0.810 ± 0.140 0.933 ± 0.050 6.671 ± 4.563 34.947 ± 2.425
LIRE-PP-R 0.794 ± 0.113 0.931 ± 0.054 0.079 ± 0.063 34.405 ± 2.403
LIRE-PP-R 20M 0.862 ± 0.109 0.942 ± 0.072 0.078 ± 0.150 51.173 ± 9.584

Table 2: Upper part: comparative results on the single white-box experiment. New proposed method LIRE-PP-R provides a
better balance between all evaluation criteria. Lower part: performance of our regularized LIRE-P Pairwise on Movielens
20M for _ = 0.002. Provided results are averaged over 50 runs.

accuracy and preference preservation is still achieved with very
good scores. Computation times show that real time explana-
tion may not yet be achieved by our method, since, on our test
machine, approximately 51 seconds are needed on average to
converge for a single explanation.

5 CONCLUSION
This paper improves an existing posthoc explainer for RS, named
LIRE-PP, based on a pairwise loss that preserves users relative
preferences between items at the cost of an incorrect estimation
of the true ratings for these items. We propose a new pairwise
regularization term to enrich the original loss. Experiments show
that the new RS explainer is now efficient in both item ranking
and item rating preservation and can still scale to larger datasets.
Future work should evaluate other regularization terms, test
other optimizers for the ranknet structure and other datasets.
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