
Metamodeling Variability to Enable
Requirements Reuse

Begoña Moros1, Cristina Vicente-Chicote2, Ambrosio Toval1

1Departamento de Informática y Sistemas
Universidad de Murcia, 30100 Espinardo (Murcia), Spain

{bmoros, atoval}@um.es
2 Departamento de Tecnologías de la Información y las Comunicaciones
Universidad Politécnica de Cartagena, 30202 Cartagena (Murcia), Spain

Cristina.Vicente@upct.es

Abstract. Model-Driven Software Development (MDSD) is recognized as a
very promising approach to deal with software complexity. The Requirements
Engineering community should be aware and take part of the Model-Driven
revolution, enabling and promoting the integration of requirements into the
MDSD life-cycle. As a first step to reach that goal, this paper proposes REMM,
a Requirements Engineering MetaModel, which provides variability modeling
mechanisms to enable requirements reuse. In addition, this paper also presents
the REMM-Studio graphical requirements modeling tool, aimed at easing the
definition of complex requirements models. This tool enables the specification
of (1) catalogs of reusable requirements models (modeling for reuse facet of the
tool), and (2) specific product requirements by reusing previously defined
requirements models (modeling by reuse facet of the tool).

Keywords: Model-Driven Software Development (MDSD), Requirements
Engineering (RE), Requirements MetaModel (REMM), Requirements Reuse,
Requirements Variability.

1 Introduction

Model-Driven Software Development (MDSD) aims at raising the level of abstraction
at which software is conceived, implemented, and evolved, in order to help managing
the inherent complexity of modern software-based systems. As recently stated in a
Forrester Research Inc. study “model-driven development will play a key role in the
future of software development; it is a promising technique for helping application
development managers address growing business complexity and demand” [1].

In this context, requirements should be considered first class entities and they
should be modeled in order to be integrated as part of the MDSD life cycle [2].
Modeling requirements involves selecting and adopting a requirements metamodel.
This metamodel must include all the concepts (and the relationships existing between
them) commonly appearing in a requirements specification process [3]. For instance,

Proceedings of EMMSAD 2008 141

the OMG standard SysML (Systems Modeling Language) [4] metamodel includes a
reduced set of concepts devoted to requirements modeling. In this line, some efforts
have been made to integrate textual requirements into model-driven approaches [5, 6].

On the other hand, the benefits of reuse to improve the software development
process productivity and the final product quality are very well known. Reuse can be
introduced at different stages during the software development process, from
requirements to design and implementation. However, the higher the level of
abstraction at which reuse takes place, the larger its benefits [7, 8]. Requirements
reuse can, therefore, provide significant gains in developmental productivity and in
the quality of the resulting software products [8]. Moreover, in a recent study
regarding current and future Requirements Engineering (RE) research trends [9],
requirements reuse has been pointed out as one of the most pressing needs and grand
challenges in RE research, which solutions are likely to have the greatest impact on
Software Engineering research and practice.

However, requirements reuse is often carried out in a non-systematic way [7, 10],
since requirements dependencies are not explicitly modeled in most cases. As a
consequence, when a requirement is reused, those requirements (or, more generally
speaking, those elements, e.g. stakeholders, test cases, documental sources, etc.)
related to it, might not be properly taken into account at reuse time [10]. This problem
could be easily overcome following a MDSD approach, whenever the adopted
requirements metamodel:
• Allows designers to explicitly model inter-requirements relationships together with

the traces existing between requirements and the rest of the elements involved in
the RE process.

• Provides one or more explicit reuse mechanisms, allowing requirements engineers
(1) to define assets of reusable requirements models (modeling for reuse), and
(2) to build a certain product requirements specification by reusing some of the
requirements previously defined (modeling by reuse). In the last case, when a
requirement is reused in a product specification, all the elements related to it (those
it depends on) can be easily incorporated to the specification. Besides, the
definition of inter-requirements traces (in particular, incompatibility dependencies)
makes it possible to identify and prevent many problems at reuse time.
Variability modeling is known to be essential for analyzing reuse strategies [11].

As a consequence, if a requirements metamodel needs to incorporate some kind of
reuse mechanism it must deal with variability in some way. The most widely accepted
approach for variability modeling in the RE field is the one based on feature
modeling [12]. However, the variability information captured in feature models is not
sufficient to represent, for instance, the variability related to requirements
dependencies [13]. Thus, some authors prefer to model variability directly within
requirements artifacts [14-16]. This is the approach we have taken in our proposal,
that is, to integrate requirements variability directly into the proposed requirements
metamodel. This metamodel, called REMM (Requirements Engineering MetaModel),
is aimed at modeling both catalogs of requirements for reuse and product
requirements by reuse. This metamodel, which will be later detailed in section 2, is a
first step to integrate reusable requirements in a MDSD approach. A graphical
modeling tool, called REMM-Studio, has been implemented on top of REMM to
support requirements modeling, reuse, and validation.

142 Proceedings of EMMSAD 2008

Before entering into details, the following sections outline the main contributions
of our proposal and some of our research background related to this work. Then, the
rest of the paper is organized as follows. Firstly, the proposed Requirements
Engineering MetaModel (REMM), defined to support requirements reuse, is
presented in section 2. Section 3 presents the REMM-Studio graphical modeling tool,
implemented to support the two facets of REMM, that is, defining catalogs of
reusable requirements models (modeling for reuse facet), and defining specific
product requirements by reusing predefined models (modeling by reuse facet). Then,
section 4 presents some related works regarding requirements reuse and variability
modeling in textual requirements. Finally, section 5 outlines some conclusions and
future research lines.

1.1. Contributions of the Proposal

In order to make clear our contribution, we enumerate next the main achievements of
our proposal, pointing out the differences with other approaches that will be later
commented in the related work section.
• The main goal of our research is to specify, validate and trace requirements models

to other software models using a Model-Driven approach. We consider this a major
contribution since most proposals linking models to requirements are rather Model-
Based (e.g. based on use cases [17], based on i* models [18], etc.) than Model-
Driven, as it follows from the very reduced number of publications related to
MDSD approaches appearing in the most relevant RE journals and conferences.

• Our MDSD proposal revolves around a Requirements Engineering MetaModel
(REMM) which, unlike other metamodels [5, 6, 19, 20], encompasses a
comprehensive set of RE concepts (e.g. requirements, stakeholders, test cases,
etc.), and relationships between them (e.g. extra- and inter-requirements traces), as
detailed in section 2.

• REMM has been recently extended with two different variability mechanisms to
enable requirements reuse. Firstly, REMM allows requirements engineers to define
optional requirements by means of OR parent-child traces, similarly to OR
decompositions of goals [21, 22]. Besides, REMM supports the definition of
parameterized requirements, enabling the inclusion of variability into textual
requirements specifications. Commonly, this kind of variability is modeled at
requirements level using separate feature models [23]. The main contributions in
this line, is that both variability mechanisms are provided by a unique metamodel
(REMM), in the line of [24]. This makes it possible: (1) to keep all the information
about the requirements and their variability points connected, and (2) to make
explicit the relationships between the requirements parameters (variability points)
by means of the explicit relationships existing between requirements. Thus, this
approach avoids the problems derived from having to keep consistent two
separated requirements and variability models.

• Finally, REMM is supported by a fully working tool, called REMM-Studio. This is
also a major contribution since most proposals remain at a theoretical level.
Furthermore, regarding current requirements management tools, they do not

Proceedings of EMMSAD 2008 143

support systematic requirements reuse [25, 26], and most of them neither
requirements variability specification [27, 28].
Once the main contributions of our proposal have been highlighted, the following

section briefly presents some of our research background in this line.

1.2. Research Background

To take advantage of the benefits of reuse at requirements level, our research group
proposed a reuse-based RE method called SIREN [29]. This method could be
considered both a document-based and a repository-based approach since it revolves
around a repository of reusable requirements catalogs. Each of these catalogs includes
a set of requirements specification documents, formatted according to the IEEE
standard templates. These catalogs contain a set of related requirements belonging to
the same profile –e.g. security [29], personal data protection [30], etc.– or to the same
domain –e.g. tele-operated systems [31]. Note that the definition of a domain catalog
is very close to the requirements specification of a software product line.

Requirements engineers may use the repository: (1) to improve the quality of its
catalogs by adding new requirements or improving the existing ones or (2) to reuse
the existing requirements in their current projects. The experience gained in the realm
of requirements reuse led us to define the key issues that, in our opinion, should be
taken into account for a reuse-based RE process to be successful [32].

On the other hand, due to the increasingly growing interest of the Software
Engineering Community in MDD technologies, and given the major relevance of the
RE process in software development, we are convinced of the great synergy that
could arise from integrating requirements into a MDD approach, which would
provide mutual benefits to the Software Engineering and to the Requirements
Engineering Communities [33]. In this context, a preliminary version of the
Requirements Engineering Meta-Model (REMM) and the supporting tool (REMM-
Studio) were already proposed in [34]. In this paper, we present an improved version
of both REMM and REMM-Studio, which now have been extended to support
requirements variability modeling, enabling requirements reuse. Therefore, the
document-based repository proposed in SIREN has evolved to a model-based
repository, allowing designers to partially or completely reusing requirements models.
For the sake of clarity and readability we have omitted some elements of the previous
version of REMM to focus on the new concepts regarding requirements reuse.

2 Extending REMM to Enable Variability Modeling

As previously stated, the Requirements Engineering MetaModel (REMM) presented
in this paper is an improved version of the one already introduced in [34]. REMM is
extended here to enable requirements reuse, covering the following new aspects:
• Both the modeling for reuse and the modeling by reuse facets must be provided by

REMM. This means that REMM must enable the construction of both reusable
requirements models and specific product requirements models.

144 Proceedings of EMMSAD 2008

• In addition, reusable requirements shall provide some kind of variability modeling
mechanism. To achieve this, we have provided REMM with the possibility of
defining parameterized requirements when modeling for reuse. Requirements
parameters shall be instantiated at reuse time when the parameterized requirement
is selected for its inclusion in a new product specification.
The central concept included in REMM to support requirements reuse is the

Repository. As it can be observed in Fig. 1, the repository contains
ReusableCatalogs, which include a set of related ReusableRequirements
belonging to the same CatalogType, i.e. a PROFILE or a DOMAIN, according to
the SIREN RE process (see section 1.2). These elements correspond to the modeling
for reuse facet of the metamodel.

On the other hand, the key element supporting the modeling by reuse facet of
REMM is the ProductCatalog. Product catalogs contain all the
ProductRequirements related to the specification of a new product. A product
requirement could be product specific or it can be reused from some of the
ReusableCatalogs available in the Repository. In this case, the product
requirement keeps a trace to its source ReusableRequirement (reusedFrom
association in the metamodel). This way, the original requirement specification can be
consulted at any time.

In order to model requirements variability, the specification of parameterized
requirements is allowed in ReusableCatalogs. A parameterized requirement is a
ReusableRequirement which contains one or more Parameters,
characterized by a name and a type. The type of the parameter could be a number
(NumberType), a string (StringType) or a value from an enumerated set of
values (EnumType). This allows designers to specify variation points where variants
can range from an infinite set of values (number or string types) to a finite one
(enumerations). In case the parameter type is an EnumType, the minimum and
maximum number of variants has to be established. By default, these attributes are
initialized to 1 and thus, just one of the EnumLiterals (from the EnumType) has
to be selected at instantiation time. The literals belonging to an EnumType could be
OPTIONAL or MANDATORY (mandatoryLevel) meaning that the variant has to
be included as part of any of the products defined from the reusable catalog or not.

Any reusable requirement stored in a repository could be selected at reuse time.
Nevertheless, we should pay special attention to those requirements defined with a
MANDATORY priority, which in the case of domain catalogs can be considered to
be the common requirements to be included in the specifications of all the products
belonging to the corresponding application domain.

Both reusable and product catalogs include not only requirements, but also the
Traces (relationships) existing between them. In this case, only two kind of traces
have been depicted in REMM: DependenceTrace (which type can be
REQUIRES, EXCLUDES, DEPENDS), and ParentChildTrace (which type can
be AND, OR). Readers can find a deeper explanation about these and other types of
traces considered in REMM in [34]. Here, we will just focus on the three modeling
improvements included in the new version of REMM regarding traces, which can be
summarized as follows:
• Requirements traces have been reorganized in a hierarchical way, i.e. all their

common aspects have been factorized in the abstract Trace class.

Proceedings of EMMSAD 2008 145

Fig. 1. REMM (Requirements Engineering MetaModel).

• Traces now include a rationale attribute aimed at specifying the reason for
including them into the catalog. This information could be very useful at reuse time
to decide whether a trace should be reused or not.

• DependenceTraces now include a new attribute called condition that
enables the specification of the condition under which the trace will exist. This
condition is especially relevant in the case of dependence traces between
parameterized requirements, since it helps establishing the relationship between the
values of the parameters.

Fig. 2. Conditional statement included in a EXCLUDES dependence trace.

146 Proceedings of EMMSAD 2008

For instance, as shown in Fig. 2, the condition included in the EXCLUDES
dependence trace between Req_1 and Req_2, establishes that if the system runs
Windows Vista, then the maximum available RAM can not be restricted to 128 MB.

The example shown in Fig. 3, presents a conditional dependence trace, which
involves the parameters defined both in the source and in the target requirements. In
this case, the condition states that if the selected operating system is Windows Vista,
then the system must have at least 500 MB of RAM available.

Fig. 3. Conditional statement included in a REQUIRES dependence trace.

3 Requirements Reuse in REMM-Studio

The first version of the REMM-Studio tool, already presented in [34], was aimed at
helping requirements engineers: (a) to build graphical requirements models, (b) to
validate them against REMM and against a set of additional OCL constraints, and (c)
to automatically generate navigable Software Requirements Specification (SRS)
documents from their models using the IEEE 830 template. For the sake of simplicity,
this paper will only address the improvements included in REMM-Studio to support
the new extended modeling capabilities of REMM regarding requirements reuse.

In this vein, the improved REMM-Studio tool presented here, provides two new
model editors, each one supporting one of the two facets or views included in REMM,
that is, (1) the definition of catalogs of reusable requirements models (modeling for
reuse facet), and (2) the specification of new product requirements by reusing
previously defined models (modeling by reuse facet). In order to illustrate the
modeling capabilities of these two model editors, a case study inspired in the
requirements specification for a HOme LIghting automation System (HOLIS2000)
presented in [35], will be used.

3.1 Tool Supporting the Modeling for Reuse Facet of REMM

As already explained in section 2, in REMM, the Repository is defined to contain
ReusableRequirements models organized in Catalogs, which store
requirements belonging to the same DOMAIN or PROFILE. Please note that REMM
DOMAIN catalogs can now provide full software product line requirements
specifications, since parameterized requirements are now available in the new version

Proceedings of EMMSAD 2008 147

of the metamodel. In this vein, the example repository shown in Fig. 4, presents an
example Catalog of reusable requirements models (some of them parameterized),
all belonging to the HOme LIghting automation Systems [35] DOMAIN (HOLIS
Catalog). The repository depicted in Fig. 4, also contains a Normative PROFILE
Catalog, which gathers requirements regarding copyrighting, licensing, legal
policies, etc. (Normative Catalog).

Variation points can be introduced in reusable requirements models by including
any number of Parameters in their specification (text attribute). Parameters must
be written into square brackets to help the tool automatically detect them and create
the corresponding parameter declarations, which will include the name of the
parameter (as declared in the requirements description) and also its type. For instance,
the [aNumber] parameter included in the description of Req_2 in the HOLIS Domain
Catalog, is declared to be of type Number, while the [formatTime] parameter included
in the description of Req_7 is declared to be of an enumerated type
Enum.FormatTimeType, which can take values {12h, 24 h} (see Fig. 4).

It is worth noting that for all parameters of an EnumType type, the minimum and
maximum number of EnumLiterals must be established. For instance, as shown in
Fig. 4, the [onLevel] parameter in Req_9 can take only one value from the set {20%,
30%, 40%}, while the [formatTime] parameter in Req_7 can take one or the two
values included in the set {12h, 24h}.

Fig. 4. REMM-Studio for reuse facet. Repository including an excerpt of the reusable
requirements models included in the HOLIS and the Normative Catalogs.

When defining reusable requirements models, inter-requirements Traces must be
defined. Examples of Dependence (REQUIRES and EXCLUDES) and
ParentChild (AND type) traces are shown in Fig. 4. The meaning of these traces is
widely described in [34], and their importance at reuse time will be further discussed
in the following section.

148 Proceedings of EMMSAD 2008

On saving the repository, requirements models are validated against REMM and
also against some extra constraints, some of them implemented as OCL rules, and
others as java boolean methods. For instance, the validation process assures that: all
requirements have unique identifiers; all parameters included in a reusable
requirement have a valid type and a unique name; all parameters included in a
requirement description have been specified in the parameter declaration section, and
vice versa, etc.

3.2 Tool Supporting the Modeling by Reuse Facet of REMM

When developing a new product, it seems quite a good idea to take a look at
previously developed solutions to find out if they provide any useful resource which
can be reused. This particularly applies when specifying new products requirements
since, as previously stated, the sooner reuse is applied during the development
process, the greater the benefits. Thus, in order to specify the requirements of a new
product, which will be stored in a ProductCatalog, the first step should be to find
out if our repository provides some suitable reusable requirements. To achieve this,
the tool supporting the modeling by reuse facet of REMM, allows requirements
engineers: (1) to load the repository and thus, to import any of the
ReusableRequirements stored in its catalogs, and (2) to depict new project
specific ProductRequirements from scratch.

Users can load the requirements models stored in the repository using the
contextual popup menu associated to the canvas of the modeling by reuse tool, which
represents the current product catalog (see Fig. 5).

Fig. 5. Contextual popup menu for the
current product catalog.

Fig. 6. Contextual popup menu for product
requirements.

New product requirements can be created (1) from a reusable requirement
specification imported from the already loaded repository, or (2) from scratch. In the
first case, the requirements engineer must select the reusable requirement that will be
used as the basis for the new product requirement specification (see Fig. 6). Then, a
dialog showing the content of the repository is opened (see Fig. 7), enabling the
selection of the reusable requirements contained in each catalog.

Proceedings of EMMSAD 2008 149

Fig. 7. Reusable requirements repository dialog at reuse time.

When a reusable requirement is selected, all those related to it by means of a
Dependence.REQUIRES or a ParentChild.AND trace, are also automatically
included in the current product catalog. Thus, inter-requirements relationships are
explicitly taken into account at reuse time. For instance, if Req_2 (with text “HOLIS
shall support up to [aNumber] of schedules”) is selected from the excerpt of the
HOLIS Catalog shown in Fig. 4, then all the other reusable requirements included in
this excerpt, except Req_9, will be also reused and included in the resulting product
catalog (see the result of this operation in Fig. 8). Please note that the new product
requirements built by reusing those defined in the HOLIS catalog keep a reference to
the original ones, but now have a different ID. The values of the rest of the attributes
are copied from the reusable requirement.

Fig. 8. Requirements model reused when selecting Req_1.

Parameterized reusable requirements must be instantiated when imported into a
product catalog. As shown in Fig. 8, the parameter [aNumber] in Req_1,
corresponding to the number of supported schedules, has been fixed to 256, and the
parameter [formatTime] in Req_6, corresponding to the clock format, takes the two
values in the set {12h, 24h}.

This tool also provides some model validation facilities on saving the product
catalog models. As before, the final product catalog is validated against REMM and
against some extra constraints. For instance, the validation process assures that: all
parameterized requirements have been instantiated; product catalogs do not contain
Dependence.EXCLUDES traces, neither product requirements created by reuse
from others related in the original reusable catalog by this kind of traces, since this

150 Proceedings of EMMSAD 2008

means they are incompatible for the same product. If incompatible reusable
requirements are detected, more detailed information about the problem can be
obtained selecting the Resolve Conflicts option available in the product catalog
contextual menu (see Fig. 5).

4 Related Work

This section describes some related research regarding variability modeling at
requirements level and the supporting tools. As stated in the introduction, all reuse
strategies should take variability into account. At requirements level, variability is
commonly tackled by means of one of the following approaches: (1) using feature
diagrams [23], (2) using goal-oriented models [21, 22], or (3) directly including the
variability into the textual requirements specifications [16, 36-38].

Regarding the inclusion of variability into textual requirements, the simplest way
to achieve it is to add certain keywords or phrases (e.g. either…or) into the
requirement statement. However, since this strategy does not prevent from ambiguous
requirements specifications [38], explicit variability modeling mechanisms have to be
provided. In this vein, the general approach consists of augmenting the textual
requirement specifications [16], either with textual constructs (e.g. framed with “<<”
“>>” [36], or XML tags [37, 38]), or simply extending the adopted requirements
specification template (e.g. the IEEE 830). These approaches have two main
drawbacks: (1) adding textual extensions negatively affect the readability of the
requirements specifications, and (2) there is not a direct and clear way to specify that
the selection of a requirement variant may have some influence on other
requirements. These problems could be overcome using a MDSD approach, since the
relationships between requirements, and also between requirements variants, could be
made explicit without contaminating the requirements specifications with any kind of
additional information.

As previously stated in the introduction, the use of feature diagrams [23] to model
requirements variants is not sufficient [13]. We agree with the authors who argue that
variability affects all the development stages and thus, it can be considered an
orthogonal concern [39]. However, although modeling variability in a separate way
may report some benefits, there are also some drawbacks, mainly: (1) keep all the
information consistent, and (2) weave the variability with other software artifacts
(and, in particular, with requirements), when needed. Explicitly modeling variability
as part of the requirements specification, as offered in REMM, avoids these problems.

Goal-oriented models enable the description of variability by capturing the
alternative ways by which stakeholders achieve their goals [21, 22]. As stated in [40],
goals can be ultimately represented or decomposed as regular requirements. As a
consequence, we have decided not to include them in REMM in order to keep the
metamodel as simple as possible without loosing expressiveness.

Given that our proposal is in the MDSD context, and that we aim at including
variability into our requirements metamodel, it is necessary to analyze whether there
exists a variability reference model or not. Unfortunately, there is not such a standard
variability model currently available, although some attempts towards its definition,

Proceedings of EMMSAD 2008 151

such as the so called Consolidated Variability Metamodel (CVM) [41], or the very
widely used Orthogonal Variability Model (OVM) [39], provide a good starting point.

Currently, Requirements Management Tools (RMT) do not support systematic
requirements reuse [26, 32], and most of them neither requirements variability
specification [27, 28]. Some approaches propose extending commercial RMT, e.g.
DOORS with variability mechanism [42], or RequisitePro, with reuse
capabilities [32]. Commonly, RMT focus on a single-project scope and the only reuse
mechanism they provide is some kind of “copy and paste”. However, just copying
requirements is not enough for a systematic reuse approach, since it does not take into
account the inter-requirements relationships, and the impact that selecting a certain
requirement variant may have into other requirements.

5 Conclusions and future work

This paper has presented a systematic requirements reuse approach based on a
Requirements Engineering Metamodel (REMM), which provides explicit variability
modeling mechanisms. As a result, variability information can be directly included in
the requirements models defined in terms of REMM, overcoming the limitations of
other approaches which deal with textual requirements.

Similarly to the Consolidated Variability Model, which separates variability
specification from resolution, REMM separates parameterized requirements definition
from product requirements instantiation. On the other hand, REMM incorporates all
the variability concepts defined in the Orthogonal Variability Model. Thus, OVM
variability points correspond to REMM parameterized requirements, while OVM
variants correspond to EnumType values defined in REMM. Correspondingly,
variability dependences (optional, mandatory) in OVM are specified in REMM for
each EnumLiteral of an EnumType, and the alternative choice in OVM corresponds to
the range {minimum…maximum} in REMM EnumTypes.

The REMM-Studio tool has been implemented to support the two modeling facets
of REMM, that is, its modeling for reuse facet and its modeling by reuse facet. As a
consequence, REMM-Studio supports requirements variability specification and also
requirements reuse. Unlike most current commercial requirements management tools,
which only support a “copy and paste” requirements reuse policy from one project to
another, REMM-Studio takes requirements dependences into account at reuse time
and supports variability specification by means of parameterized requirements.

We are currently working in the definition of model queries to help selecting
requirements from the repository. We are also working in a solution to provide
product catalog reuse, i.e. converting catalogs of product requirements (product
catalogs) into catalogs of reusable requirements (reusable catalogs). Finally, the main
goal of our research around REMM and REMM-Studio is to provide the means to
integrate requirements with other (high level) software development artifacts, that is,
to integrate requirements into a complete MDD approach. To achieve this we plan to
enrich REMM with some kind of forwards traces, probably to some domain specific
models.

152 Proceedings of EMMSAD 2008

Acknowledgments

This work has been partially funded by the Spanish CICYT projects DEDALO
(TIN2006-15175-C05-03, University of Murcia) and MEDWSA (TIN2006-15175-
C05-02, Technical University of Cartagena).

References

1. Lo Giudice, D.: The State Of Model-Driven Development. OMG Technical Meeting,
Brussels, Belgium (2007)

2. Champeau, J., Rochefort, E.: Model Engineering and Traceability. UML 2003. SIVOES-
MDA Workshop, San Francisco. California (2003)

3. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and Formatting. Journal of Object
Technology 6, no. 9 (2007) 437-454

4. OMG: OMG Systems Modeling Language (OMG SysMLTM) Specification. (2006)
5. Conrad, M., Fey, I., Buhr, K.: Integration of Requirements into Model-based Development.

AuRE'04 (in conjuntion with RE'04), Nanzan University, Nogoya, Japan (2004)
6. Schätz, B., Fleischmann, A., Geisberger, E., Pister, M.: Model-Based Requirements

Engineering with AutoRAID. Informatik 2005, Bonn, Germany (2005) 511-515
7. Shehata, M.S., Eberlein, A., Hoover, H.J.: Requirements Reuse and Feature Interaction

Management. ICSSEA'02, Paris, France (2002)
8. Cybulsky, J., Reed, K.: Requirements Classification and Reuse: Crossing Domains

Boundaries. 6th International Conference on Software Reuse (ICSR'2000). Springer, Lecture
Notes in Computer Science, Viena (2000) 190-210

9. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. ICSE'07,
Minneapolis, USA (2007) 285-303

10. Knethen, A.v., Paech, B., Kiedaisch, F., Houdek, F.: Systematic Requirements Recycling
through Abstraction and Traceability. RE'02, Essen, Germany (2002) 273-281

11. Liaskos, S., Jiang, L., Lapouchnian, A., Wang, Y., Yu, Y., Leite, J.C.S.d.P., Mylopoulos, J.:
Exploring the Dimensions of Variability: a Requirements Engineering Perspective. In: Pohl,
K., Heymans, P., Kang, K.-C., Metzger, A. (eds.): First International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS), Limerick, Ireland (2007)

12. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley Professional (2004)

13. Bühne, S., Lauenroth, K., Pohl, K.: Why is it not Sufficient to Model Requirements
Variability with Feature Models? : International Workshop on Automotive Requirements
Engineering (AuRE 2004) co-located at RE04, Nazan University, Nagoya, Japan (2004)

14. Bühne, S., Lauenroth, K., Pohl, K.: Modelling Requirements Variability across Product
Lines. 13th IEEE International Requirements Engineering Conference, Paris, France (2005)

15. Tavakoli-Kolagari, R., Reiser, M.-O.: Reusing Requirements: The Need for Extended
Variability Models. International Symposium on Fundamentals of Software Engineering
(FSEN 2007), Tehran, Iran (2007)

16. Capilla, R.: Variability Description in Requirements for Product Family Support.
International Workshop on Requirements Reuse in System Family Engineering. Co-located
with International Conference on Software Reuse, Madrid, Spain (2004)

17. Berenbach, B., Gall, M.: Toward a Unified Model for Requirements Engineering.
International Conference on Global Software Engineering (ICGSE 2006). IEEE Computer
Society, Costão do Santinho, Florianópolis, Brazil (2006)

Proceedings of EMMSAD 2008 153

18. Maiden, N.A.M., Manning, S., Jones, S., Greenwood, J.: Generating requirements from
systems models using patterns: a case study Requirements Engineering Journal 10 (2005)
276-288

19. Marschall, F., Schoenmakers, M.: Towards Model-Based Requirements Engineering for
Web-Enabled B2B Applications ECBS'03, Huntsville, AL, USA (2003)

20. Vogel, R., Mantell, K.: MDA adoption for a SME: evolution, not revolution - Phase II.
ECMDA 2006, Bilbao, Spain (2006)

21. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On Goal-based Variability
Acquisition and Analysis. 14th IEEE International Requirements Engineering Conference
(2006)

22. Bennasri, S., Souveyet, C., Rolland, C.: Modelling Variability in Requirements with Maps
ADVIS2004. LNCS 3261 (2004) 523-532

23. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, (1990)

24. Siegmund, N., Kuhlemann, M., Rosenmüller, M., Kaestner, C., Saake, G.: Integrated
Product Line Model for Semi-Automated Product Derivation Using Non-Functional
Properties. Second International Workshop on Variability Modelling of Software-intensive
Systems (VAMOS 2008), Essen, Germany (2008)

25. Toval, A., Moros, B., Nicolás, J., Lasheras, J.: Eight Key Issues for an Effective Reuse-
based Requirements Process. Computer Systems Science and Engineering ((accepted;
publication pending))

26. Matulevicius, R.: Process Support for Requirements Engineering. A Requirements
Engineering Tool Evaluation Approach. Department of Computer and Information Science.
Faculty of Information Technology, Mathematics and Electrical Engineering, Vol. Doktor
Ingeniør. Norwegian University of Science and Technology, Trondheim (2005)

27. Beuche, D., Birk, A., Dreier, H., Fleischmann, A., Galle, H., Heller, G., Janzen, D., John, I.,
Kolagari, R.T., Maßen, T.v.d., Wolfram, A.: Using Requirements Management Tools in
Software Product Line Engineering: The State of the Practice. SPLC'07 (2007)

28. Bass, L., Clements, P., Donohoe, P., McGregor, J., Northrop, L.: Fourth Product Line
Practice Workshop Report. CMU/SEI (2000)

29. Toval, A., Nicolás, J., Moros, B., García, F.: Requirements Reuse for Improving
Information Systems Security: A Practicioner's Approach. Requirements Engineering
Journal. Springer 6 (2002) 205-219

30. Toval, A., Olmos, A., Piattini, M.: Legal Requirements Reuse: A Critical Success Factor for
Requirements Quality and Personal Data Protection. In: Press, I.C. (ed.): IEEE Joint
International Conference on Requirements Engineering (ICRE'02 and RE'02), Essen,
Alemania (2002) 9-13

31. Nicolás, J., Lasheras, J., Toval, A., Ortiz, F.J., Álvarez, B.: A Collaborative Learning
Experience in Modelling the Requirements of Teleoperated Systems for Ship Hull
Maintenance. LSO+RE 2006, Hannover. Germany (2006)

32. Toval, A., Moros, B., Nicolás, J., Lasheras, J.: Eight key issues for an effective reuse-based
requirements process. Paper accepted in the International Journal of Computer Systems
Science and Engineering, publication pending (2007)

33. Moros, B., Vicente-Chicote, C., Toval, A.: A Model-Driven Engineering Approach to
Requirements Engineering: How These Disciplines May Benefit Each Other. 2nd
International Conference on Software and Data Technologies (ICSOFT 2007), Barcelona,
Spain (2007)

34. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and Formatting. Journal of Object
Technology (JOT) 6 (2007)

154 Proceedings of EMMSAD 2008

35. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Use Case Approach,
Second Edition. Addison Wesley (2003)

36. Schmid, K., John, I.: A Practical Approach To Full-Life Cycle Variability Management.
International Workshop on Software Variability Management (SVM 2003), Portland, Or.
(2003)

37. John, I., Muthig, D.: Product Line Modeling with Generic Use Cases. SPLC-2 Workshop on
Techniques for Exploiting Commonality Through Variability Management, Second
Software Product Line Conference, San Diego (2002)

38. Pohl, K., Weyer, T.: Documenting Variability in Requirements Artefacts. In: Pohl, K.,
Böckle, G., Linden, F.v.d. (eds.): Software Product Line Engineering. Foundations,
Principles and Techniques. Springer (2005)

39. Lauenroth, K., Pohl, K.: Principles of Variability. In: Pohl, K., Böckle, G., Linden, F.v.d.
(eds.): Software Product Line Engineering. Foundations, Principles and Techniques.
Springer (2005)

40. Kaindl, H., Smialek, M., Svetinovic, D., Ambroziewicz, A., Bojarski, J., Nowakowski, W.,
Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J., Mukasa, K., Wolter, K., Krebs, T.:
Requirements Specification Language Definition - Defining the ReDSeeDS Languages,
Institute of Computer Technology, Vienna University of Technology (2007)

41. Bayer, J., Gerard, S., Haugen, O., Mansell, J., Moller-Pederson, B., Oldevik, J., Tessier, P.,
Thibault, J.-P., Widen, T.: Consolidated Product Line Variability Modeling. In: Timo
Käköla, J.C.D. (ed.): Software Product Lines. Research Issues in Engineering and
Management. Springer (2006)

42. Schmid, K., Krennrich, K., Eisenbarth, M.: Requirements Management for Product Lines:
Extending Professional Tools. SPLC'06 (2006)

