A Modeling Methodology for Empirically Studying User
Behavior: The Case of UML Diagram Usage

Gay Costain, g.costain@auckland.ac.nz,
Ananth Srinivasan, a.srinivasan@auckland.ac.nz

Information Systems and Operations Management
University of Auckland Business School
Auckland, New Zealand

Abstract. The use of UML diagrams and associated methoddougiethe
development of software applications has, on theeleand been presented as a
standard, while on the other hand has been cetictey empiricists who have
actually studied its usage. In this paper, we diesa useful empirical method
to analyze data about the nature, extent, andtyualicognitive support that
the use of UML diagrams provides to a software per. The data was
collected and analyzed in a controlled experimerdatup from both
experienced and novice users. Our approach to singlgata in this study has
the potential for wide applicability in empiricahldation studies where focus
on the process of usage is important.

Keywords: software development; unified modeling language M
cognition

1 Introduction, Background, and Research Aims

Does the Unified Modeling Language (UML) suppore tognitive efforts of
software developers? UML was made a standard bytiject Management Group
(OMG) in November 1997 [20, 26] yet no empiricadearch has justified that choice.
Some experimental work suggests that UML may irt fa& a counter productive
methodology for software developers (e.g. [40, 41])

The authors of UML intended it to be a modelinggiaage to support object-
oriented (OO) analysis and design [4]. They belietleat modeling is central to all
activities leading up to the deployment of goodtwafe. A UML diagram may
represent an abstraction of a program’s source sotlgion, and the source code
forms a textural model for the executable progr@@ developers were found by
survey [11, 19, 21] to strongly believe in the aueges of OO Software
Development (OOSD) and even non-OO developers Viened to have fairly
positive perceptions. If users believe that OOSihésmost advantageous method for
software development, it is important that a stattdaodeling language, devised to

56 Proceedings of EMMSAD 2008

aid that development, fulfils its promise. The safte development industry was
canvassed for input into the composition of thendséad [20, 27], but no empirical
research supported UML'’s creation.

There are other influences at play on software ldpegs. Software development
productivity for users of OO modeling tools may dféected by the user’s previous
experiences in the problem domain [1, 3, 32, 39, ¥Be of user [1, 39, 43], user’s
experience of the OO paradigm [1, 7, 35], modelmgation and its use for
abstracting models [32], and programming environnjén25]. As highlighted by
ISO 9241, Part 11 (1998), usability must be judgedontext. A standard language
should be beneficial for a wide variety of userd aontexts.

As a consequence of the preceding discussion, aim a&m in this research is to
investigate empirically if UML notation can supptpgnitive support to software
developers. If UML is found to provide that cogmitisupport, then this research may
influence the opinions of software developers amtbarage them to use UML. Some
justification will have been found for UML'’s selémh as a standard language.

2 Literature Review and Resear ch M odel Development

In this section we review the literature relatedthe cognitive steps involved in
solving software development problems, which inelygtogram modification. The
goal is to arrive at a model of cognitive processedrive our empirical work that
will address the main research questions.

2.1 Applying Cognitive Theory to Software Development

Anderson [2] proposed that both declarative mem(factual knowledge) and
procedural memory (knowledge manifested in perforceq may be activated in
problem solving. He asserted that ‘cognitive skilte realized by production rules’.
Law [29] noted the popular belief that coding, ceetgnsion and debugging of
computer programs were facilitated through cogeitiVan retrieval and recognition.
For the software development environment Jeffegesl. [18] defined a design
schema as ‘the abstract knowledge about desigrdesign processes, along with a
set of procedures that implement these procesBbs’authors believed that a goal of
software design was to break down a problem inte@oblems and that the design
schema was composed of both declarative and promlekhowledge that assisted to
this end. During the design process a decision meishade as to which sub-problem
to solve next, and then find a solution for it. $ha goal must be identified for the
sub-problem whose attainment may be achieved hgrpamatching with memories
of past events stored in long-term memory (LTM)s@ution may be evoked from

Proceedings of EMMSAD 2008 57

LTM, may be derived from information acquired frahe cognitive problem space,
or inferred from the use of mental simulations [28]. For OO development, experts
require internal schemas representing informatiomm gpecific problem domain plus
schemas dependent upon the targeted programmingindify 25]. In fact ‘system
design involves the integration of multiple knowgeddomains - knowledge of the
application domain, of software system architectafecomputer science, of software
design methods, and so on’ [14].

Kim et al. [25] viewed OO programs as sets of rules solving groups of
problems. In their framework, rule development noagur in either the problem or
solution domain, consistent with Maher and Tan@8] [concept of co-evolutionary
design. Rule and instance spaces as suggestednoy &nd Lea [42] are included for
each domain. Rules may be induced by evoking pusWjostored schemas, by
deriving from knowledge gained from the current lgeon, or by inferring from
simulations in the instance space (refer [16, 2§).4

2.2 Cognitive Differences Between Expertsand Novicesin Software Development

One significant aspect of the transformation froovice to expert in any domain of

learning is the acquisition of problem-solving stias. Problem-solving schemas are
memory representations which embody knowledge basegiast experiences with a

particular type of problem. The process of congingcsuch a representation is also
called schema learning. [22, p. 75]. Experts invgafe development can recognise
and recall meaningful patterns when they see thehereas the novice, lacking

appropriate internal representations (IR), canBptlp, 31, 38, 45]. However, experts
are no better than novices when unfamiliar pattaressncountered [3].

2.3 External Representations (ER)

Several possible perspectives from which to evelaagraphical ER exist. Scaife and
Rogers [39] perceived the three aspects in thaiméwork for explaining external

cognition; Computational off-loading highlights cognitive benefits of graphical
representationsrepresentation relates to the representation’s structural progsrt

and graphical constraining refers to possible processing mechanisms. Pe6g [3
believed that effective use of an ER requires psefid perusal. Thus a graphical ER
may support the problem-solver if the notation (espntation) is conducive to

modeling the real world of the problem; the modatgtrains what may be inferenced
to prime essentials; the content provides a swtalistraction of the problem for
computational off-loading; and the layout aids patuFrom this we may conclude
that much of the responsibility for the succesafER lies with the modeler who

58 Proceedings of EMMSAD 2008

controls content and layout. We present the follmwiframework for the
representational system of a distributed cognitagk for solving a problem by an
individual problem-solver. This framework servesaaguide for our research.

Knowledge flow during individual problem solving

retrievec

Internal Representation

off-loaded t

»

WORKING
MEMORY

retrievec

Immediate
Problem space

External model
Representations

establishe (Rulesare: evoked/, cues | Other external
bl derived, inferred, i representations
Proble cuet Problem & Solutio | - text books
tol bed Domains) - patterns
solve
. off-loaded t(| -
appliec sample
solutions
Solution -notes, etc.

Representatic

Fig. 1. Representational system showing knowledge flovafdistributed cognitive task for an
individual problem-solver.

In Figure 1, the problem cues the formation withimproblem space in working
memory (WM) of an IR of the problem to be solve8][3A plan/design schema may
be retrieved from LTM to act as an executive strtgtfor selecting and applying
methods [7, 18, 29, 33, 37]. Rules may be deriesdked or inferred in WM to aid
comprehension of the problem, or to achieve sullsgmavards solution [25]. ERs
may be utilised by the problem space [33, 46]. Kledlge retrieved from an ER may
help establish the IR [39], may ‘cue’ some schemmnfLTM [34], or may be a
recipient for the off-loading of chunks of data whshort-term memory (working
memory) becomes full [13, 23, 28, 33, 39].

An ER will be said to support a programmer’s cageifprocesses during software
development if it does any of the following:
aids comprehension of the problem by contributinghie IR of the problem in
the problem space [12, 17, 34, 36].
forms a set with the programmer’s internal problgrace to facilitate:

Proceedings of EMMSAD 2008 59

o0 evoking of schemas in LTM [18, 25, 33].

o deriving of rules from the problem space [18, Zf, 2

o0 application of instances to simulate solution [16, 18, 24, 25, 33, 42].
e provides a notation for off-loading of chunks tedrWM [13 p.7, 23, 28, 33, 39].

3 Methodology

This paper is based on a study consisting of cthett@xperiments with experienced
and novice modelers to obtain a rich understandfrige modeling process.

3.1 Controlled Experiment

Our intention was to empirically study the perfonoa and behavior of modelers

engaged in the modification of a non-trivial apation with a view toward obtaining

a rich picture of the process of modeling that escWhile performance was an

important part of the research, our emphasis is plgiper is on examiningrocess

behavior during the modeling activity. In order to addréss, the following research
guestions are examined:

e Can the use of UML documentation facilitate a depel’s comprehension of a
non-trivial program by assisting in the formatidrvalid IRs of a problem?

* Can the use of UML documentation facilitate a depel in modifying a non-
trivial program by forming a set with the interqmbblem space?

* Can the use of UML documentation facilitate a depel’s writing of code to
solve a non-trivial problem by acting in a set witie problem space to induce
rules for solution?

e Can the use of UML documentation facilitate a depel’s modifying a non-
trivial program by providing a vehicle for off-loam) from working memory?

To study these issues, we conducted a controllpérarent with a group of 21
subjects, eight of whom had some industry expeeieror the research reported in
this paper, we examined in detail the activity loé five most successful modelers
from each of the industry-experienced (expert) atglent (novice) groups. The
experiment involved the modification of two apptioas: invoicing and diary.
Modifying a software program involves both the caoeatpension of the problem [5,
34] and the induction of rules to achieve the sablg that contribute to the full
solution [25]. To study programmers’ cognitive wittes whilst modifying the
programs, concurrent verbal protocols were coltbéte analysis. The use of verbal
protocol analysis for process studies and theiitditions are well discussed in the
literature (e.g. [14, 44]). Since our focus irsthesearch was on a deep understanding
of process issues, we believed that the use ofitbthodology was appropriate.

60 Proceedings of EMMSAD 2008

Following a brief practice at talking aloud whilgptogramming, subjects were
requested to modify each of the two computer appbas written in the OO
programming language VB.NET, only one of which wagplied with UML version
1.X use case, class, and sequence diagrams. The afaliagrams reflected industry
preference [8]. Use case descriptions were writtenthe format specified by
Cockburn [6]. As per industry custom only the mimgportant use case descriptions
and sequence diagrams were included. The sequedageamis documented the
interactions for the use cases that were affecgatido modifications.

The invoice modification required the addition ob@&ls and Services Tax (GST)
calculations, the display of the calculated GSTdach invoice item, and GST total,
on the invoice form, and the inclusion of GST oa firinted invoice. Not only was
the calculation done for new items added to theioe; but GST had to be adjusted
when an invoice item was added to, or deleted.dily application enabled users to
record appointments with details. Its modificati@yuired that a set of one to three
types of reminders be optionally added to an agpw@nt. Whilst the application was
running, on the day an appointment was due, andr o the time of that
appointment, reminder messages for the immineriappents were to be triggered.

The sequence in which subjects carried out the ficatibns was rotated to ensure
an even distribution of which application was erteuved first and which was
accompanied by UML documentation. The sequence t@hd@dance at sessions
depended upon the availability of the subjects.ePapencils and erasers were
supplied. Subjects were advised that they coultevam any supplied documentation.

Concurrent verbal protocols were collected whibsthe participant modified each
application. Ericsson and Simon [9] had concluded simultaneous verbal protocols
should not change the sequence or structure ofgarobolving, provided the subjects
were not required to explain their actions as theyformed. Transcribed protocols
were analysed to find the sequence and categotiyeoparticipants’ cognitive steps
during their modifications. Each modification endedden either the subject believed
the task was complete or after two hours had ethpseich ever came first.

4 Documenting Processes Using Behavior Graphs

The encoding categories for verbal protocol analgbiould be clear and explicit, and
should be defined prior to accepting input for etiag [10, 44]. The main goal of
subjects is to modify an application. In order thiave this, a number of sub-goals
must be achieved. Sub-goals could include the d@ogudf information related to the
problem or solution, or the creating of a strategynvestigate or solve the problem.
A goal may be achieved with the assistance of ER& sis UML diagrams, written
text, online Help or the internet. The ER may badrby a subject or created by the
subject during an episode (e.g. drawing a diagramwiting something). The

Proceedings of EMMSAD 2008 61

transcriptions of the subjects’ verbal protocolsewvdivided into episodes which were
categorised as per Table 1, which encapsulateziteeia itemized in Section 2.3.

Table 1. Verbal protocol cognitive episode categories fivisng a problem with the assistance
of external representations.

Verbal Protocol Cognitive Episode Categories
Problem Domain Solution Domain
Form plan schema Form design schelma
Form internal representatiq
Derive rule Derive rule
Evoke rule Evoke rule
Generate rule Generate rule
Test Test
Off-load Off-load

A participant who remembers original code and refuo it in order to copy and/or
modify it provides evidence that the code contilouto the modifier’s IR. Checking a
solution using instances may be carried out withdfd of an ER such as the code
itself, or a diagram, and is categorised as ‘Tésthen a participant creates an ER,
reuses that ER, or modifies an existing ER, ititegorised as ‘Off-load’.

Behavior graphs provide a method whereby each categf cognitive step in
which UML documentation was involved may be quickiferenced. Each encoded
episode is recorded vertically in the behavior grap the sequence in which it
occurred, within the column representing its cdgaiepisode category from Table 1.

Each episode is annotated with its sequence nurabdrwith its source of cue or
destination, and time duration, as shown in Figure

Xnnn (sequence no. of episode) Soofceue/destination

Time duration of episode in seconds

Fig. 2. Template for documentation of a categorised egisnc Behavior Graph.

X represents one of the six episode categories.s€faence number for episodes
judged as creating an IR is preceded by an ‘I, &mdepisodes inducing rules, by an
‘R’; other codes are: ‘P’ - plan schema formati@i,- design schema formation, ‘G’

62 Proceedings of EMMSAD 2008

- generation, ‘T’ - testing, and ‘O’ - off-load. Arstatement by a subject that could
not be so categorised was deemed as ‘other’ anch@tascluded in his/her graph.

5 Behavior Graph: An Example

In this section we provide one behavior graph examPur intent is to show the
value of using this technique in the study of dethiprocesses. The example was
selected to display the richness with which we alyke to capture details about the
process. The behavior graph shown in Figure 3 captilne first quarter of the Diary
modification protocol for Subject 16, the most esipeced industry-based participant.
The graph is helpful in showing a wide range ofawébrs in which a participant may
engage and that need to be accurately capturedfullhgraph spanning the entire
protocol for this participant covers several pages;objective here is to demonstrate
the nature of the graph and the implications thatlwe drawn from it.

This subject completed the modification task in duth 35 minutes. He was
assessed as the most successful performer, adhidore sub goals than any other
subject. We provide a commentary on how the behariph is interpreted.

5.1 Cognitive Episodesin M odification

* Subject 16 read the requirements (I11) and the ase documentation (12) and as
he made a number of informed comments about thgratiss it is assumed that
he created IRs of the problem. He planned (P3)htxrk that the modification
functionality was not specified in the documentatio

e He searched the class diagram to find where toapuvéminder set, only to
discover a ReminderSet class existed (14). He dtthe sequence diagram for
the steps to add an appointment (I5), assuming thiatexisting ReminderSet
required modification (G6). He reread the remirgkgrdetails in the specification
related to the reminder set (I7) and generateddibe to add appointment details
to the reminder sets collection (G8). (Note: Subjet later altered his theory.)
He then studied the code behind the reminder sateddry form (R9).

» He discovered that the diary form was the starfarm (R10), looked through
the regions (R11), and then ran the applicatiorRTHe theorised (G13) that the
reminder sets be linked to the diary form. He adadedminder set check box to
the diary form (R14), studied the sequence diagfdr), then off-loaded his
proposed changes into the ‘Add Appointment’ use ciescription (O16).

* In episode 17 he wrote the code for the check liaking it to the reminder sets
form. He unsuccessfully tested the code (T18),tddldt, studied the existing

Proceedings of EMMSAD 2008 63

code (R19), then reinstated the deleted code ithangart of the application
(R20). He successfully tested to bring up the rei@irsets data entry form (T21).

Behaviour Graph for Subject 16: 1st modification: Diary Application with d ion,
Problem Domain Solution Domain
Form plan ' Form IR ‘ Derive rule Test Form design | Derive | Evoke Generate Test ’ Offload
schema schema
I1. Spec
(158s)

» 12a.Use case/

temp (186 s)

»| 12b. Use case
>

temp (10 's)

P3.Plan
(59)

14. Class

diag.(45s)

IS Seq

diag.(26s)

3l G6.Plan
9s)

G8.Plan
(28s)
< R9. App
D code (58 5)
» RI0.UI
(125)
R11 App
code (8 5)
TI12. App
(48s)
G13.Plan
(18s)
.| Ri4. Ul
RED)
115.Seq

diag. (16's)

< 016.Add to

h use case (30s)
R17a App
code (19s)

R17b.Code
(46's)

Looked at Help but no rule formed

> T18.Testing
(102 s)

o | T21.Testing

Tl (749

R17c. Code
(32s)

R19 App
code (26s)

R20. Code
(19s)

122. Spec
(12s)

123. Class
diag (21<)

A

124. Spec
(345)

Fig. 3. Behavior Graph for Subject 16, page 1 of 2.

64 Proceedings of EMMSAD 2008

Problem Domain lution Domain
Form plan Form IR Derive rule Test Form design | Derive Evoke Generate
schema schema

Test l Offload

R25. U1 Combobox replaces R10 check box

< (59s)
> G26.Plan
(65)
»| T27. Test
(16s)

R28. App
code (43 s)
129. Seq
diag (15s)

R30 Code
(60's)

T31.Testing.
(150's)

032. To Class
diag. (40 s)

133. Spec
(19 secs)

A4

Changed link from M:M to 1 to M

034.To Class
diag (10's)

Fig. 3. Behavior Graph for Subject 16, Page 2 of 2.

» He read the requirements again (122), then lookékeaclass diagram (123).

e Subject 16 realised that his initial assumption$ih and G8 were wrong, and
reconfirmed this by re-reading the specificatidtv{l

« He removed the checkbox, added a Reminders combkddodhe diary form
(R25), and planned to load the combo-box (G26)tadeed his code (T27), found
he had forgotten to remove the code for the chesk &d removed it.

* He studied the diary form loading procedures, fouhere to load the reminder
sets (R28), then did not find reminder sets insthguence diagram (129)

* He copied the code for loading the reminder semnfthe reminder set form into
the diary form (R30), and successfully ran the progwith his changes (T31).

* Subject 16 drew on the class diagram (032), retkadequirements (133) then
changed his addition to the class diagram (O34) r@sult of what he had read.

5.1.1 Subject 16 Forming an I nternal Representation

The UML documentation appeared to assist Subjedniltbe creation of IRs. His
comments indicated that reading the UML documemniati2, 14, and 15) had clarified
his understanding of the application. There is enad that an IR was clarified as a
result of his reading the class diagram (14), wherdiscovered the ReminderSet class
existed. He rejected his original plan to add apjpoént details to a reminder set after
rereading the class diagram (123) and changed lais @ add reminder details to

Proceedings of EMMSAD 2008 65

Appointment. He also used the sequence diagrarmacertain the functionality of the
‘Add appointment’ use case on several occasionslf 129, R38, 172.

5.1.2 Subject 16 Off-loading to UML Documentation

In episode 14 Subject 16 added a check box toittrg tbrm for selecting a reminder
set. He studied the sequence diagram to find witep@ace his code to control the
check box (115), found the use case descriptionemaseful and off-loaded the
information onto the use case description for ‘@esppointment’ in O16.

Subject 16 also off-loaded changes onto the clémgraim. He initially drew a
joining class between the Appointment and Reminelectasses (032), re-read the
requirements, changed his mind, removed the joinlags and added a ReminderSet
attribute to Appointment (O34).

5.2 Evidence from all Transcribed Protocols of Cognitive Support from UML

The results obtained for this research are basemh tbe analysis of collected,
concurrent verbal protocols. The evidence that UMbcumentation provided
cognitive support is based on the criteria itemiaethe end of Section 2.3. Tables 2
and 3 summarize the results from the analysisefrédmscribed protocols.

As can been seen from Tables 2 and 3, the clagsadiawas used productively in
more episodes than use case or sequence diagtaimgadssible that the choice of
application could affect the type of UML usage. Tiinoice application was process-
oriented and should lend itself to process-oriemtecumentation such as use case, a
fact taken advantage of by Subject 07 in his offding episode 09, and Subject 16 in
his off-loading episode O16. The diary applicatiees event-oriented.

Table 2. Cognitive support from UML documentation for NONdirstry-experienced subjects.

Usage of UML in episodes with evidence of benefit achieved
NON-Industry-experienced subjects

Used in set with Offloaded to provided Drew
Aided comprehension problem space UML doc ion new
UML
Use where
Sub- case Use case Class Sequence Use case Class Use case Class none
ject | App | model descriptions _diagram __diagram | descriptions _diagram | descriptions _diagram | supplied
2 | 13
3 D 115 R16 19°
041,
5 D | 136 136 139 043
7 I 12 13 09
1135,
16, 17b, R14d°, 010,
13 D 111, 141 1167 026

66 Proceedings of EMMSAD 2008

Episodes were entered into Tables 2 and 3 onlieir tcontent was found to be
used in succeeding episodes. Thus the act of mpaslinot included if there was no
evidence of its effect on further episodes. Itasgible that some episodes that are not
recorded here did contribute, but the evidencenwasietected within the protocols.

The industry-experienced subjects exhibited morisogles on average of UML
use. Few non-industry-experienced subjects haaxperience (i.e. had the internal
schemas) in software development to enable therpldn and progress swiftly
through to solution.

Table 3. Cognitive support supplied by UML documentationifatustry-experienced subjects.

Usage of UML in episodes with evidence of benefit achieved
Industry-experienced subjects
Offloaded to Drew
Used in set with provided UML S:"“I’_
Aided comprehension problem space documentation when
Sub- Use Class none
ject case Use case Class Sequence Use case Class Use case dia- was
App | model descriptions _diagram __diagram | descriptions _diagram | descriptions _gram | supplied
190",
4 | 1228
11,
R14,
118, 122, R14%,
15 D 12 126 12° 142b°
2
129, R38, 032, classes
16 D |2 12 14, 123 172 016 034 | with IDs
Inherit-
12, 14, ance,
17 11 R42 attributes
R45b°,
14,16, 145f°,
116, 149d°,
123a, 149iE,
133, 172, 1491F,
20 186 185, 197b 161ct

[Note: Where UML documentation was used in a sebdoce rules, the type of rule, whether
derived (D) or evoked (E), is shown as a supersdaliowing the episode number. A ‘P’
included in the superscript indicates problem dormaiherwise solution domain applies.]

5.2.1 UML Aids Comprehension in Formation of I nternal Representations
The most popular use of UML documentation was & tthrmation of IRs (refer

Table 4). The UML documentation was used to aghistsubjects to familiarize
themselves with the applications to be modified.

5.2.2 UML Documentation Forming a Set with the Problem Space

Proceedings of EMMSAD 2008 67

There was less evidence of subjects forming sets tiere was for subjects forming
IRs (refer Table 4). One explanation could be tlile, Subject 16, subjects preferred
to gain an understanding from the UML documentathmrt resisted switching back
and forth between screen and forms when coding armed.

Table 4. Number of episodes providing evidence of UML cadigri support

Number of episodes providing evidence of cognitive support
UML provides assistance to:
Form sets with problem space Off-
Problem domain Solution domain load
Form internal | Derive | Evoke Derive | Evoke | from
Subjects representations rule rule Other rule rule WM Totals
Non-industry-
experienced 13 2 2 5 22
Industry-
experienced 26 1 2 2 6 5 42
Totals 39 1 4 2 8 10 64

5.2.3 UML Notation Used for Off-loading

Examples were obtained of subjects using the use dcescriptions and class
diagrams to assist in the development of what timgnded to do. Steps for the
planned changes could be added to use case deswiptefer Table 2 Subject 07,
episode 9, and Table 3 Subject 16, episode 16). Cldes diagram was used to
develop the relationship between classes. Subjgadfftloaded his thoughts for a
relationship between the ReminderSet and Appointrokasses in episode 32, which
he rethought and corrected in episode 34. Subjeaiskd the class diagram to the
same end — adding an incorrect link in episodetii€h referring back to her link in
episode 13, and finally correcting it in episode ZBese examples demonstrate the
usefulness of external documentation in the plapstages for the modifications.
Off-loading that occurred when no UML documentatieas provided often included
rough sketches of relevant classes, the notatiomgb@mplified to suit the author.
Subjects 05, 09, 16, 17 and 21 off-loaded sketdms paper that communicated
relevant class information but did not use formdlUnotation. Where programmers
create their own diagrams they may use any notatird to their needs.

Two subjects drew non-UML diagrams to aid their enstinding and plan what
they would do. Subject 01 drew a flowchart and 8abjl6 a structure diagram.
Whereas Subject 01 was not a successful modifiebjeBt 16 was the most

68 Proceedings of EMMSAD 2008

successful. He crossed off each section of hictsire diagram as it was coded. His
choice of notation reflected his familiarity withé prior use of structure diagrams.

6 Conclusion

From the results it was found that UML documentatidid cognitively support
programmers: it was found to assist in the creatibhRs of the problems, aiding
comprehension; it was found to be used in a sét tie programmers’ problem
spaces to assist in problem familiarisation anditgm; and the UML provided a
notation for off-loading from WM.

The number of subjects used in these experimenssswaall — twenty participants
modified both applications, and ten of the morecsssful subjects had their verbal
protocols transcribed and analysed to discover dbgnitive support. The small
sample size means that results cannot be appliebalgy to all programmers.
However, it has been demonstrated that all tralmedrisubjects received cognitive
support from the UML documentation. It has been alestrated that UML can supply
cognitive support. The question at the start of g@per has been answered.

The industry-experienced subjects, on average, tedML documentation more
than the non-industry-experienced subjects. Thesesaveral possible explanations
for this. The industry-experienced subjects mayehdgarned’ to use the UML
notation. The two best performing subjects workadenvironments where class
diagrams were used. Schemas for working with thegrdims may have been
established that the non-industry-experienced stibjacked. It is also possible the
inexperience of the non-industry-experienced subj@thibited their progress and
reduced their opportunities to leverage the diagram

As a methodology to guide the study of processagjus modeling approach, we
have found the use of behavior graphs to be péatiguuseful. It allows the
researcher to extract, record, and analyze theifilhess embedded in processes that
have the potential of revealing details that migfhierwise be missed.

References

1. Agarwal, R., De, P., Sinha, A.P., Tanniru, Mn @e Usability of OO Representations.
Communications of the ACM 43(10), 83-89 (2000)

2. Anderson, J. R.: Rules of the Mind, Lawrencb&rm Associates, U.S.A. (1993)

3. Andriole, S., Adelman, L.: Cognitive Systems Hwmgiring for User-Computer Interface
Design, Prototyping, and Evaluation. Lawrence Erthassociates, U.S.A. (1995)

4. Booch, G., Rumbaugh, J., Jacobson, |.: The Unifdateling Language User Guide.
Addison-Wesley, Massachusetts (1999)

Proceedings of EMMSAD 2008 69

5. Brooks, R.E.: Studying the Programmer behavioreErpentally: The Problems of Proper
Methology. Communications of the ACM 23(4), 207-21980)

6. Cockburn, A.: Using Goal-Based Use Cases. Jourhdhject-Oriented Programming
10(7), 56-62. SIGS Publications, New York (1997)

7. Détienne, F.: Design Strategies and Knowledg@hject-Oriented Programming: Effects of
Experience. Human-Computer Interaction 10, 129-169%)

8. Dobhing, B., Parsons, J.: Dimensions of UML diagrllse: A Survey of Practitioners.
Journal of Database Management 19(1), 1-18 (2008)

9. Ericsson, K.A., & Simon, H.A.: Protocol analysVerbal reports as data. Cambridge, MA:
MIT Press (1984)

10. Ericsson, K.A., & Simon, H.A.: Protocol anaysVerbal reports as data. Rev. ed.
Cambridge, MA: MIT Press (1993).

11. Fedorowicz, J., Villeneuve, A.: Surveying albjeechnology usage and benefits: A test of
conventional wisdom. Information & Management 351-344 (1999)

12. Goel, V.: Sketches of Thought. A Bradford BobKT Press, Cambridge, Massachusetts
(1995)

13. Grogono, P., Nelson, S.H.: Problem Solving énputer Programming. Addison-Wesley,
U.S.A. (1982)

14. Guindon, R.: Knowledge exploited by expertsrpsoftware system design. International
Journal of Man-Machine Studies 33(3), 279-304 (3990

15. Guindon, R., Curtis, B.: Control of CognitiveoBesses During Software Design: What
Tools are Needed. Proceedings of the CHI'88 Conéerem Human Factors in Computer
Systems, New York. Pp.263-268. ACM (1988)

16. Haverty, L.A., Koedinger, K.R., Klahr, D., Aib, M.W.: Solving Inductive Reasoning
Problems in Mathematics: Not-so-Trivial PURSUIT. Citige Science 24(2), 249-298
(2000)

17. Hungerford, B.C.: Reviewing Software DiagramsC@gnitive Study. IEEE Transactions
on Software Engineering 30(2), 82-96 (2004)

18. Jefferies, R., Turner, A.A., Polson, P.G., Abdp M.E.. The Processes Involved in
Designing Software. In Anderson, J.R. (ed) Cognifkdls and their Acquisition, pp.255-
283. Lawrence Erlbaum Associates, Hilldale, Neve&g1(1981)

19. Johnson, R.A.: The Ups and Downs of Objecedad Systems Development.
Communications of the ACM 43(10), 69-73 (2000)

20. Johnson, R.A.: Object-oriented analysis argigthe— What does the research say? Journal
of Computer Information Systems 42(3), 11-15 (2002)

21. Johnson, R. A., Hardgrave, B.C.: Object-oriemtethods: current practices and attitudes,
The Journal of Systems and Software 48, 5-12 (1999)

22. Kahney, H.: Problem Solving: Current issuescoid Edition. Open University Press,
Buckingham, Philadelphia (1993)

23. Kim, J., Lerch, J.F.: Towards a Model of CogeitProcess in Logical Design: Comparing
Object-Oriented and Traditional Functional Deconifims Software Methodologies. In
Bauersfield, P., Bennett, J., Lynch, G. (eds) Praogsdof CHI '92, ACM Conference on
Human Factors in Computing Systems, May 3-7, Mowtetalifornia, pp. 489-498 (1992)

24. Kim, J., Lerch, J.F.: Why is Programming (sames) So Difficult? Programming as
Scientific discovery in Multiple Problem Spacesfohmation Systems Research 8(1), 25-
50 (1997)

70 Proceedings of EMMSAD 2008

25. Kim, J., Lerch, J.F., Simon, H.A.: Internal Regentation and Rule Development in
Object-Oriented Design. ACM Transactions on Comphig@man Interaction 2(4), 357-390
(1995)

26. Kobryn, C.: UML 2001: A Standardization Odyss€ommunications of the ACM 42(10),
29-37 (1999)

27. Kobryn, C.: Will UML 2.0 be Agile or Awkward? @ununications of the ACM 45(1),
107-110 (2002)

28. Kotovsky, K., Hayes, J.R., Simon, H.A.: Why &eme Problems Hard? Evidence from
Tower of Hanoi. Cognitive Psychology 17, 248-294839

29. Law, L.: A situated cognition view about théfeets of planning and authorship on
computer program debuggingehaviour & Information Technology 17(6), 325-33B¢8)

30. Maher, M.L., Tang, H.: Co-evolution as a Cotagional and Cognitive Model of Design.
Research in Engineering Design 14, 47-63

31. McKeithen, K.B., Reitman, J., Rueter, H.H., Hirt5.C.: Knowledge Organization and
Skill Differences in Computer Programmers. Cognifdsychology 13, 307-325. Academic
Press (1981)

32. Nielsen, J.: Usability Engineering. Academied®, U.S.A. (1993)

33. Newell, A., Simon, H.A.: Human Problem Solvilgentice-Hall, U.S.A. (1972)

34. Pennington, N.: Stimulus Structures and MeRg&gresentations in Expert Comprehension
of computer Programs. Cognitive Psychology 19, 2853987)

35. Pennington, N., Lee, A.Y., Rehder, B.: Cognithativities and Levels of Abstraction in
Procedural and Object-Oriented Design. Human-Compuoteraction 10, 171-226 (1995)
36. Petre, M.: Why looking isn’t always seeing: Baahip skills and graph. Communications

of the ACM 38(6), pp.33-44 (1995)

37. Rist, R.S., Schema Creation in Programming. Cegri8cience 13, 389-414 (1989)

38. Rosson, M. B., Alpert, S. R.: The Cognitive Conseges of Object-Oriented Design.
Human-Computer Interaction 5, 345-379, (1990)

39. Scaife, M., Rogers, Y.: External cognition: hale graphical representations work?
International Journal of Human-Computer Studiesl@®,-213 (1996)

40. Shanks, G., Tansley, E., Nuredini, J., Tolin, Weber, R.: Representing Part-Whole
Relationships in Conceptual Modeling: An Empiricalaluation. Proceedings of the 23rd
International Conference on Information Systemsgc8ana, pp. 89-100 (2002)

41. Siau, K., Cao, Q.: Unified Modeling Languagé/l) — A Complexity Analysis. Journal of
Database Management 12(1), 26—34. Idea Group Rirgi$2001)

42. Simon, H. A. & Lea G.: Problem Solving and Riteluction. In: Simon, H. A., (ed.)
Models of Thought, pp. 329-346. University Pressndion (1979)

43. Tabachneck-Schijf, H. J. M., Leonardo, A. Bimon, H. A.: CaMeRa: A Computational
Model of Multiple Representations. Cognitive Scie@t€3), pp. 305-350 (1997)

44. Todd, P., Benbasat, I.: Process Tracing Metlimod3ecision Support Systems: Exploring
the Black Box. Management Information Systems (MI8aerly 11(4), 493-512

45. Weern, Y.: Cognitive Aspects of Computer Supported Tadkéin Wiley and Sons, Essex,
Great Britain (1989)

46. Zhang, J., Norman, D. A.: Representations istributed Cognitive Tasks. Cognitive
Science 18, 87-122 (1994)

