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Abstract  
Creating a system of complex disease diagnosis based on gene expression data using modern 
data mining and machine learning techniques is one of the topical areas of recent 
bioinformatics. The main problem in this subject area consists of a large volume of 
experimental data; each investigated object contains approximately 20000 genes. In this paper, 
we propose the technique of both formation and analysis of gene expression data based on the 
joint use of various computational and intelligent methods of complex data processing.  As the 
experimental data, we use the gene expression data of patients who were investigated for 
various types of cancer diseases. Initially, the data was formed and analyzed using the functions 
and modules of TCGAbiolinks and Bioconductor packages. Then, the non-informative genes 
in terms of both the statistical and entropy criteria were removed from the initial database. To 
identify the level of significance of gene expression profiles, we have applied the general 
Harrington desirability index, which contains, as the components, transformed statistical and 
entropies criteria.  Finally, we applied the random forest classifier and convolutional neural 
network with the calculation of various types of classification quality criteria for the binary 
and multi-classification of the investigated objects in the first and the second cases, 
respectively. Analyzing the simulation results has shown that the identification accuracy of the 
examined samples is high in all cases. To our mind, the proposed technique creates the basis 
for improving complex disease diagnosis systems based on gene expression data. 
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1. Introduction 

Modern artificial information processing systems used in various fields of both intelligent data 
analysis and machine learning are, in most cases, based on the analogy of the functioning of relevant 
processes in biological organisms. Such processes should include the functioning of the gene network, 
immune processes, functioning of neural networks, etc. A particularity of such systems is a high level 
of complexity, the ability to learn, parallelization of information processing, a high level of protection, 
and the ability to recognize and make adequate decisions. In this context, developing modern artificial 
models of big data processing is possible using a systematic approach, which involves combining 
knowledge and methods from various practical fields, such as molecular biology, mathematics, 
computer science, physics, and chemistry. This approach creates conditions for increasing the 
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objectivity of processing big data in real-time due to the use of ensembles of methods, hybrid models 
and effective quality criteria for evaluating results at the appropriate stage of the data processing. 

One of the actual problems of modern bioinformatics is the processing of gene expression data 
obtained by performing DNA microarray experiments or by the more modern method of RNA molecule 
sequencing. The main particularity of the experimental data is the large number of attributes that define 
the state of the corresponding biological organism. As well know, the number of expressed (active) 
genes that make up the human genome is approximately equal to 25,000. At the same time, the number 
of each type of gene varies within the range from 0 to hundreds of thousands ones. Creating systems of 
complex objects diagnosis or models of gene network reconstruction based on complete data is 
ineffective since interpreting the obtained results is problematic in this instance. Deep learning models 
such as deep neural networks, convolutional neural networks, and deep artificial networks exist and 
they are actively used for processing big data, allowing for obtaining satisfactory diagnostic accuracy 
on big data. Still, at the same time, there is a problem with training time, network sensitivity, and 
verification received models on other similar data. Solving the abovementioned problem is possible by 
developing new and improving existing intelligent models, information technologies and algorithms 
focused on big data processing. The implementation of this process assumes the formation of high-
quality experimental data by applying adequate methods of gene expression values normalization and 
reduction of lowly-expressed genes at the first stage. In the second stage, the problem of forming subsets 
of differentially expressed and mutually correlated gene expression profiles arises by applying hybrid 
models of high-dimensional data clustering. The third stage is developing a medical diagnosis model 
on the basis of the allocated clusters of expression values using deep learning methods with appropriate 
verification of the obtained results. 

However, we would like to note that in spite of specific achievements in this field, the effective 
solution to the problem of gene expression data processing in order to create a medical diagnostic 
system that allows us to identify with acceptable accuracy the patient's state at an early stage of the 
disease is absent nowadays. To our mind, increasing the effectiveness of current intelligent systems 
focused on gene expression data processing for the following creation of various disease diagnostic 
systems can be achieved by providing the following: 

• justified choice of methods for formation and analysis of experimental data to form an array of 
gene expression values for the investigated objects; 

• application of effective metrics for assessing the proximity between gene expression profiles 
based on the assessment of mutual information between the respective profiles; 

• justified shaping subsets of diversely expressed and jointly correlated gene expression profiles 
using effective and adequate clustering quality criteria; 
• the creation of hybrid models for diagnosing the state of the investigated object using inductive 

models of objective clustering and deep neural networks; 
• justified choice of methods to validate the models of complex disease diagnosis with the 

application of appropriate quality criteria for evaluating the model's effectiveness on the test subset of 
expression values. 

The goal of the paper is to develop the model of formation, analysis and processing of gene 
expression data on the basis of the use of the functions of both TCGAbiolinks and Bioconductor 
packages of R software, Random Forest classification algorithm and Convolutional Neural Network. 

2. Related works 

Recently, much scientific research focused on solving the challenges of formation and analyzing 
gene expression data for their reduction and further application in models for diagnosing the object state 
or the gene regulatory network reconstruction. So, the paper [1] proposed a hybrid method for extracting 
genes by the joint use of the Information Gain method and the Standard Genetic Algorithm. This method 
was named as IG/SGA method. Initially, the IG information increment method was used to reduce the 
non-informative objects. Then, the data was processed using a genetic algorithm. Finally, the authors 
have applied the genetic programming (GP) method to carry out the object classification procedure. 
The simulation procedure assumed the use of seven sets of gene expression data of patients investigated 
for cancer disease. The authors have shown that the application of the offered technique can allow them 



to reach 100% classification correctness in two instances. In other cases, the classification accuracy was 
less.   

In [2,3], the authors showed preferences of the Ant Colony Optimization (ACO) algorithm 
application when the hybrid models of complex data processing were developed. So, the method offered 
in [2] is based on the joint application of cellular learning automata and the ACO method (CLA-ACO). 
The practical realization of the proposed pattern assumes three phases. Initially, the Fisher-filtered 
method is applied to the data. At this phase, the non-informative genes in expression values were 
removed from the initial data. Then, CLA and ACA techniques with optimal functions are applied to a 
subset of gene expression profiles. In the third phase, the authors formed and analyzed the final subsets 
of gene expression data by assessing the errors of both the first and the second types using the ROC 
analyzing method. The presented in this manuscript testing results showed the high performance of the 
offered method for the classification of the examined objects. In [3], the authors combined ACO 
algorithm and Adaptive Stem Cell Optimization (ASCO) technique for the purpose of forming gene 
expression datasets. The proposed model filtered the data by assessing the mutual information values 
in the first phase. Then, various types of classifiers were applied to the formed datasets to assess the 
model performance. Analyzing the received results, in this instance, also indicates the high performance 
of this pattern. 

An analysis of various current hybrid patterns focused on forming the subsets of gene expression 
datasets for the purpose of creating or improving diagnostic systems based on gene expression data is 
presented in [4]. The authors analyzed in detail, with the allocation of advantages and shortcomings, 
various intelligent systems and algorithms such as the Mutual Information Maximization (MIM) 
filtering method, Genetic Algorithm (GA) grouping method and SVM classifier [5]; Correlation-
based Feature Selection (CFS) filtering method, Genetic Algorithm (GA) grouping method and KNN 
classifier [6]; Laplacian and Fisher score filtering method, Genetic Algorithm (GA) grouping method 
and SVM, KNN and NB classifiers [7]; Independent Component Analysis (ICA) filtering method, 
Artificial Bee Colony (ABC) grouping method and NB classifier [8] and other hybrid techniques 
based on the combined application of various data mining and machine learning algorithms [9-14].  

The analysis of various hybrid model operation results has allowed the authors to remark that the 
challenger of objective formation of subsets of genes, which can allow us to recognize the examined 
samples with high-reliability levels, does not unambiguous solved nowadays.  In most proposed 
patterns, high classification performance is ripened when applying a small number of genes. This 
problem can be solved by using deep learning methods at the phase of gene expression data 
classification. So, in [15] the authors describe the technique focused on the early diagnosis of cancer 
disease using a Deep Neural Network (DNN). The proposed model was tested on 37 different kinds 
of cancer. The authors used datasets from the TCGA cancer genome atlas. The experimental dataset 
consisted of 10,663 samples (9,807 tumors and 856 normal samples) for 37 cancer types, and they 
contained the expression of 10,000 genes. The models of deep neural networks with three different 
structures were investigated: three-levels (3NN), five-levels (5NN) and nine-levels (9NN), while a 
comparative analysis was performed with the model on the basis of the use of SVM method by 
assessing the classification performance. An analysis of the obtained results has shown that the 
highest diagnostic accuracy was achieved when using the 5NN model, but the performance of disease 
classification was not satisfactory. Moreover, the sensitivity of the model to the type of cancer is also 
not high. This fact indicates that the proposed model needs to be refined.  

In [16], the authors investigated different types of patterns based on the use of an ensemble of DM 
and ML algorithms, including deep learning methods for the diagnosis of three types of cancer: lung, 
breast, and stomach cancer. 162 lung cancer samples, 878 breast cancer samples, and 271 stomach 
cancer samples were used. The accuracy of disease diagnosis for all data sets was 98%. However, it 
should be noted that despite the impressive results, the proposed model has several significant 
shortcomings. First of all, the proposed model is very complex and requires both a lot of time on model 
training and large computer resources. The second significant drawback is that the model based on an 
ensemble of deep learning methods is challenging to interpret. 

In [17], the authors investigated several structures of Convolutional Neural Networks (CNN) with 
various combinations of hyper-parameters for the diagnosis of different types of cancer using 
unstructured gene expression data. During the simulation process, three models of CNN with different 
combinations of hyper-parameters were investigated: one-dimensional neural network model 1D-CNN; 



two-dimensional CNN 2D-Vanilla-CNN; hybrid convolutional neural network 2D-Hybrid-CNN (as 
input contains a two-dimensional matrix and a one-dimensional vector of gene expressions). The 
models were trained and tested on gene expression data containing 10,340 samples from 33 types of 
cancer and 713 samples taken from normal tissues (no tumor detected). The data contained 7100 genes 
whose expression was used as attributes. Data were also taken from the Cancer Genome Atlas (TCGA). 
Analyzing the authors' simulation results showed the high performance of the proposed patterns. For 
the diagnosis of 34 classes (33 with cancer tumors and one normal), the prediction accuracy on the test 
subset of data varied within the range from 93.9% to 95%. However, it should be noted that training 
the proposed models also requires much time. In addition, the authors used unstructured data, which 
may also affect the accuracy and sensitivity of the proposed models operating. 

The hereinbefore presented brief analysis of the current state of research regarding the formation, 
analysis and processing of expression data to develop and improve disease diagnostic systems allows 
us to conclude that nowadays, there is no effective and complete information technology for processing 
gene expression data to diagnose complex diseases. Existing models of disease diagnosis systems on 
the basis of gene expression data can allow us to identify the relevant disease with a certain accuracy. 
However, they have certain shortcomings, which are associated with the imperfection of big data 
processing models for selecting informative gene expression profiles, low objectivity in the formation 
and further processing of gene expression profiles, low objectivity of decision-making regarding the 
presence or absence of the relevant disease, etc. These facts indicate the actuality of the presented 
research. 

3. Gene expression data formation and analysis 

We used gene expression data of patients examined for various cancer kinds from The Cancer 
Genome Atlas (TCGA) [18]. The formation of experimental data was carried out using the functions of 
the TCGAbiolinks package [19], which is a part of the Bioconductor package [20] of the R software 
[21]. The preference of this data is determined by the fact that cancer is currently one of the primary 
reasons for death globally, and treatment methods for this disease vary in a wide range. TCGA database, 
which was launched in 2006 to collect and analyze different data for more than 35 various kinds of 
cancer by selecting many cases of different tumor types, nowadays is one of the most comprehensive 
human cancer databases, containing various kinds of data. Tumors formed using TCGA tools varied 
from solid to hematologic, from mild to highly aggressive considering survival, and from beginning to 
metastatic.  Thus, the experimental gene expression data contained in TCGA is a very powerful platform 
for both the approbation and evaluation of the effectiveness of the appropriate model focused on 
processing gene expression data in order to create a hybrid model for the diagnosis of complex diseases. 
The advantages of the TCGAbiolinks package should also include the fact that its use can allow us to 
download and generate data from various platforms that are used in current times in various research 
institutions to generate experimental data based on genome analysis. Moreover, the functions of this 
package can allow us to implement various types of data formation, analysis and processing using 
various patterns of visualization of the particularities of data distribution in the relevant features space. 

Within the framework of the research, we used gene expression data obtained by applying the 
method of RNA molecule sequencing received on the Illumina platform [22]. Each sample of initial 
data contained, as attributes, 19947 types of genes, while the expression of the corresponding gene is 
proportional to its activity level. The experimental database contained nine types of data, eight of which 
corresponded to eight types of cancer, and the ninth data corresponded to samples for which no cancer 
was identified as a result of clinical trials. The total number of studied samples was equal to 3269. Thus, 
at the initial stage of modelling, the gene expression matrix had the following form: 𝐸𝐸 =
(3296 × 19947). The classification of experimental data is presented in Table 1 and Figure 1. 

Table 2 shows the general statistics of the number of genes' maximum values distribution, which 
contained experimental data for all the studied samples. Analyzing the data in Table 2 indicates that 
there is a certain number of non-expressed genes for all samples (zero number) and a certain number of 
low-expressed genes (the number of active genes for all samples is significantly less than the number 
of other genes). These genes can be removed from the data without significant loss of useful 
information. 



Table 1 
Experimental datasets of gene expression data 

No Kind of cancer Number of samples 
1 Adrenocortical carcinoma - ACC 79 
2 Glioblastoma multiforme - GBM 169 
3 Sarcoma - SARC 263 
4 Lung squamous cell carcinoma - LUSC 502 
5 Lung adenocarcinoma - LUAD 541 
6 Stomach adenocarcinoma - STAD 415 
7 Kidney renal clear cell carcinoma - KIRC 542 
8 Brain Lower Grade Glioma - LGG 534 
9 Normal (without tumor) 224 

 

 
Figure 1: The bar chart of the sample’s distribution in the gene expressions experimental data for the 
various kinds of cancer  

Table 2 
General statistics of the number of genes' maximum values distribution for all samples 

Min 1st quartile Median Mean 3rd quartile Max 
0 3775 12030 44324 30945 6303246 

 
Moreover, the analysis of the data in Table 2 also shows the need to transform the absolute values 

of the number of expressed genes into more convenient values with a smaller range of their variation. 
The Bioconductor package [20] offers a method of transforming the absolute values of the number of 
genes into a relative value (count-per-million - cpm), which can be calculated as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖′ =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

∙ 106                                                              (1)                                                 

where: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the number of the j-th gene for the i-th sample; m is the number of the examined 
genes. 

The general statistics of the transformed by formula (1) the number of genes maximum values 
distribution for all investigated samples are presented in Table 3. 

Table 3 
General statistics of the transformed quantity of genes' maximum values distribution for all samples 

Min 1st quartile Median Mean 3rd quartile Max 
0 76.73 237.87 886.58 598.56 172693.66 

 



As can be seen, the variation range of the transformed values is significantly smaller than the initial 
data presented in Table 2, which simplifies the procedure for further processing of experimental data. 
The next step of the data preparation is the removal from the experimental data of unexpressed gene 
expression profiles by the corresponding thresholding coefficient. In our experiment, the value of this 
coefficient corresponds to the condition 𝑙𝑙𝑐𝑐𝑙𝑙2�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′𝑖𝑖𝑖𝑖� = 0 for all investigated samples. According to 
this condition, genes whose profiles correspond to the condition max(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′) ≤ 1 are considered non-
expressed, and they are removed from the data. At this stage, the number of genes was reduced by 682, 
and the gene expression matrix took the following form: 𝐸𝐸 = (3296 × 19265).  

At the next stage, the values of gene expressions were transformed into a more convenient range by 
applying the function 𝑙𝑙𝑐𝑐𝑙𝑙2(∙) to all values of the matrix. In this instance, the simulation results have 
shown that some values smaller than one were transformed into corresponding negative values. This is 
unacceptable because the minimum gene expression value is 0 (the gene is inactive). Therefore, at this 
stage, negative values were replaced by zero, corresponding to non-expressed genes.  Figure 2 shows 
the distribution of normalized expression values of nine genes for one adrenocortical carcinoma (ACC) 
sample. Figure. 3 shows the nature of the expression values distribution for one type of gene for all 
investigated samples. In this case, the genes A1BG.1 (Fig. 3a), A2M.2 (Fig. 3b), NAT1.9 (Fig. 3c) and 
NAT2.10 (Fig. 3d) were studied. The analysis of the obtained results allows us to conclude that the 
nature of the gene expression values distribution differs significantly for different samples both in 
absolute value and variance. This fact creates the conditions for identifying samples by expression 
values when applying the appropriate classifier. 

 
Figure 2: Boxplots of the expression values distribution of different types of genes for one sample of 
adrenocortical carcinoma (ACC) 

The next phase of the experimental data processing is the extraction of uninformative genes 
considering various kinds of statistical and entropy criteria using Harrington's desirability function by 
the technique described in detail in [23]. 

4. Filtering gene expression profiles by statistical and entropy criteria 

As statistical criteria, we used the maximum absolute value of the expression assessed for all samples 
and the variance of the appropriate gene expression profile. Shannon entropy was calculated using the 
James-Stein shrinkage estimator. Figure 4 shows the boxplots of the distribution of the various criteria 
values. Analyzing the charts indicates an increase in the gene expression profile significance with an 
increase in the statistical criteria values and a decrease in the value of the entropy criterion. In 
accordance with the above, the algorithm for calculating a complex criterion based on the Harrington 
method, which determines the level of the significance of the genes, assumes the following phases: 

1. Assessing the linear equations coefficient values. At this phase, we used the boundary values 
of both the appropriate criteria and Y dimensionless parameter (𝑌𝑌𝑚𝑚𝑖𝑖𝑐𝑐 =  −2; 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = 5): 

𝑌𝑌𝑚𝑚𝑖𝑖𝑐𝑐
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) = 𝑎𝑎(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) + 𝑏𝑏(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) ∙ min(𝑚𝑚𝑎𝑎𝑏𝑏𝑚𝑚, 𝑣𝑣𝑎𝑎𝑣𝑣) 

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) = 𝑎𝑎(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) +  𝑏𝑏(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑚𝑚𝑣𝑣) ∙ max(𝑚𝑚𝑎𝑎𝑏𝑏𝑚𝑚, 𝑣𝑣𝑎𝑎𝑣𝑣)                                   (2)       

𝑌𝑌𝑚𝑚𝑖𝑖𝑐𝑐
(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) = 𝑎𝑎(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) −  𝑏𝑏(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) ∙ max(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) 
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) = 𝑎𝑎(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) −  𝑏𝑏(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) ∙ min(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) 



 
Figure 3: Boxplots of the expression values distribution of one type of gene for different samples. The 
studied genes were: a) A1BG.1; b) A2M.2; c) NAT1.9; d) NAT2.10  

 
Figure 4: Boxplots of the distribution of the gene expression profiles statistical criteria values and 
Shannon's entropy: a) maximum expression value; b) variance; c) Shannon entropy  

2. Calculation of the Y parameter values for each value of the criteria: 

𝑌𝑌𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚) =  𝑎𝑎(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  𝑏𝑏(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ∙ max_𝑎𝑎𝑏𝑏𝑚𝑚 
𝑌𝑌(𝑣𝑣𝑚𝑚𝑣𝑣) =  𝑎𝑎(𝑣𝑣𝑚𝑚𝑣𝑣) +  𝑏𝑏(𝑣𝑣𝑚𝑚𝑣𝑣) ∙ var                                                  (3) 
𝑌𝑌(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) =  𝑎𝑎(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) −  𝑏𝑏(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) ∙ entr 



where: max_abs is the maximum absolute expression values of the corresponding gene profile; var and 
entr are the Shannon entropy end variance of this gene expression profile, respectively; 

3. Evaluation of d-values for each value of the Y parameter: 

𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = exp (−exp (−𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚))) 
𝑑𝑑(𝑣𝑣𝑚𝑚𝑣𝑣) = exp (−exp (−𝑌𝑌(𝑣𝑣𝑚𝑚𝑣𝑣)))                                                 (4) 
𝑑𝑑(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣) = exp (−exp (−𝑌𝑌(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣))) 

4. Evaluation of the generalized index D as a geometric average of all d-values. This index 
indicates the gene expression profile significance: 

𝐷𝐷(𝑔𝑔𝑒𝑒𝑐𝑐𝑒𝑒𝑣𝑣𝑚𝑚𝑔𝑔) =  �𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 𝑑𝑑(𝑣𝑣𝑚𝑚𝑣𝑣) ∙ 𝑑𝑑(𝑒𝑒𝑐𝑐𝑐𝑐𝑣𝑣)3
                                           (5) 

A higher value of the index (5) corresponds to a higher significance of the gene expression profile 
according to the used criteria. Table 4 presents the general statistics of the general index values 
distribution. 

Table 4 
General statistics of the general index values distribution 

Min 1st quartile Median Mean 3rd quartile Max 
0.007239 0.029438 0.039786 0.074478 0.075635 0.947162 

Filtering gene expression profiles at this stage involved removing profiles with a generalized 
desirability index lower than the value of the index corresponding to the first quartile, i.e., 0.029438. 
The number of gene expression profiles, in this case, was reduced by 4814, i.e., the filtered matrix of 
gene expression values took the form: 𝐸𝐸 = (3296 × 14451).  

5. Evaluation of the proposed technique adequacy using the machine learning 
techniques  

Assessment of the gene expression profiles filtering model adequacy was performed in two stages. 
In the first stage, a binary Random Forest classifier was applied to the samples, including the complete 
set of gene expressions (19265) and the set of gene expressions after removing non-informative ones 
by the used criteria (14451). The efficiency of using the Random Forest classifier for the binary 
identification of samples used as the attributes of big data is proved in [24].  In the first step, the 
complete set of samples was divided into eight subsets, each of which contained gene expressions of 
samples for which no tumor was detected (224 samples) and samples with a cancerous tumor, taking 
into account the type of disease. In accordance with the methodology presented in [24,25], the 
experimental data were divided into two subsets, 65% of the samples were used for training the 
classifier, and 35% for testing the obtained model with the evaluation of data classification performance.  

In the second phase, we applied the convolutional neural network (CNN) for complete and filtered 
gene expression data to solve a multi-class task. Taking into account the simulation results presented in 
[26], we used a one-dimensional two-layered CNN, the structural topology of which is shown in Figure 
5. For the correct initialization of the first and second layer filters, the experimental data were 
supplemented with profiles with zero expression up to 19300 and 14500 in the case of using complete 
and filtered gene expression data, respectively. The kernel size was set to 8, and the compact layer 
density was 256. The results were evaluated on a test subset of the data, the number of objects of which 
was 35% of the total number of investigated objects (1144 out of 3269). 

   Table 5 shows the simulation results regarding the binary classification of the investigated samples 
using the complete set of gene expression profiles (19265 genes). It should be noted that when applying 
filtered data (14451 genes), the results were almost the same. Analysis of the data in Table 5 indicates 
the high accuracy of binary classification using complete gene expression data. In three cases, the model 
identified the patient’s state with 100% accuracy. In the other five cases, the accuracy of identifying the 
patient's state according to the appropriate classification criteria is not 100% but is also very high. 



  
Figure 5: Topology of one-dimensional 2NN CNN used as multi-classifier to identify both the state of 
the patient and type of cancer    

Table 5 
Results of the investigated samples binary classification using the complete set of gene expression 
profiles 

Type of data Classification quality criteria 
Accuracy Sensitivity Specificity F-measure МСС 

acc 1 1 1 1 1 
gbm 0.993 0.983 1 0.988 0.985 
kirc 1 1 1 1 1 
lgg 0.992 0.995 0.987 0.994 0.982 

luad 0.989 0.984 1 0.987 0.973 
lusc 0.992 0.989 1 0.990 0.982 
sarc 1 1 1 1 1 
stad 0.987 0.963 1 0.975 0.971 

Tables 6 and 7 present the research results regarding applying a CNN to solve a multiclass task 
based on complete and filtered gene expression data, respectively.  

Table 6 
The results of the application of CNN for the classification of various types of cancer when using 
complete data (19265 genes) 

Class Number of 
samples 

Sensitivity Specificity F-measure Accuracy 

ACC 24 0.85 0.96 0.9  
 
 

97% 

GBM 73 0.97 0.93 0.95 
KIRC 169 0.99 0.98 0.99 
LGG 191 0.97 0.98 0.98 

LUAD 200 0.96 0.96 0.96 
LUSC 169 0.96 0.96 0.96 
SARC 73 0.96 0.96 0.96 
STAD 96 0.94 0.96 0.95 

NORMAL 149 0.99 0.98 0.99 

The simulation results indicate the high efficiency of the Convolutional Neural Network for solving 
multiclass problems. Thus, from 1144 samples used for the model testing, only 36 and 44 were 
identified incorrectly when using the complete and filtered data of gene expression profiles, 
respectively. The classification accuracy was 97% at using complete data and 96% when using filtered 
data. Moreover, the analysis of the values of the classification quality criteria by classes shows the high 
accuracy of identification of samples for which no cancer was detected. This fact confirms the results 



of the binary classification obtained using the Random Forest (RF) classification algorithm and 
indicates that the CNN can be effectively used successfully in systems for identifying the presence or 
absence of a cancerous tumour based on gene expression data. 

Table 7 
The results of the application of CNN for the classification of various types of cancer when using 
filtered data (14451 genes) 

Class Number of 
samples 

Sensitivity Specificity F-measure Accuracy 

ACC 24 0.74 0.96 0.84  
 
 

96% 

GBM 73 0.96 0.92 0.94 
KIRC 169 0.99 0.99 0.99 
LGG 191 0.97 0.98 0.97 

LUAD 200 0.94 0.96 0.95 
LUSC 169 0.96 0.93 0.95 
SARC 73 0.97 0.96 0.97 
STAD 96 0.95 0.93 0.94 

NORMAL 149 0.99 0.99 0.99 

Figure 6 shows charts of accuracy and loss function values obtained on a set of objects that were 
used for training the model validation. The same charts were obtained for filtered data.  

 
Figure 6: Charts of accuracy and loss function values obtained on the subset of objects that were 
used directly for network training and model validation using the complete dataset during the model 
training  

When the simulation procedure was implemented, the set of data allocated for training the model 
was shared into two subsets in the ratio of 0.7/0.3. 70% of samples were used directly for training and 
30% for network validation during the training process. Convergence of both the classification accuracy 
and the loss function obtained on both data subsets indicates the absence of retraining of the network. 
In this case, the classification results received on the test data can be considered adequate. The analysis 
of the obtained results also shows a slight discrepancy in the results of the identification of the samples 
obtained on the complete and filtered subsets. This fact confirms the expediency of removing non-
informative genes at the stage of data preprocessing according to statistical and entropy criteria since 
reducing the certain number of profiles in this case almost does not affect the results of the investigated 
samples classification'. However, we would like to note that the time for data processing and the amount 
of computer resources required for data processing are significantly less in comparison with the 
processing of complete data. 

6. Conclusions 

In this research, we have presented the stepwise procedure of gene expression data formation, 
analysis and preprocessing based on the combined use of various techniques of big data processing. 



The gene expression data of patients examined for various kinds of cancer from The Cancer Genome 
Atlas were applied as the experimental ones when the simulation procedure was implemented. This 
dataset contained nine types of data, eight of which corresponded to eight types of cancer, and the ninth 
data corresponded to samples for which no cancer was identified as a result of clinical trials. The total 
number of studied samples was equal to 3269. Each sample of initial data contained, as attributes, 19947 
genes.  

The procedure of gene expression data formation at the first step assumed the application to the 
initial data functions of the TCGAbiolinks package in order to transform the values of gene expression 
in a more suitable range. Then, the non-expressed and lowly-expressed genes for all samples were 
removed from the data as non-informative ones. At this phase, we removed 682 non-expressed genes, 
and their quantity was reduced from 19947 to 19265. In the second step, the non-informative genes in 
terms of various statistical and entropy criteria were removed from the dataset. To identify the genes' 
significance based on various kinds of criteria, we have applied the Harrington desirability function. 
Implementation of this phase has allowed us to reduce the genes from 19265 to 14451. 

In the final phase, we applied the Random Forest classifier to solve the binary classification task and 
the Convolutional Neural Network to solve the multi-classification task with calculation classification 
performance criteria at each phase of this procedure implementation. The analysis of the simulation 
results indicates the high efficiency of the application of both the RF algorithm and the CNN for solving 
both binary and multiclass tasks. In all cases, the classification accuracy calculated with the use of the 
test dataset was very high.  From 1144 samples used for the model testing, only 36 and 44 were 
identified incorrectly when using the complete and filtered data of gene expression profiles, 
respectively.  

The further perspectives of the authors' research are the creation of a hybrid model of gene 
expression data processing based on the joint use of clustering and classification techniques, where the 
presented in the manuscript method will use at the stage of data pre-processing. 
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