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Abstract  
The process of performing arithmetic operations of addition, multiplication, and 

exponentiation, where the operands are multi-bit numbers, is extremely common in 

applied problems of number theory, computational and discrete mathematics. This 

applies to methods of pattern recognition, digital signal processing, tamper-proof coding, 

statistical data processing, etc. However, their most important application is in 

asymmetric cryptography.  In this field, for example, in the Rabin cryptosystem, it is 

often necessary to simultaneously perform the Euclidean algorithm and multiply two 

multi-bit numbers.  

The work presents new methods of finding the greatest common divisor based on the 

formation of appropriate matrices, which allows parallelization of calculations. Their 

advantages over the existing ones are indicated, in particular, the possibility of increasing 

speed. It was established that these methods, in addition to finding the greatest common 

divisor, make it possible to factorize it simultaneously. 

In the C+ high-level programming language, a program implementation of the 

simultaneous execution of the Euclidean algorithm and the multiplication of two multi-

bit numbers by the classical Euclidean algorithm and the proposed methods was carried 

out. Corresponding experimental studies of the time characteristics of this software 

implementation have been conducted. The proposed method involves the use of 

intermediate results of the Euclidean algorithm and access to the table of squares stored 

in the computer's memory. The Rabin encryption scheme based on the proposed method 

of multiplying multi-bit numbers is given. 

Numbers of different digits were used for the experiment. It is shown that in the vast 

majority of cases considered, the proposed method is characterized by a higher speed of 

processing multi-bit numbers. The average time of operations is reduced by 

approximately 1.43 times. All calculations were repeated 5000 times to eliminate random 

influences on the time characteristics of the computer. The proposed method can be 

effectively used when simultaneous execution of the Euclidean algorithm and 

multiplication of two multi-bit numbers is required. 
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Currently, the performance of arithmetic operations on multi-bit numbers is very widely used in 

various fields of science and technology, in particular, when solving problems of computational, 

applied and discrete mathematics [1-2]. Moreover, each of the corresponding algorithms has its 

own area of effective use depending on the bit rate, calculation model, programming language, 

hardware or software implementation [3]. Multi-bit number processing processes are extremely 

common in digital signal and image processing [4-6], methods of tamper-proof coding [7-8]. But 

this especially applies to the problems of cryptography [9-11], where the most common operations 

are multiplication, exponentiation [12], finding the greatest common divisor (GCD), use of the 

Chinese remainder theorem (CRT) [13-14], etc. The combination of the first two with the rest of the 

operations requires a strictly sequential implementation, which significantly reduces the speed of 

computer systems. An example can be the Rabin cryptosystem, in which the Euclidean algorithm is 

used to apply the CRT, and the same numbers must be multiplied to form the public key. Therefore, 

the question of the possibility of parallelization of similar operations [15], in particular, the use of 

the residual number system (RNS) [16, 17]. 

2. Related works 

2.1. Rabin cryptosystem 

To generate keys in the Rabin cryptosystem, two large prime numbers p and q are chosen, which 

act as a secret key. Their product m=pq  is a public key. The encryption of the plaintext  block V, 

which must be maximal but less than m, occurs according to the formula Z=V
2
mod m. 

Decryption is much more complicated and takes place in several stages. First, the residuals  

z1=Z mod p and z2=Z mod q. are sought. Next, you need to determine the square roots modulo: 

;,mod
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zpzzzpz  .,mod
212122212

zqzzzqz   After that, four pairs of 

residues are formed from the values of zij,  where i, j=1, 2: (z11, z21), (z11, z22), (z12, z21), (z12, z22).The 

last stage of deciphering is a four-fold application of CRT. However, before that, it is necessary to 

find the values of parameters s i t in the fornula sp+tq=1 using the Euclidean algorithm and its 

consequence. This gives four variants of the plaintext block, one of which is correct: 

1) V1=spz21+tqz11; 

2) V2=spz22+tqz11; 

3) V3=spz21+tqz12; 

4) V4=spz22+tqz12. 

Figure 1 shows the Rabin encryption scheme. 

So, the complete cycle of Rabin cryptosystem involves the execution of Euclidean algorithm for 

two numbers (private keys) and their multiplication. 

2.2. Greatest common divisor search methods 

The mathematical notation of Euclidean algorithm looks like this: for any X>Y=r0, where X  and Y 

are integers, the system of equations is fulfilled. 
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Figure 1: Rabin encryption scheme 

 

GCD (X, Y), calculated using the Euclidean algorithm, will be equal to rn, that is, the last non-zero 

term of the sequence ri. When the numbers X and Y are mutually prime, which is important for 

asymmetric cryptography, then rn=1. 

In addition, in [18], entitled Optimized GCDSAD, proposed a new method that computes the GCD 

of two 32-bit numbers using an absolute difference sum block. 

2.3. Methods of performing the multiplication operation 

Many algorithms have been developed for multiplication (standard, binary, Montgomery, 

Karatsuba-Ofman, etc.), which are characterized by different computational complexity. It should be 

noted that multiplication, in particular, modular, is the most critical operation when using asymmetric 

cryptosystems. For example, in [19] they present new optimal methods of modular multiplication, 

which are based on interleaved Montgomery multiplication on 16-bit MSP430X microprocessors. 

Meanwhile, a part of the multiplication is performed in the hardware multiplier, and part - in the basic 

arithmetic logic device. In [20] it is presented the implementation of multiplication and squaring for 

32-bit ARM Cortex-M4 microcontrollers. Implementation and research of fast modular 

exponentiation on FPGAs using multiplication is presented in [21]. В [22-23] a hardware architecture 

for efficient modular exponentiation in asymmetric cryptography is presented. In [24] prospects for 

the use of modern software in Montgomery arithmetic are given. 

However, theoretical studies do not always show the real picture regarding the speed of 

calculations, as they do not take into account all the factors that affect the computer's operation, in 

particular, memory access, features of the processor load, its bit rate and parallelization of 

calculations, etc. 

Therefore, the aim of our work is to find, compare and analyze the time of simultaneous execution 

of the Euclid algorithm and multiplication of two multi-bit numbers performed using the classical and 

proposed methods for numbers of different bits on a computer with given parameters. 

 

 



3. Proposed model 

3.1. The method of searching for GCD using parallelization 

To parallelize the search for GCD, it is advisable to use the proposed algorithm based on RNS, 

which involves working with residues [25]. It consists of the following stages.  

1. Numbers are represented in the binary numbering system:  
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Where n  is the bit rate of the input data. 

2. Binary codes of numbers X and Y are represented in the delimited system of residual classes in 

the form of residual vectors according to the following expressions: 
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bpy  mod)2( ,     (1) 

where і=n-1, n-2, …, 1, 0; j=0, 1, …, k. 

As a result, the codes of numbers YX ,  in the system of simple modules j
p  can be represented in 

the form of residual vectors that form the corresponding matrices: 
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The given representation of YX , in the form of residual vectors can be summarized as follows: 

ijaX  , ijbY  , де і=n-1, n-2, …, 1, 0; j=0, 1, …, k., 1,0 
jijij

pba . 

Then, for the multiplicative GCD (MGCD) z, the inequality must hold: 
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3. Next, the elements of matrices (2) need to be represented in the form of two vectors: 
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for all kj ,0 . 

From (4), two vectors are obtained that represent numbers YX , in the integer system of residual 

classes: 
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To determine the components (modules) of the MGCD z, it is necessary to perform a comparison 
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4. In order to find the GCD Z, the input numbers X and Y are represented in the delimited 

numbering system by modules j
p  that meet the condition (6). Then, according to (2), matrices of 

residues are created by modules 
m

j
p , where m , is the exponent of the degree for which condition (6) 

is fulfilled: 
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The verification of condition (6) for powers is performed according to comparisons  
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Then the GCD is calculated according to the following multiplicative function: 
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In comparison with the well-known Euclidean algorithm, the proposed algorithm for finding the 

GCD is characterized by the following advantages: 

1. Formation of matrices can occur in parallel using several processors. 

2. Simultaneously with the search for the GCD, its factorization takes place. 

An improved method of searching for GCD using parallelization 

The proposed algorithm can be significantly improved by removing the third step with the 

fulfillment of an additional condition: 
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The search of the GCD for the components j
p  that meet the condition (10) is carried out on the 

basis of the representation of the input numbers X and Y in the delimited RNS according to (2). Next, 

the matrices (10) of the residuals are formed by 
m

j
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the condition (10) is fulfilled. After that, the remainders are searched for products of modules, 
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Thus, the product of all simple modules to Y  powers, for which the condition 0
,,


kjkj
ba is 

fulfilled, will be GCD, i.e.: 
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The main advantage of this algorithm in comparison with the previous one is the avoidance of the 

search for MGCD, which will significantly increase the speed of operation. 

3.2. Algorithmic support for the simultaneous execution of the Euclid 
algorithm and multiplication 

In Rabin cryptosystem, the given numbers a and b are prime, so it is known that in this case GCD 

(а,b)=rn=1. In contrast to the execution of the Euclidean algorithm followed by the multiplication of 



these same numbers, it is proposed, according to (1), to use the intermediate and final results of the 

Euclidean algorithm in the multiplication as follows: 
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It should be noted that the number of terms in (13) corresponds to the number of steps in 

Euclidean algorithm. Although this method involves the performance of a larger number of arithmetic 

operations, they will be performed on numbers of smaller digits. Having a table of squares in the 

computer's memory is an essential step to increase performance, although this leads to an increase in 

the use of computer system resources. The block diagram of the algorithm is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2: Block diagram of the proposed algorithm 

 

Since in the Rabin cryptosystem the private  key consists of simple numbers, it is appropriate to 

give an example with such numbers. Let a=757, b=131. Then: 

757=1315+102 

131=1021+29 

102=293+15 

29=151+14 

15=141+1 

14=114+0. 

Obtained: 

757131=13125+10221+2923+1521+1421+1214=85805+10404+2523+225+196+14=99167. 

 

a=a-b b=b-a 

c=c+ square[b] 

c=c+max(a,b) 

a>b 

c=c+ square[a] 

begin 

Yes 

No 

Yes 

No 
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a=1 or b=1 

end 

a,b, square[1..max(a,b)] 

 



4. Results and Discussions 

4.1. Selection of hardware and software 

A Lenovo IdeaPad 1 15IAU7 Cloud Gray laptop computer with an Intel Core i5-1235U processor 

(4.4 GHz) was chosen for experimental research. The amount of RAM in the device was 8 GB. When 

designing the software complex that provided calculations, the C++ high-level programming language 

was chosen. A special purpose library written by A. Lenstra was used to work with multi-bit numbers. 

This made it possible to provide flexible possibilities for working with multi-bit numbers, the size of 

which depends only on available system resources. The selected programming language and the 

cross-platform nature of the special library allow you to transform the codes for different architectures 

and operating systems. The most common method of software implementation of Euclidean algorithm 

is to subtract a smaller number from a larger number successively until the difference becomes less 

than the denominator. Then the same procedure must be performed with the subtractor and the 

difference. The subtraction process will continue until the numerator and the difference are equal. 

4.2. Obtained results and their discussion 

Table 1 presents the time of simultaneous execution of the Euclidean algorithm and multiplication 

of numbers by classical (t1) and proposed (t2) methods for b=2, 3, …, 70 if a=71, and in Figure 3 - the 

corresponding graphic dependence (t1 and t1av - dashed line, t2 and t2av – solid). 

 
Table 1 
The time of simultaneous execution of the Euclidean algorithm and multiplication of numbers by 
classical (t1) and proposed (t2) methods 

b 2 3 4 5 6 7 8 9 10 11 12 

t1, s 0,011 0,028 0,033 0,035 0,034 0,017 0,036 0,035 0,037 0,038 0,034 

t2, s 0,030 0,033 0,037 0,019 0,034 0,036 0,034 0,033 0,026 0,029 0,034 

b 13 14 15 16 17 18 19 20 21 22 23 

t1, s 0,036 0,027 0,044 0,042 0,035 0,033 0,049 0,035 0,059 0,034 0,030 

t2, s 0,030 0,014 0,026 0,014 0,027 0,029 0,030 0,044 0,029 0,027 0,014 

b 24 25 26 27 28 29 30 31 32 33 34 

t1, s 0,033 0,035 0,047 0,049 0,053 0,036 0,044 0,037 0,047 0,049 0,036 

t2, s 0,015 0,027 0,043 0,045 0,027 0,029 0,028 0,026 0,029 0,030 0,014 

b 35 36 37 38 39 40 41 42 43 44 45 

t1, s 0,034 0,036 0,036 0,049 0,060 0,049 0,047 0,035 0,053 0,047 0,060 

t2, s 0,014 0,015 0,030 0,043 0,030 0,030 0,044 0,043 0,031 0,045 0,030 

b 46 47 48 49 50 51 52 53 54 55 56 

t1, s 0,049 0,052 0,035 0,036 0,049 0,052 0,052 0,051 0,050 0,036 0,043 

t2, s 0,031 0,030 0,030 0,043 0,031 0,030 0,034 0,014 0,027 0,027 0,029 

b 57 58 59 60 61 62 63 64 65 66 67 

t1, s 0,035 0,049 0,036 0,052 0,035 0,037 0,038 0,036 0,034 0,037 0,035 

t2, s 0,014 0,015 0,026 0,014 0,026 0,028 0,025 0,026 0,032 0,014 0,024 

b 68 69 70         

t1, s 0,047 0,036 0,037 Average time: t1av = 0,040333 s. 

t2, s 0,030 0,031 0,016 Average time: t2av = 0,028174 s. 

 



 

 

 
Figure 3: Graphic dependence of the time of simultaneous execution of the Euclidean algorithm and 
multiplication by classical (t1) and proposed (t2) methods 

 

The graphs have an oscillating character, which is explained by the different number of steps in the 

Euclid algorithm for different numbers. In 60 cases out of 69, which is 87%, calculations using the 

proposed method are performed faster, in 7 (10%) - slower, in 2 cases (3%) the execution time of both 

methods is the same. The average time values are respectively t1av=0,040333 s and t2av=0,028174 s, 

which is also presented on the graph. Therefore, the speed increased by an average of 1.43 times. 

Table 2 presents the average time of simultaneous execution of the Euclidean algorithm and 

multiplication by the classical (t3) and proposed (t4) methods in the case when the prime numbers a 

are within one bit from 67 to 127, and Figure 4 shows the corresponding graphs depending on the 

number. Meanwhile, b changes from 2 to а-1. 

 

Table 2 
Presents the average time of simultaneous execution of the Euclidean algorithm and multiplication 
by the classical (t3) and proposed (t4) methods 

№ 1 2 3 4 5 6 7 

а 67 71 73 79 83 89 97 

t3, s 0,036378 0,037795 0,037279 0,038432 0,038529 0,038299 0,037149 

t4, s 0,026 0,029734 0,030091 0,029974 0,030903 0,030181 0,030925 

№ 8 9 10 11 12 13  

a 101 103 107 109 113 127  

t3, s 0,038799 0,038494 0,040197 0,039259 0,039557 0,039558  

t4, s 0,032202 0,031235 0,030418 0,030805 0,030545 0,03127  
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Figure 4: Graphical dependence of the average time of simultaneous execution of the Euclidean 
algorithm and multiplication by classical (t3) and proposed (t4) methods on the number of the 
number according to Table 2 

  

It can be seen from Figure 4 that the average working time of the proposed method is in all cases 

less than that of the classical method. The general trend shows an increase in time when the given 

numbers increase, and the graph for the classical method grows more intensively. 

Table 3 presents the average time of simultaneous execution of the Euclidean algorithm and 

multiplication by the classical (t5) and proposed (t6) methods in the case when the bit size of n prime 

numbers a is in the range from 7 to 16 bits, and in Figure 5 - the corresponding graphic dependencies 

in the logarithmic scale. The number b changes similarly to the previous case. 

 

Table 3 
The average time of simultaneous execution of the Euclidean algorithm and multiplication by 
classical (t5) and proposed (t6) methods 

a 131 181 257 359 521 727 

log2a 7 7,5 8 8,5 9 9,5 

t5, s 0,040647 0,039552 0,041882 0,043543 0,044861 0,046143 

t6, s 0,031404 0,032203 0,032901 0,034511 0,034842 0,035637 

a 1031 1447 2053 2897 4099 5791 

log2a 10 10,5 11 11,5 12 12,5 

t5, s 0,048351 0,049332 0,051031 0,051939 0,05343 0,054777 

t6, s 0,037071 0,037709 0,039201 0,039927 0,040637 0,041501 

a 8209 11587 16411 23173 32771 46337 

log2a 13 13,5 14 14,5 15 15,5 

t5, s 0,056491 0,05767 0,059349 0,060891 0,062278 0,063533 

t6, s 0,042513 0,043564 0,044601 0,045537 0,04623 0,047939 

 

It can be seen that the average working time increases almost linearly with the increase in the 

number of bits, and the graph for the classical method grows more intensively. 
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Figure 4:  Graphical dependence of the average time of simultaneous execution of the Euclid 
algorithm and multiplication by the classical (t5) and proposed (t6) methods on the number of digits 
of a 

 

Table 4 presents the average time of simultaneous execution of the Euclid algorithm and 

multiplication by the classical (t7) and proposed (t8) methods in the case when the digit number of n 

prime numbers a (parameter a was assigned the value of the smallest prime number that exceeded 2n) 

is in the range from 16 to 44 bits, and Figure 6 shows the corresponding graphical dependencies in a 

logarithmic scale. The number b acquired 10,000 different values. 

 

Table 4 
The average time of simultaneous execution of the Euclid algorithm and multiplication by classical 
(t7) and proposed (t8) methods 

log2a 16 20 24 28 32 36 40 44 

t7, s 0,06741 0,07823 0,08839 0,09791 0,10651 0,11875 0,12629 0,13231 

t8, s 0,05003 0,05834 0,06712 0,07554 0,08627 0,09764 0,10509 0,10901 
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Figure 6: Graphical dependence of the average time of simultaneous execution of the Euclid 
algorithm and multiplication by classical (t7) and proposed (t8) methods on the number of digits of a 

As it can be seen from the figure, the graphs are placed almost parallel. With large bits (n≥40), the 

intensity of t8 growth decreases. 

All calculations were repeated 5000 times to eliminate random effects on runtime. 

5. Conclusion 

The work deals with an experimental study of the time of simultaneous execution of the Euclidean 

algorithm and multiplication of two multi-bit numbers by classical and proposed methods. The C++  

high-level programming language is used. The proposed method stipulates the use of intermediate 

results of the Euclidean algorithm and the table of squares available in the computer's memory. The 

research was conducted on numbers of different digits. It is shown that for the vast majority of the 

considered numbers, the proposed method requires less time to perform arithmetic operations. The 

average time of simultaneous execution of the Euclidean algorithm and multiplication decreases by 

approximately 1.43 times. 

In addition, new methods of finding the greatest common divisor based on the formation of 

residual matrices are given. This makes it possible to parallelize the process of processing multi-bit 

numbers and, accordingly, increase the speed. It was established that the procedure for finding the 

greatest common divisor by the proposed methods is accompanied by its factorization. 
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