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Abstract  
The paper is devoted to the development of an intelligent control system for the spray drying 
machine producing tomato powder. Since the technological process is quite complex, the 
input is uncertain, and the output is unpredictable, there is no possibility to use mathematical 
or other formal models to control it. The development task was proposed to be solved in two 
stages. At the stage of perception, methods for recognizing images captured by the electro-
optical and infrared sensors were used. A four-layer fully connected backpropagation neural 
network was used to identify the state of a mixture consisting of tomato paste particles and 
superheated droplets, which allows the detection of some deviation in the process flow. At 
the decision-making stage, a neuro-fuzzy approach based on the Sugeno model was chosen. 
The neuro-fuzzy controller was implemented based on the ANFIS model represented by a 
five-layer forward propagation neural network. The ANFIS-based neuro-fuzzy controller was 
modeled, generated, and trained using the Fuzzy Logic Toolbox. The experiment was shown 
that a spray drying machine equipped with the developed intelligent control system can 
produce tomato powder of high quality without human intervention that excludes operator 
errors.  
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1. Introduction 

The modern world is subject to numerous challenges. Over the past decade, the conditions of human 
life have changed significantly due to urbanization, industrialization, population migration, global 
climate change, and concomitant environmental degradation. There is a talk not only about droughts, 
forest fires, and changes in the levels of rivers and water reservoirs - their consequence is the 
complication of growing conditions for some crops, which are the basic products for humans. We are 
witnessing the beginning of a global food crisis that threatens not only social stability but also the 
economic development of most countries of the world. There is even a new term – food security [1]. 

Today, such a situation becomes so serious that an immediate solution is required to many issues 
not only of intensifying and expanding the cultivation of food crops but also of their careful and 
efficient processing. The food industry requires revolutionary change [2]. Among other things, it 
strongly depends not only on technology but also on the availability of raw materials and labor force, 
competition, and changes in consumer behavior. While advanced achievements in the field of 
robotics, information technology, and artificial intelligence have long been used in high-tech areas, 
which have led to the rapid development of new technologies on their basis, in the food industry there 
has still been a significant lag [3]. The food industry is not considered a sector with high research 
intensity as well as innovations [4]. 

At the same time, the energy crisis and signs of a global food crisis require intensification through 
the introduction of new technologies, which reduce the energy intensity of production processes, 
speed up production and improve product quality, and provide flexibility and efficiency. One of the 
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important technological challenges is the use of advanced artificial intelligence technologies to 
control the technological processes of food production. Although these issues were considered in the 
framework of the study of the so-called 4th industrial revolution [5], such issues have not yet been 
found in a sufficiently deep study among scientists [6].  

There is a lack of models and methods of intelligent control in food industry processes that would 
be operable in real-life. Typically, these processes are transient, non-linear, and non-stationary. As a 
rule, mathematical models of such processes cannot be defined or have insufficient accuracy. Data are 
usually based on sensors, which provide ambiguous, imprecise, incomplete, inconsistent, and doubtful 
information. Such a wide range of uncertainties introduces unpredictability of the states of the 
processes. Clearly, we should use novel intelligent methods to overcome uncertainties as well as a 
lack of mathematical models [7]. 

Thus, the study of ways to develop a method of intelligent control of the technological process of 
food production based on remote sensing is a topic of our interest. 

In this paper, we consider issues related to creating and effectively applying modern intelligent 
control systems in the production of tomato paste powder concentrate. Thus, the authors propose to 
use modern achievements in the field of artificial intelligence. The problem addressed in this paper is 
how to use well-known intelligent control methods to increase productivity, ensure proper product 
quality, and eliminate the possibility of production errors and defects that affect the quality of the 
final product. 

2. Recent works 

In recent years, artificial intelligence (AI) technology became one of the most popular topics [8]. 
Today, AI permeates many industries and technologies becoming an essential feature over the world.  

Now researchers write a lot about Industry 4.0 and already about Industry 5.0, which would be 
impossible without the industrial advances of AI. In the context of the Food Industry, the main 
context is based on cyber-physical systems, in which functions are controlled or monitored through 
computer-based algorithms [9]. 

The main components of Food Industry 4.0 are digitalization, additive manufacturing, 
nanotechnology, industrial robots, and automation makeup, which could reduce production time and 
processing costs [10]. However, fully automated factories are challenging due to huge initial costs 
while robots are not suitable for many important food processing technologies because of inflexibility 
[11]. Moreover, traditional robotics are good enough when both the task and data are consistent and 
predictable, however, it is not like that in real life. These challenges could be resolved by greater 
involvement of a human, but the requirements for laborers capable of servicing such equipment are 
sharply increased. The use of deeper AI technologies allows both to reduce labor requirements and 
increase the flexibility and efficiency of robots [12]. 

Relevant to the food industry, such AI-based technologies combine sensors, processors, and other 
computer components on the one hand, and a range of advanced information technologies such as big 
data, the internet of things, augmented reality, computer vision (CV), machine learning (ML), 3D 
printing, etc. on the second hand [13]. 

The transition to Food Industry 5.0 predetermines the contributions of AI, ML, CV, robotics, and 
blockchain to solve such important tasks as monitoring, diagnosis, prognosis, prediction, 
optimization, etc. in the context of adaptive process control. Applying AI/ML/CV methods, 
algorithms, and engines for intelligent control of the food process lines allows to change in food 
production processes qualitatively shifting attention to smart science and food chain intelligence [14]. 
Accordingly, perception and decision-making began to be considered as the main challenges in AI 
instead of actuation or reasoning. The less an issue becomes a computational capacity, the more 
researchers paid attention to perception and decision-making in intelligent control systems. 

A wide range of models, methods, and algorithms of various performance and reliability has been 
offered by scientists [15], the great majority of which is based on predicates, production inference, 
frame models, semantic networks, cognitive maps, associative structures, etc. 

Some AI methods are based on a logical approach, including production, and logical or plausible 
inference. Unfortunately, such methods are based on the “closed world” assumption, so they are 



poorly applicable in conditions of uncertainty and unpredictability. Artificial neural networks, genetic 
algorithms, and evolutionary systems have been created according to the principles of organization 
and functioning of their biological counterparts. They are essentially nonlinear; although they can 
solve a wide range of recognition, identification, forecasting, and optimization problems, they are not 
always able to obtain the desired solution in a finite time. Besides, researchers distinguish model-
based, rule-based, and case-based classes of intelligent control systems [16]. 

The use of model-based systems is an issue due to the difficulty of constructing adequate models 
for non-stationary and nonlinear processes, while their simplification leads to a significant decrease in 
accuracy. Rule-based systems have obvious drawbacks, since the task of a priori construction of an 
exhaustive set of rules is practically unsolvable, and the set of rules itself is difficult to adapt to 
dynamic changes in the environment. Case-based systems depend too much on a sufficient set of 
cases against which to compare and select. At the same time, a hybrid approach has been proposed to 
achieve a synergistic effect by combining models and methods. Thus, the use of only the most popular 
neural networks in automation tasks has some disadvantages, since they receive information about the 
control object in the process of learning, and statistical data is needed to do this. Such shortcomings 
can be eliminated by using structures of fuzzy sets, which make it possible to ensure the formalization 
of fuzzy variables. Therefore, such hybridization as neuro-fuzzy systems can be more relevant for 
certain domains than the sum of neural networks and fuzzy logic separately [17]. 

Obviously, it is advisable to choose a hybrid approach concerning the goal of the paper. Using 
computer vision methods, we can solve the task of perception, while using neural networks to 
optimize equipment control, we can also solve the task of decision-making. Given the inaccuracy and 
uncertainty of information coming from the perception stage to the decision-making stage, the fuzzy 
method should be used to overcome the emerging uncertainties and develop the systems of the neuro-
fuzzy class [18]. Thus, this paper aims to contribute to the development of a neuro-fuzzy control 
system for a specific food machine. 

3. Preliminaries 
3.1. Tomato Paste Drying Technology 

Tomato powder is a powdered concentrate of tomato paste, which is used as a food additive in 
cooking to give dishes a specific smell and color.  

The raw vegetable material for the drying process is aseptic tomato paste (30% dry matter) canned 
or directly produced from fresh tomatoes according to the current food standards. To produce a 
tomato paste, a hot break technology is mainly used, while the tomatoes are chopped at a high 
temperature (85 to 90ºC). Tomato paste produced by such a method is more viscous and thicker, with 
a viscosity of 3.5 to 6.0 cm/30s. Thus, hot break tomato paste is further used to produce ketchup and 
sauces, and its viscosity guarantees a significant reduction in the amount of starch in tomato products. 
The accompanied procedure of enzymatic inactivation through high temperature increases viscosity 
and reduces the risk of syneresis (i.e., separation of the liquid part from its fibrous part).  

At the output of the hot break technology process, tomato paste should match some organoleptic 
requirements, including appearance (homogeneous concentrated mass without dark inclusions, 
residues of peel, seeds, and other coarse particles), taste, and odor (no bitterness, burning, and other 
foreign flavors and odors), and color (red, orange-red, or crimson-red, uniform throughout the mass), 
as well as chemical requirements of the food standards, such as maximum presence level of impurities 
of vegetable origin, mineral impurities, foreign impurities, etc.  

Tomato paste (30% dry matter) that meets the above requirements can be further used to produce a 
dry powder. There are several methods to produce dried food products from vegetable raw materials 
[19] including such modern methods as freeze-drying and spray-drying [20].  

The research [21] provides an overview of various methods of drying raw fruit and vegetable 
materials for the overall quality of powders. The freeze-drying method is the most effective in 
preserving nutrients in powdered products, but its industrial application is hampered by high energy 
consumption, equipment costs, and low productivity. Some methods of alternating grinding and 
drying processes are also impractical due to the high energy costs and complexity of the process. 



Some methods [22] propose obtaining tomato powder with additional ingredients, such as starch or 
carrot powder. Before granulation, tomato paste should be mixed with additions until the mixture 
content reaches moisture of 47-53%. This method is also energy-intensive; it requires additional raw 
materials, which significantly increases the cost of the finished product. Moreover, during the 
recovery of the powder, the tomato mixed with starch reminds gel-like substances that do not meet the 
quality requirements. 

In [23], the authors analyzed conductive drying technologies such as a vacuum drum dryer, a drum 
dryer, a thin-film dryer with stirring, and a refractometric dryer. This study showed that the drying 
methods have a strong influence on the final quality of the powder. Thus, most methods influence 
lycopene degradation since lycopene is the main pigment found in tomatoes. The conductive method 
is relatively slow for drying concentrated tomato puree and therefore has power limitations, while the 
increase in heat treatment time harms the sensory characteristics of the finished tomato powder.  

Summarizing the results of well-known studies, we conclude that those methods that ensure the 
appropriate quality of the final product are too slow and have high energy consumption, therefore the 
cost of the final product exceeds the expectations of the food industry. The other methods that ensure 
an acceptable speed of the process and relatively low energy consumption do not provide the 
appropriate properties of the final product, including color, taste, the content of useful substances, etc. 

Based on the results of studies [21-23], the authors decided to use spray drying, which can be 
recognized as the most cost-effective technology for drying pureed products that maintain proper 
quality. Thus, we decided to investigate the AI-based advances for intelligent control of spray drying 
technology to produce high-quality tomato powders as well as other vegetable and fruit powders.  

Let us analyze the technological process and the corresponding food machinery in terms of 
controllability. 

3.2. The Food Machine Design 

The appearance of the spray drying machine that uses hot break technology is presented in Fig. 1. 
The machine’s framework is a cylindrical container with a welded conical bottom (Fig. 2). The 

machine has a clash-welded lid with a pollutant installed on it. 
 

 
Figure 1: Spray-drying food machine  

 
Here and below, the designations will be given according to the diagram in Fig. 2.  

Drying occurs with the help of air (B) heated in the calf 170 180 C−  . The supply of hot air is 
carried out from above through a pressure jet (4).  

Tomato paste (A) is sprayed under a certain pressure through the nozzle (3), while it initially 
passes through the hot break process. To be injected into the primary dryer chamber (5), tomato paste 
is ground and heated 85 90 C−   using devices (1) and (2) respectively.  

In the primary dryer chamber, the main drying process occurs, where hot tomato paste is injected 
under a pressure of 25-30 bar into a stream of superheated hot air. Thus, there is a mixture of drops of 
superheated steam and tomato particles of 80-120 microns in size inside the primary dryer. Therefore, 
the chamber provides a large surface area in the form of small liquid droplets, which leads to 
producing regular and spherical powder particles.   



 
Figure 2: The scheme of a spray drying machine  

 
The first stage of the drying process allows the removal of surface moisture to about 38% and 
prevents the sticking of tomato particles. At the exit of the primary dryer, a partially dehydrated 
mixture is formed (C). 

The secondary drying chamber (8) includes tubes having a length sufficient to increase the contact 
time between the drying air (E) and the droplets/particles. Clearly, the drying rate and temperature are 
too low to ensure adequate drying without a secondary drying chamber. The secondary dryer 
minimizes crop losses without increasing the drying speed. The secondary dryer produces tomato 
powder (D) after removing free moisture with a residual moisture content of about 7-9%. 

As the result, represented technological process allows for preserving the structure of the product 
and biologically active substances. To increase its efficiency much more, we need to modify it using 
novel achievements in intelligent control techniques. 

The spray-drying process can be controlled by several control parameters. Thus, the drying process 
is significantly affected by the temperature ( AT ) and pressure ( AP ) of hot air supplied into the primary 
chamber, the temperature ( PT ) and pressure ( PP ) of the injected tomato paste, the inner chamber 
temperature ( CT ) and pressure ( CP ), moisture content ( ρ ) of the mixture in the primary chamber, 
temperature ( ST ) of hot air pumped into the secondary drying chamber, and the rate of release of the 
mixture from the primary chamber (υ ). Accordingly, the food machine is equipped with a set of 
temperature, pressure, and humidity sensors. 

The control actions are the signals to the tomato paste pump ( 0Py ) and heater ( 0Ty ), the air supply 
pump ( 1Py ) and calf ( 1Ty ) in the primary drying circuit, the air heater ( 2Ty ) in the secondary drying 
circuit, the damper for the mixture outlet from the primary chamber ( 3y ), and the damper for the 
powder outlet from the secondary chamber ( 4y ). 

It should be noted that the process of dehydration of the mixture into powder is essentially non-
linear, which is further exacerbated by the significant thermal inertia of both the mass of tomato paste 
itself and the heaters. Therefore, the technological process is transient, non-linear, and non-stationary, 
information captured by sensors is mainly inaccurate and comes with a delay, while the response to 
control signals is poorly predictable. Thus, it is incredibly difficult to control such a process, since any 
deviation leads either to burned powder, to an unacceptable change in its color or smell, or to the 
sticking together of its particles, which entails losses. 

However, using the optionally installed electro-optical camera (6 in Fig. 2) and thermal infrared 
camera (7 in Fig. 2), the controllability of the process can be improved with the help of modern image 
recognition and artificial intelligence technologies. 



4. Problem Statement 

As can be seen from the previous section, the tomato paste drying process is quite complex. It is 
poorly controlled, and without reliable automation, due to operator errors, it often produces a spoiled 
product, which leads to the loss of raw materials and the rise in the cost of the final product. 

The objective of the paper is to improve control of the tomato paste drying process by developing 
an intelligent control system for the spray drying food machine, which will be able to take 
responsibility for the process control and for the high quality of the final product, so, accordingly, 
remove this responsibility from the operator. 

Following the above-mentioned approaches to intelligent controlling of such technologies, the task 
of developing an AI-based control system can be solved in two stages.  

The first stage is perception. Although the food machine is equipped with many sensors, the 
observations are ambiguous, imprecise, and inconsistent. Therefore, we propose to attract optical and 
infrared cameras in addition to remote sensing. The information captured by these sensors can be 
processed using modern methods of image recognition. 

The second stage is decision-making. Actually, the image recognition at the first stage is primarily 
aimed at identifying the state of the tomato mixture within the chamber, which allows for detecting 
some deviation in the process flow. Knowing the state of the mixture and the laws of process control, 
it is possible to generate control signals for the equipment. However, unfortunately, it is impossible to 
build an adequate mathematical model of the process, as well as to build an exhaustive system of rules 
that describe the laws of process control. 

Thus, the development of a neuro-fuzzy control system for the spray drying machine is an 
acceptable response to the uncertainty of input and unpredictability of output that ensures overcoming 
them and can be a proper solution to the decision-making task.  

In the next sections, we develop an image recognition method to solve the perception task and 
develop a neuro-fuzzy controller to solve the decision-making task. 

5. Image Recognition 

When the tomato paste mass is sprayed in the dryer chamber, it changes the state in various points to 
“hot”, “boiled”, and even “burnt”. Although the drying process evolves within the entire volume of 
the chamber, we can observe the drying process by sensors only at a certain plane of the dryer’s 
volume, capturing the state of a certain surface formed by moving droplets and particles of the 
mixture, because the sensors used do not provide depth measurement. 

Suppose { }0 1 6, ,...,W w w w=  is an ordered set of possible states of the tomato paste mixture at a 
certain point, where 0w  is an initial state “heating”, 1w - 5w  are transitional states “underheated”, 
“dried”, “overheated”, “ready”, “burned”, respectively, and 6w  is a final state “burnt” (in the sense 
that further drying will not help - the product is already spoiled).  

During the drying process, temperature changes lead to a change in the color of the tomato paste 
particles, but there is no direct dependence due to the significant thermal inertia of both the mass of 
the tomato paste itself and the heaters.  

Thus, the state of the mixture can be assessed based on the temperature measurements and the 
mixture color recognition, primarily the color near the hot surfaces. Taking into account the design of 
the food machine, we can measure only the closest layer of particles within the tomato paste mixture, 
which forms an observation surface. 

5.1. Model of measurements 

Consider a two-dimensional Euclidean space C D . Suppose 
the grid D  defines a two-dimensional array { } ,

, 0

m n

ij i j
D d

=
=  of square cells ijd  sized δ δ× , where i  and 

j  are the array indices that correspond to the coordinate axes within the space C  and δ  is a spatial 



discrete. Consider each cell ijd D∈  as a minimal homogeneous area on the observation surface of the 
tomato paste mixture inside the spray-dryer chamber. 

Suppose each cell ijd D∈  is associated with a set of attribute values { }1,...ij ij ijnA a a= . Initially, we 

will be particularly interested in two important parameters: 1ija  - the color state of the cell on the 
observation surface evaluated through image recognition based on the images captured by the inner 
electro-optical camera, and 2ija  - the temperature of the mass measured remotely by the infrared 
camera within the spray-dryer chamber. As a result of the measurement, we match each cell ijd D∈  

with its attributes, so that 1 2,ij ij ijd a a =   .  

Thus, we assume that cells ijd D∈  related to certain coordinates ( ),i j  and attribute values 

1 2,ij ij ijd a a =    change their state dynamically under the influence of spray drying.  

Suppose ϑ  is a function like : D A Wϑ × → . Based on remote sensing, we can estimate values of 
the attributes 1 2,ij ija a  of the cell ijd D∈  and putting these values into the function ϑ , assess the state 
of the corresponding cell.  

Since the cells change through a well-known ordered sequence of states, 0 1 5 6...w w w w→ ↔ ↔ → , 
the spray-drying process can be represented as a transition of the cells from one state to another. Such 
transitions can be direct and reverse (the latter excludes 1w  and 6w ) (Fig. 3).  

 
 

( 1)kl k lw w +→  

klw  

( 1)k lw +  

( 1)k l klw w+ →  
 

Figure 3: Example of direct and reverse transition of the cell state 
 
If using remote sensing, we can timely and accurately determine the transition of the majority of 

cells from one state to another, we will be able to reliably control the process.  

5.2. Image Analyzing Process 

The image-analyzing process depends on obtaining consecutive image frames captured by the electro-
optical camera inside the considered spray drying machine.  

The electro-optical camera captures a sequence of image frames, which the control system should 
analyze properly. The entire process of the image analysis consists of the following stages (Fig. 4): 

1  Image mapping. As a result of the mapping process, the image frame will be oriented, 
transformed, and mapped in a certain way to superimpose the cells ijd D∈  of the surface D  on a 
corresponding pixel matrix ijM  of size m n× .  

2  Image transformation. At this stage, each RGB pixel of the current image frame should be 
transformed into HSI color space, where H, S, and I respectively mean hue, saturation, and intensity. 
In this color scheme, the H component represents a pure (dominant) color, the S component indicates 
a dilution degree of the color over the white light, and the I component defines its brightness. For 
further computational convenience, all components should be normalized to the intervals: 0 ≤ H ≤ 
360°, 0 ≤ S ≤ 1, and 0 ≤ I ≤ 1, where 0 corresponds to strict black as well as 1 corresponds to strict 
white. As a result of such image transformation, we can speed up the subsequent image analysis 



significantly since we decouple the intensity component from the color information for all pixels of 
the current image frame. 

3  Image averaging. At this stage, the values of hue, saturation, and intensity will be averaged 
over the pixels of the m n×  pixel matrix ijM  within the borders of the corresponding cell ijd D∈ . 
As a result, each cell ijd D∈  will be associated with the average values ijH , ijS , and ijI .  
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Figure 4: Image analyzing process 

 
4  Image filtering. At this stage, the cells having HSI values out of the proper range should be 

eliminated from the analysis to speed it up, and their colors should be replaced by the nearest proper 
color. Since the mixture of the tomato paste must be of red, orange-red, or crimson red depending on 
the quality and grade of raw materials, we must filter out all cells having average H value out of the 
allowed interval [340° - 20°] (from dark pink to orange-red). For the average S value, the allowed 
range is [0.6-1.0], while for the average I value it is [0.4-1.0]. Three closest colors (H=348°, H=0°, 
H=12°) are assumed to replace all pixels filtered out due to distortions and noise in the image frame.  

5  Image generalization. At this stage, the average H value for each cell must be replaced by a 
degree ijξ  of similarity to the center color in the HSI color space (H=0°). Thus, all analyzed values 
will be normalized within the range [0, 1] for each cell ijd D∈ . 

5.3. Temperature Measurement 

The infrared camera allows measure temperature remotely. It captures a thermal image of the 
observation surface. In the such image, black pixels correspond to points that do not radiate heat. The 
higher the temperature at a given point, the lighter the color (brightness) of the corresponding pixel to 
the grayscale. Therefore, the temperature can be estimated at a certain point based on the estimation 
of the color of the corresponding pixel.  

Since the resolution of an infrared camera is much lower than the resolution of an optical one, it is 
required to bind the pixels of a thermal image to the cells of a discrete space in a slightly different 



way. Besides, due to the nature of the tomato paste mixture, the temperature is usually higher at the 
points of contact with the metal surfaces than at other points. That is why, to correctly measure the 
temperature at the points of the greatest heating, it is necessary to search for bursts of gray brightness 
on the general uniform gray background of the thermal image. 

The thermal image analysis consists of the following stages:  
1 Image mapping. At this stage, we impose all pixels of the thermal image to the discrete space 

D  to map certain sets of pixels to certain cells ijd D∈ . 
2 Image averaging. At this stage, we search for the maximal brightness values for all pixels 

within each cell ijd D∈ . The cell ijd  takes this maximal value of brightness ijB  in contrast to optical 
image processing, where color parameters need to be averaged within the cell.  

3 Gray color evaluation. At this stage, the ordinal color scale from black to white is mapped on 
a numerical scale from 0 to 1 using a partial order of grey colors (Fig. 5). According to this scale, 
each cell ijd  will be associated with a respective temperature ijη  based on the degree of brightness 

ijB . 
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Figure 5: Partial order of grey color for temperature measurement 

5.4. Cell State Identification 

Given data from the sensors and recognized images, it is possible to identify the state of the tomato 
paste mixture inside the primary dryer chamber. Since the particles of the mixture are approximately 
80-120 microns in size, the resolution of the camera (5376х3024 pixels, wide field of view) gets allow 
detection of underheating, overheating, excess pressure inside the chamber, and other inconsistencies 
with the process map. Moreover, it is possible to indirectly estimate the residual moisture at the outlet 
of the mixture. 

Since the spray-drying process is essentially non-linear, we can identify the state of the tomato 
paste mixture using the artificial neural network (NN) because the latter can get a satisfying result 
when the data is incomplete. In this paper, a four-layer fully connected backpropagation NN is used 
for state identification, as simplified shown in Fig. 6, which consists of the input layer, two hidden 
layers, and the output layer. The real NN is a 15×18×6×7 network.  

The input data of the NN are H, S, and I components of each pixel of three consecutive image 
frames (i-1, i, i+1) captured by the electro-optical camera, and the respective temperature values ijη  
estimated by the corresponding IR-captured image. Besides that, the values of inner chamber 
temperature ( CT ), pressure ( CP ), and moisture content ( ρ ) estimated based on the data from 
corresponding sensors are also inputs to the network. The log-sigmoid function is used as the transfer 
function at the input layer and first hidden layer as well as the Gauss-based radial basis function at the 
second hidden layer. 

The numbers of the input and output nodes are determined by the process nature, but the 
determination of the hidden nodes lacks an efficient method. Clearly, the more complex the problem 
the more hidden nodes are needed. However, when the number of hidden nodes becomes larger the 
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Figure 6: Neuron network used for identification of the state of the mixture 

 
Such confidence value reflects the membership function of the real state at a certain state defined 
within the set W . Thus, at the perception stage, we perform a sequential scan of three consecutive 
image frames captured by the cameras and estimate H, S, I, and ijη  values for each cell pixel of the 
observation surface using the image recognition method proposed above. The parameters of each cell 
within three analyzed consecutive image frames were fed to the NN inputs. 

Depending on the conditions within the primary drying chamber such as actual pressure, the 
temperature of the mixture, etc., we get a value at the output of the NN indicating the confidence ijkγ  

that within the cell ijd D∈  the mixture is in a certain state kw W∈ . Therefore, the state identification 
process is cyclic, the neural network is sequentially matched with the inputs corresponding to each 
next cell of the two-dimensional array D  to evaluate output values, and then after receiving the next 
image frame, the process is repeated again and again, for each updated three consecutive frames.  

Processing three consecutive frames of the image at once allow us to compute the reflective color 
at the same place of consecutive images differs quite a lot. 

The image recognition algorithm allows filtering droplets from the mixture image leaving the 
particles of tomato paste to assess the residual moisture and find out the end of the process.  

The backpropagation NN needs to train. It consists of two phases: 
Training phase. Learn and revise the connection weights of the input and output nodes by the 

numerical and parameter optimization method, until achieving the expected output. 
Generalization phase. Train the network to predict the unknown samples. 



The training process is considered a parameter optimization problem. There are many NN features 
to adjust the weights to obtain more efficient rules. The connections between the different layers are 
defined based on the weights in the error back-propagation NN, where neurons at the same layers do 
not connect with each other.  

The standard backpropagation NN reflects a gradient descent learning algorithm, and the weights 
revising process is along the opposite direction of the gradient of the error performance function. The 
initial weights of both networks can be randomly generated. 

6. Decision Making 

Considering the features of the spray drying technological process, the uncertainty of the input 
information, and the unpredictability of the output state, it is proposed to apply a neuro-fuzzy 
controller, which uses both artificial neural networks and the procedures of fuzzy logic, making it 
possible to identify complex processes. 

6.1. Neuro-fuzzy control system 

The structure of the automated control system of the spray drying process is presented in Fig. 7. 

 
Figure 7: Structure of the automated control system 

 
This automated control system is discrete with period T.  

At the scheme in Fig. 7, ( )X t  is a vector of input parameters, ( )tΨ  a vector of external 
disturbances, ( )x t  a mismatch vector, ( )Y t  a control vector, F  an object function, and K  a 
transmission ratio. 

The switch on the diagram in Fig. 7 toggles the state of the automated system. When the switch is 
closed, the automated system is at the decision-making stage according to its transmission ratio. When 
the switch is open, the automated system is in the perception stage. 

Using a neuro-fuzzy approach [24], the automated system can be presented from a slightly 
different perspective, as shown in Fig. 8, where ( )z t  is a vector of input parameters captured by 
sensors. 

 
Figure 8: Structure of the automated control system based on ANFIS 

 



6.2. Adaptive-Network-Based Fuzzy Inference System 

The neuro-fuzzy control system is based on the artificial neural network learning process, which 
enables the determination of fuzzy inference rules (FIS). As soon as the fuzzy output parameters are 
defined, neural networks work in normal mode. Thus, a learning neural network algorithm is used to 
determine the parameters of the fuzzy inference system that includes corresponding fuzzy 
membership functions.  

ANFIS (Adaptive-Network-Based Fuzzy Inference System) is the implementation of a fuzzy 
system proposed in [25] based on a five-layer forward propagation neural network. Fig. 9 illustrates a 
structure diagram example of ANFIS with two variables. The model inputs x  and y  are the input 
variables that allow determining the discrepancy between the current and planned value of the 
variables, and the output variable f  is the control influence. 

 

 
Figure 9: ANFIS structure 

 
The decision-making model of the ANFIS is represented in Fig. 10. 

 

 
Figure 10: ANFIS model 

 
The first layer of the ANFIS is responsible for fuzzifying the input signal according to the selected 
membership function. It determines the fuzzy terms of a set of input values.  



The outputs of the nodes of this layer can be represented by ( )1
i

iO A xµ= , where 1
iO  is an output 

state of the first layer, ( )iA x  is the corresponding parameterized membership function of the fuzzy 
set A.  

Although there is a wide range of well-known membership functions, we use the trapezoidal 
membership function, using which, for example, it is quite simple to specify linguistic terms such as 
"LOW", "NORMAL", and "HIGH" for temperature, pressure, etc. 

The second layer is responsible for multiplying the input signal and defining the applied fuzzy 
rules. In this layer, each node corresponds to one uncertain rule, and its output represents the validity 
of the given rule.  

In other words, the node output defines an AND operator that satisfies any T-normal form. The 
node of the second layer is connected to those nodes of the first layer that form the preconditions of 
the corresponding rule. The outputs of the node can be defined as ( ) ( )2

i
i i iO A x B yω µ µ= = × . 

The third layer is responsible for computing the normalized trust of the rule, so it normalizes the 
degrees of rule fulfillment, ( )3 1 2 ...i

i i nO ω ω ω ω ω= = + + + . The non-adaptive nodes of this layer 
calculate the relative weight of the fuzzy rule. 

The fourth layer is responsible for the output of the node. It provides defuzzification determining 
the contribution of each fuzzy rule to the output of the network. The output of the node can be 
calculated as ( )4

i
i i i i i iO f p x q x rω ω= = + + , where ip , iq , and ir  are certain parameters. 

The fifth layer summarizes and calculates the total output of the network as the sum of all input 
signals providing the control value: 5

i
ii i

O fω=∑ . 
ANFIS determines that each value is represented by only one fuzzy set.  
ANFIS neural network learning procedure has no restrictions on the modification of the 

membership functions. Although the learning mechanism of the ANFIS does not depend on statistical 
information, however, since the selection of parameters of the fuzzy neural system is a major 
problem, and since most of these parameters are selected based on user experience and/or trial and 
error, only experimental data can be used to automate the spray drying process and minimize error. 

6.3. Development of Neuro-Fuzzy Controller  

The development of the intelligent neuro-fuzzy controller is based on the Sugeno model, ANFIS, and 
a high-performance neural network training procedure. 

The following vectors of input ( x ) and output ( y ) parameters are selected for the construction of 
the neuro-fuzzy controller: 

( ), , , , , , , , ,A A P P C C Sx T P T P T P T υ ρΩ= , where 0x = Ω  is the evaluated state of the mixture, 1 Ax T=  
and 2 Ax P=  are the temperature and pressure of hot air supplied into the primary chamber, 3 Px T=  
and 4 Px P=  are the temperature and pressure of the injected tomato paste, 5 Cx T=  and 6 Cx P=  are the 
inner chamber temperature and pressure 7x ρ=  is the moisture content of the mixture within the 
primary chamber, 8 Sx T=  are the temperature of hot air pumped into the secondary chamber, and 

9x υ=  is the rate of release of the mixture from the primary chamber. 
( )0 0 1 1 2 3 4, , , , , ,P T P T Ty y yy y y y y= , where the output parameters determine the control values 

respectively to the tomato paste pump and heater, the air supply pump and calf in the primary circuit, 
the air heater in the secondary circuit, the damper for the mixture outlet from the primary chamber, 
and the damper for the powder outlet from the secondary chamber. 

The evaluated state of the mixture Ω  is an important element of the control procedure. 
Since we obtain a two-dimensional m n× ( )0, 1, 6...ij ij ij ijξ γ γ γ=  for each cell 

ijd D∈



( ) ,

, 0

m n

ij i j
ξ

=
Ξ =  and the definition of several variables: 1ζ  is the state of the 

vast majority of elements in the array Ξ , 2ζ  is the largest estimated state of some of the array Ξ  
elements, 3ζ  is the smallest estimated state of some of the array Ξ  elements, 4ζ  is the state of some 
representative set of array Ξ  elements that are different from the state of most cells, 5ζ  is the 
estimated transition rate of most elements from state to state, and 6ζ  is the maximum speed of the last 
transition of some elements from state to state. 

Thus, ( )1 6,...ζ ζΩ = . 
Such a choice of input and output vectors makes it possible to monitor the current state of the 

process and adjust the values of the control parameters.  
The ANFIS model can be represented by the equation: 

1 00 1 1 2 1 0 9 11 417.. . .. .i PiY yx yY xα β β ββ β− ++ += + + + + . 
It can be seen that all variables influence the antecedents of fuzzy rules. 
The fuzzy rules in the ANFIS can be built according to the Sugeno-Takagi algorithm. 

Accordingly, fuzzy rules should be defined as 
( ) ( ) ( ) ( )0 3

1 1 1 1 1 1
0 1 2 3 0 4 3

  and  and  and 

  
i l k m j n z

i i k j

IF x A x B y C y D

THEN Y x x y yα β β β β

= = = =

= + + + +
 

Obviously, in the presented rules lA , mB , nC , and zD  are fuzzy sets, while 1
0α , 1

1β , 1
2β , 1

3β , and 
1
4β  are coefficients of the equations. 

6.4. ANFIS Training  

Before using the neuro-fuzzy controller, the neuron network must be first trained. The training 
procedure should be used after the training vectors for ANFIS have been prepared.  

The ANFIS learning procedure is implemented as a set of the following steps: first, the rules not 
equal to zero that affect the result are recognized and a check is performed: if there are unconsidered 
rules that affect the result, then the increment of the parameters of the membership functions is 
calculated, then the value of the parameters of the functions is changed belonging to the calculated 
value.  

Thus, the nodes of the output layer are trained. Otherwise, if all the rules affecting the result are 
considered, the transition to the calculation of the output value of the network is performed. the 
coefficients of the equations are hidden. 

In the next step, the residual error is calculated.  
Next, the following check is performed: if there are unexamined rules that affect the result, then 

the nodes of the first layer, which are the prerequisites of the current rule, are identified; the derivative 
of the membership function of the nodes of the first layer is calculated; the increment of membership 
function parameters is calculated and the membership function parameters of the first layer are 
changed. Otherwise, if all the rules have been considered, the procedure is over. 

After performing ANFIS training, the controller can control the spray-drying food machine. 

7. Implementation 

The spray drying food machine, tomato paste of the highest quality as well as a possibility of 
experiment and set accumulation were kindly provided by the company AgroFusion LLC (Hola 
Prystan, Kherson region, Southern Ukraine). 

The ANFIS model has been generated using the FIS Editor tool from the Fuzzy Logic Toolbox 
(MATLAB package).  

Using the same tools, a system of 276 fuzzy rules has been developed; the corresponding 
coefficients and membership functions of fuzzy sets have been determined using a built-in algorithm 
in MATLAB.  



Initial values were chosen arbitrarily. 
Next, using the FIS Editor, a training sample has been defined placing the values of the valid 

verification points. Totally, the training includes 380 epochs.  
The spray drying machine under the control of an experienced operator has been used to obtain the 

training sample. 
This prototype of the intelligent control system has been implemented using embedded 

microcontroller STM32F429 (180 MHz Cortex M4, 2Mb Flash/256Kb internal RAM, N25Q512 
QSPI Flash memory), GNU Tools for ARM Processors, C++ programming language, and Fast 
Artificial Neural Network Library (FANN). 

Using the readfis function, generated and trained ANFIS model has been loaded from MATLAB 
in the embedded microcontroller.  

Experimental studies of the neuro-fuzzy controller and entire intelligent control system have been 
conducted and shown that the proposed system provides enough reliability and efficiency for the 
control of such a complex technological process as fruit/vegetable spray drying concerning its 
uncertainties and unpredictability. 

A spray drying machine equipped with a developed intelligent control system can produce tomato 
powder of high quality without human intervention. It is shown that when the number of the training 
epochs increases, the error decreases and the accuracy of the control increases essentially.  

The intelligent control system allows for responding promptly to any deviations in the 
technological process. As well, the developed intelligent control system provides enough performance 
for the spray drying machine.  

Fig. 11 shows a diagram of residual moisture dependency on the production time of a batch of 
powder in two cases - when the machine is manually controlled (in red) and when using an intelligent 
control system (in blue). 

 

 
Figure 11: Dependency of residual moisture on the production time 

8. Conclusion 

The proposed intelligent control system based on the neuro-fuzzy controller enables reliable and 
efficient control of the fruit/vegetable spray drying technological process. It can take responsibility for 
the high quality of the final product, and, so, deny the responsibility from the human operator.  

Since the tomato paste drying process is quite complex and poorly controlled, an operator can 
make errors, therefore a spoiled product can often be produced rising the loss of raw materials and the 
cost of the final product. 



The proposed intelligent control system solves its tasks in two stages due to uncertain and 
imprecise input data captured by sensors as well as the unpredictability of output due to a lack of 
mathematical models or well-defined laws of the process. 

At the stage of perception, there was proposed to use image recognition algorithms, where the 
input images are captured by the electro-optical and infrared camera sensors. Then, a four-layer fully 
connected backpropagation neural network was proposed to identify the state of a mixture consisting 
of tomato paste particles and superheated droplets within the drying chamber, which allows for 
detecting the deviation in the process flow.  

At the decision-making stage, there was proposed to use a neuro-fuzzy controller based on the 
ANFIS model. The neuro-fuzzy controller can be defined by a five-layer forward propagation neural 
network. It uses the Sugeno model to define fuzzy rules and fuzzy membership functions. Fuzzy 
Logic Toolbox from MATLAB was used to define, model, generate, and train the ANFIS-based 
neuro-fuzzy system.  

As the experiment shows, the spray drying machine equipped with the developed intelligent 
control system can produce tomato powder of high quality without human intervention.  

Future research will be devoted to researching the ability of the proposed model of the intelligent 
control system to upgrade the flexibility and adaptability of spray drying technology through the use 
of more advanced neural network models and case-based systems. 
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