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Abstract
Modeling inter-dependencies between time series is the key to achieve high performance in anomaly detection for multivariate
time series data. The de-facto solution to model the dependencies is to feed the data into a recurrent neural network (RNN).
However, the fully connected network structure underneath the RNN (either GRU or LSTM) assumes a static and complete
dependency graph between time series, which may not hold in many real-world applications. To alleviate this assumption,
we propose a dynamic bipartite graph structure to encode the inter-dependencies between time series. More concretely, we
model time series as one type of nodes, and the time series segments (regarded as event) as another type of nodes, where
the edge between two types of nodes describe a temporal pattern occurred on a specific time series at a certain time. Based
on this design, relations between time series can be explicitly modeled via dynamic connections to event nodes, and the
multivariate time series anomaly detection problem can be formulated as a self-supervised, edge stream prediction problem
in dynamic graphs. We conducted extensive experiments to demonstrate the effectiveness of the design.
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1. Introduction
Detecting anomalies in time series data has been an im-
portant problem in the research community of data min-
ing as well as the finance industry. In many circum-
stances, anomaly patterns in multiple time series need
to be taken into account together to disclose the full
picture of the system. Previous works in multivariate
anomaly detection mainly rely on recurrent neural net-
works (RNNs). Malhotra et al.[1] and Hundman et al.[2]
employed LSTM models [3] to capture the temporal de-
pendencies of multivariate signals and adopted predic-
tion and reconstruction errors, respectively, to identify
the anomaly patterns. Su et al.[4] improved the classical
RNN model by modeling the probability distribution of
time series via incorporating stochastic variables. To fur-
ther model the correlations of time series explicitly, Zhao
et al.[5] proposed a graph attention network to propa-
gate information from different time series and aggregate
the information together before feeding into a GRU [6].
However, because of the underlying RNN structure, pre-
vious works assume a static, complete dependency graph
among time series. These approaches may not perform
well under regime change of time series where the un-
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derlying inter-dependencies are different. Our work is
built upon the recent wisdom of dynamic graph neural
network. We allow the connectivity of the graph changes
dynamically in different time stamps based on the pat-
terns on the time series.

In order to construct a dynamic graph on-the-fly, one
important question is how to determine the connectiv-
ity of the graph in each timestamp. Our work is in-
spired by the recent progress of evolutionary event graph
[7, 8] where the nodes in the graph represent the time-
sequences segments (events) and directed links represent
the transition of the segments (events). Compare to previ-
ous works, this line of research naturally models the time-
varying relations among time series states via dynamic
connections, and each state carries a physical meaning
that is understandable by human. However, one major
limitation of [8] is that the event nodes employed in this
work capture the information across all the time series.
Assume there are𝐾 segment patterns in each time series,
and the number of time series is 𝐷. The model would
need 𝐾𝐷 number of event nodes to represent the multi-
variate signals. This exponential number of event nodes
strongly limits the information processing capability of
the evolutionary state graph and therefore allows only a
very small number of time series (𝐷) to be analyzed in
practice (four in the dataset used in the paper [8]).

To address the problem of exponential number of com-
binations, we disentangle the time series nodes and the
event nodes in our design, and model them as two types
of nodes in a dynamic bipartite graph (as depicted in
Fig. 1). Each event node only represents a time seg-
ment on one individual time series, instead of integrating
patterns across all time series. The undirectional con-
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Figure 1: This toy example has three time series nodes and four event nodes. Time-step t90 correspond to an anomaly pattern
while other time stamps are normal. The relation between time series nodes and event nodes are highlighted, green dashed
line means the predicted relation while the red line means the actual relation.

nection between two types of nodes indicates event 𝑒
happens on the 𝑑𝑡ℎ time series at time 𝑡. So the maxi-
mum number of edges in the graph is 𝑂(𝐾𝐷), which
is much smaller than 𝑂(𝐾2𝐷). To further improve the
efficiency and generalizability of the algorithm, we built
upon the framework based on the recent advances in
edge streams [9, 10, 11], where connections between
nodes are modeled as incoming attributed edges instead
of constructing adjacency matrices. The complete sys-
tem, with the name Event2Graph (Event-driven bipartite
Graph), outperforms previous strong baselines on two
public data-sets, and we summarize our main contribu-
tions as follows:
(i) We propose a bipartite event-graph-based system to
analyze the multivariate time series and model the inter-
actions between time series and event segments via edge
streams. (ii) Events employed in the system is highly
interpretable and easy for human to interact with. (iii)
The system achieves competitive performance on chal-
lenging anomaly detection datasets through graph edge
forecasting.

2. Related work
Static inter-dependency relation: In this category
of approach, relations (e.g., correlation) between multi-
variate time series are fixed once learned, and the model
assumes all the time series can influence each other (com-
plete inter-dependency). LSTM-based framework has
been widely employed in this category of work. For
instance, Malhotra et al.[1] proposed a LSTM-based auto-
encoder network to detect anomalies from multiple sen-

sors, Su et al.[4] proposed a stochastic LSTM framework
to model the data distribution of time series in a global
perspective. As RNN was originally proposed to model
the temporal dependencies between different timestamps,
and all the dimensions of the input of RNN are used to de-
scribe a single concept (e.g.word) all together, it was not
tailored to model the inter-dependencies among variables
by design. Recently, Zhao et al.[5] proposed a graph at-
tention network-based (GAT) approach [12] where each
time series is regarded as an individual node, and informa-
tion are aggregated based on the underlying similarity
of the signals. While this solution partially mitigates
the problem by taking into account of dynamic pairwise
similarities between time series, the design assumes a
complete and static inter-dependency graph. Also, the
processed information after GAT is simply aggregated
all together and fed into a single GRU. Hence the module
still suffers from similar problems as previous designs.
Dynamic inter-dependency relation: A few recent
works started to explore the partial inter-dependency
relations among time series. Deng et al.[13] constructed
a neighborhood graph on-the-fly based on sensor em-
beddings to describe the dependencies between different
sensors. The sparsity level of this incomplete graph can
be customized by users, but the connectivity of the graph
is fixed once constructed. Hu et al.[8] proposed the first
dynamic dependency design in multivariate anomaly de-
tection. In this design, nodes are interpretable time series
states, and the transition of these states are explicitly
modeled by dynamic graph neural network. This design
allows the system to represent the time-varying relations
among time series. However, one major limitation of



the method is it uses a single event node to represent
segments across all time series. This design brings the
combination explosion problem in pattern representation
(mentioned in Section I) and makes it hard to tackle a
moderate scale problem. Our model is built upon the
advances in dynamic graph neural networks. Most of the
literatures in dynamic graph networks assume discrete-
time graph dynamics where the graphs are represented as
a sequence of snapshots [14, 15, 16]. Recent works start
exploring more flexible design and assuming edges can
appear at any time [10, 17, 9, 18, 11]. Our solution is de-
rived from a recent solution named Temporal Graph Net-
works (TGN) proposed by Rossi et al.[11]. The model is
built upon the temporal graph attention network (TGAT)
[10] but extended with an unique node-wise memory
which attempt to model the temporal dependency on the
node level instead of the system level as [5]. It allows us
to model the dynamic inter-dependency in our bi-partite
event graph accurately, and provide us the flexibility to
incorporate new nodes that have not seen in training.

3. Problem definition
A multivariate time series is defined as X ∈ R𝑇×𝑑 where
𝑇 is the maximum number of time stamps in the time
series and 𝑑 is the dimension. The anomaly detection
problem is to detect specific time stamps �̇�* ∈ O in a
multivariate time series where the time series behav-
ior deviating from the normal patterns of the time series.
Note that O contains timestamps that marked as anomaly
by domain expert. In case 𝑇 is large, a common way to
handle long time series is to use a sliding window ap-
proach. Let 𝜏 denote the length of the sliding window.
We hereby formulate the problem as a binary classifica-
tion problem with the objective to identify time windows
with X[�̇�−𝜏 :�̇�]×𝑑 that contain anomaly time-stamps. One
solution of solving the multivariate time series anomaly
detection problem is to convert time series into a homoge-
neous graph [7, 8], where G𝑒 is defined on the represen-
tative patterns of a multivariate time series. The node of
the graph v𝑒 corresponds to a human interpretable time
series patterns p ∈ R𝜏×𝑑. The pattern should be repre-
sentative enough so that the whole time series can be
approximated by transitions of symbolic events (states)
in the graph. The transitional relation between two se-
quential nodes (end with stamp 𝑡 and 𝑡 + 1) is defined
as an edge in the graph. Many existing works (e.g., Bag
of Patterns, Shaples, sequence clustering) can be used to
distill representative patterns (event) from time series,
but most of them only effective on univariate time series
where 𝑑 = 1.

4. Bipartite Event Stream
The core intuition behind the dynamic bipartite design
is to decouple three key concepts in the traditional event
graph, namely: where (which time series), when (at what
time), and which (the event category). This practice helps
us avoid the problem of exponential pattern combina-
tions.

Specifically, the proposed algorithm is built upon a
dynamic bipartite graph. We define it as a sequence of
undirected bipartite event graph 𝐺𝑡

𝐵 = {(v𝑡𝑚, v𝑡𝑒,
𝐴(v𝑡𝑚, v𝑡𝑒))}. Here 𝑡 represents when the time window
that the event graph is formulated. If the window size is
set to be 1, then the time window 𝑡 is essentially the same
as the time step �̇�. A time sequence index node v𝑡𝑚 indi-
cates “where" an event v𝑡𝑒 is happening. An attributed
edge𝐴(v𝑡𝑚, v𝑡𝑒) that connect event node v𝑡𝑒 and sequence
index node v𝑡𝑚 indicates an event v𝑡𝑒 happened on time
series𝑚 at time window 𝑡. For simplicity, we also denote
the edge as 𝐴𝑚,𝑒 in the following sections. We employ
an edge stream representation so an edge 𝐴(v𝑡𝑚, v𝑡𝑒) is
only constructed to represent the relation that actually
existed. A major benefit of using edge stream represen-
tation over adjacency matrix is that it allows the graph
structure to be more scalable and flexible, which pro-
vides us the generality of incorporating new events that
have not appeared in training. Based on this bipartite
graph structure, we convert the multivariate anomaly
detection problem into a self-supervised edge prediction
problem in dynamic graph. Given the historical sequence
of G(1:𝑡)

𝐵 and event nodes v𝑡+1
𝑒 in time window 𝑡 + 1,

we are predicting edges �̂�(v𝑡+1
𝑚 , v𝑡+1

𝑒 )) in G𝑡+1
𝐵 . The

anomaly is derived as a mismatching score from the pre-
dicted edge set �̂�(v𝑡+1

𝑚 , v𝑡+1
𝑒 )) and the observed edge

set 𝐴(v𝑡+1
𝑚 , v𝑡+1

𝑒 )) with a read-out function 𝑟(·).
So the procedure of solving the anomaly detection

problem becomes:
1. Given a normal sequence X𝑡𝑟 , identify represen-

tative patterns on each of the time sequence re-
spectively in multivariate time series.

2. With identified representative patterns events,
merge similar events across time series to indicate
affinity relation between time series.

3. Build a sequence of bipartite event graph for mul-
tivariate time series (with a stride 𝛽) based on
event matching.

4. Analyze the sequence of bi-partite event graphs
and derive a model Ψ to describe the intra- and
inter-dependency relations.

5. Given a testing sequenceX𝑡𝑒, repeat (3), apply the
model learned in (4) to predict �̂� at time window
𝑡*.

6. Derive anomaly scores based on the predicted �̂�
and original time series with a proposed readout
function 𝑟(·).



Figure 2: Events are represented by colorful grids in the event bar. In each event bar, X axis corresponding to the time, each
row corresponds a time series. One event bar summarizes all the event happened on an individual time series. For each group
of event bar, two type event bars corresponding to the events generated by pattern matching and residual computing. The
predicted efvent bars are generated by the proposed system via forecasting the next connected event node for each time series.
The anomaly score is generated based on the mismatch between the predicted events and the actual events.

5. Event Node Detection And
Matching

We defined the event nodes on each time series separately
and employed an unsupervised algorithm to identify the
events. As we have no prior knowledge about what an
anomaly pattern would look like in most real world appli-
cations, the system is designed to learn the representative
patterns and their correlations from observed data.
Representative segment detection: We adopted Matrix

Profile [19], a state-of-the-art unsupervised algorithm to
identify representative patterns from time sequences.f
Matrix profile is able to identify the top-𝐾 repeated pat-
terns on time series with high accuracy and low com-
putation time. We employed a recent implementation
of matrix profile called SCRIMP++ [20] on each of the
time series in X𝑡𝑟 , and the algorithm yields a list of single
dimensional representative patterns p𝑚,𝑘 (𝑚 ∈ {1 : 𝐷},
𝑘 ∈ {1 : 𝐾}), each with size 𝜏 .
Event generation: many time series share similar rep-

resentative patterns with each other. It is reasonable to
merge similar segment patterns together across different
time series to create the event nodes. To measure the
similarity between time series, we employed dynamic
time wrapping [21], which provides us with a robust dis-
tance matrix that is insensitive to small misalignments
between two time series segments. After that, we em-
ployed the H-DBSCAN [22] to cluster the patterns p𝑚,𝑘

into clusters. We select the centroid of each cluster to
be an event, which is a representative segment across all
time series within the cluster. Finally, we obtain an event
set E𝜏 which contains all events each with length 𝜏 .

Eventmatching: after extracting𝐾 events from time se-
ries segments, we match each event with the original time
series to identify where and when each event is taking

place. We employed a highly efficient C language-based
Dynamic Time Wrapping algorithm [23] to conduct the
event matching, which provides a (𝑇 − 𝜏)∖𝛽 ×𝐷 ×𝐾
similarity tensor ℒ𝜏 to indicate the similarity of each
event to all the sliding window with size 𝜏 and stride 𝛽
in the input.
Event nodes created by pattern matching: for a single

time stamp 𝑡, given ℒ𝜏 the event graph is created by
selecting the best matched events for each time series.
The event node is then connected with the correspond-
ing time series node v𝑡𝑚 in the event graph G𝑡

𝐵 with an
attribute edge𝐴(v𝑡𝑒, v𝑡𝑚). By finding and linking the best
matched event for each time series, we added 𝑑 number
of event nodes into the graph.
Event nodes created by residual error: we noticed that

even for the best matched time series, the pattern match-
ing still left with small residual errors. We hereby define
two general residual nodes which indicate whether the
residual error in a time series is larger than a threshold
𝜃. One residual event node denoted as v𝑡𝑒+ indicates the
residual error is larger than 𝜃, another residual event
node denoted as v𝑡𝑒− indicates the residual error is equal
or smaller than 𝜃. The parameter 𝜃 is automatically gen-
erated using SPOT [24] algorithm, where we employ the
whole training data-set for initialization and testing for
on-going adaptation. All time series shared these two
residual nodes as shown in Fig. 3.

After generating a sequence of bipartite event graph
G(1:𝑡)

𝐵 for time series X𝑡𝑟 , a model Ψ is trained on G(1:𝑡)
𝐵

so that given a testing sequence X𝑡𝑒, it is able to predict
the connectivity of an event graph in any specific time
stamp �̇� by observing historical sequence observed on
X𝑡𝑒. In Fig. 2, we visualize the events forecasted/detected
on ten time series. The difference between the top and
the middle group result in the bottom group where we



Figure 3: Overview of the proposed approach. The time series nodes are represented by blue circles, two types of event nodes
(results from time series matching and residual computation) are represented by yellow and orange circle, respectively. The
whole system is trained in an end-to-end manner.

can easily identify the anomaly locations.

5.1. Network Design With Node-wise
Memory

For each pair of v𝑡𝑚 and v𝑡𝑒 in graph G(𝑡)
𝐵 , the node fea-

tures of them are defined as 𝑣𝑚 and 𝑣𝑒, respectively. We
also define 𝜖𝑚,𝑒 as the edge features between v𝑚 and v𝑒.
In order to support the dynamic inter-dependency graph,
we avoid explicitly defining a static adjacency matrix to
describe the relation between nodes. Instead, we adopt a
state-message framework to model the node interactions.
For each node v𝑚 at time stamp 𝑡 (here we use time se-
ries node 𝑚 as an example; the same rule applies to the
event node 𝑒), we define a state vector 𝑠𝑚(𝑡) to repre-
sent its interaction history with other v𝑒 nodes before
𝑡 in a compressed format. By initiating 𝑠𝑚(0) as an all
zero vector, the interaction at time 𝑡 is encoded with a
message vector 𝜚𝑚(𝑡):

𝜚𝑚(𝑡) = [𝜖𝑚,𝑒(𝑡)||∆𝑡||𝑠𝑚(𝑡−)||𝑠𝑒(𝑡
−)] (1)

where ∆𝑡 is the time elapse between the previous time
stamp 𝑡− and 𝑡, symbol || means concatenating operation.
After aggregating all the messages from neighbors, the
state vector of v𝑚 is updated as:

𝑠𝑚(𝑡) = 𝑚𝑒𝑚(𝑎𝑔𝑔{𝜚𝑚(𝑡1), ...,𝜚𝑚(𝑡𝑏)}, 𝑠𝑚(𝑡−))
(2)

Here agg(·) is a general aggregation operation (support
learnable parameters). For the sake of simplicity, we
only compute the mean of the most recent messages
in aggregation. We use mem(·) to represent a trainable
update function (e.g., GRU).

Build upon the updated state vector 𝑠𝑚(𝑡) and 𝑠𝑚(𝑒),
a time-aware node embedding can be generated at any

time 𝑡 as following:

𝑧𝑚(𝑡) =
∑︁

𝑗∈𝑛𝑘
𝑚([0,𝑡])

𝑇𝐺𝐴(𝑠𝑚(𝑡), 𝑠𝑒(𝑡), 𝑒𝑚,𝑒,𝑣𝑚(𝑡),𝑣𝑒(𝑡))

(3)

TGA represents the temporal graph attention module
[11], where𝐿 graph attention layers compute𝑚’s embed-
ding by aggregating information from its L-hop temporal
neighbors.

5.2. Optimization and inference
The aforementioned model is trained in a self-supervised
fashion. As our goal is to predict the events that might
happen in the time sequences in the next time step, which
corresponds to the edges linking the time sequence nodes
and event nodes. Therefore, we train a simple MLP model
with the edge prediction task based on 𝑧𝑚(𝑡).

We use the cross entropy to supervise the forecasting
of which original and residual events would happen in a
given time stamp 𝑡. It is a two hot classification problem
where the two activated nodes corresponding to an event
node and a residual event node.

Event Forecasting Score: To convert the predicted event
edges �̂� into an anomaly score, for each time series node
v𝑡𝑚,𝜏 with window size 𝜏 , the event v𝑡𝑒,𝜏 that has the
highest probability connect to v𝑡𝑚,𝜏 is retrieved and its
pattern in the original signal space is denoted as s𝑡𝑒,𝜏 .
We project the event s𝑡𝑒,𝜏 ’s pattern back to its original
signal space, we then compute anomaly score based on
the dynamic time wrapping distance as follows:

𝜔𝑡
1,𝑚 = 𝐷𝑇𝑊 (X𝑡

𝑚,𝜏 , s𝑡𝑒,𝜏 ) (4)

Residual Score: For a positive residual event v𝑡𝑒+ at
time stamp 𝑡 where the forecasted results is not a posi-
tive residual v̂𝑡𝑒− , we calculate a changing point score to



Table 1
Dataset statistics and hyper-parameters

SMAP SMD
Number of Time series nodes 25 38

Number of event nodes 130 64
Time window length (𝜏 ) 20 50
Time window stride (𝛽) 5 10

quantify the surprisal level as follows:

𝜔𝑡
2,𝑚 = 𝜓𝑁𝐿𝐺(||X𝑡

𝑚,𝜏 − X𝑡−𝜏
𝑚,𝜏 ||) (5)

where 𝜓𝑁𝐿𝐺 is a standard function that maps a scalar
into the negative log likelihood, which indicates the spar-
sity of this changing point in the training data. A fre-
quent changing signal may results in small 𝜔𝑡

2,𝑚 after
the mapping. The function is learned in a data-driven
manner based on the training data of time series 𝑚. The
final anomaly score at time stamp 𝑡 is calculated as the
following read out function 𝑟(·):

𝜔𝑡 =
∑︁
𝑚

(𝜔𝑡
1,𝑚 · 𝜔𝑡

2,𝑚) (6)

6. Experiment
We performed experiments on two datasets to demon-
strate the effectiveness of our model on multivariate
anomaly detection. We adopted two public datasets:
SMAP (Soil Moisture Active Passive satellite) [2] and
SMD (Server Machine Dataset) [4]. We follow the evalu-
ation protocol of [4] and an anomaly is classified a good
catch if it is triggered within any subset of a ground truth
segment.

6.1. Settings
The proposed bipartite event graph contains 𝐷 + 𝐾
number of nodes, where 𝐷 is the number of time series
and 𝐾 is the number of events (𝐷 equals to 25 and 38
in SMAP and SMD datasets, 𝐾 equal to 130 and 64 on
SMAP and SMD datasets). The detailed number of nodes
is shown in Table 2. The length (𝜏 ) and stride (𝛽) of the
time window of each dataset are also displayed in Table
2. For each time series, we set the maximum number of
motifs detected to be three, and the minimum cluster size
of H-DBSCAN to be three. For the temporal attention
model, we set the number of multi-head to be 2. The GRU
is employed to model the time encoding. The dimension
of node embedding and message vector are both set to 64
respectively. Each model is trained after 10 epochs with
the learning rate 0.0001. The node features of both time
series and event nodes are randomly initialized, and edge
features are the one-hot embedding of the numerical ID
of the nodes on both sides of the edge.

Table 2
Compare with current state-of-the-art approaches.

Dataset Method Precision Recall F1
DAGMM 59.51 88.82 70.94
LSTM-VAE 79.22 70.75 78.42
LSTM-NDT 56.84 64.38 60.37

SMD OmniAnomaly 83.34 94.49 88.57
MTAD-GAT - - -
Event2Graph 88.61 83.38 84.93
DAGMM 58.45 90.58 71.05
LSTM-VAE 85.51 63.66 72.98
LSTM-NDT 89.65 88.46 89.05

SMAP OmniAnomaly 74.16 97.76 84.34
MTAD-GAT 89.06 91.23 90.13
Event2Graph 86.54 94.33 90.27

6.2. Compare with state-of-the-art
We compared our solution with multiple baselines on
SMAP and SMD datasets: DAGMM [25] - an autoencoder-
based anomaly detection model without taking into ac-
count of temporal information; LSTM-VAE [26], LSTM-
NDT [2], two LSTM-based anomaly detection solu-
tions; and the most recent stochastic VAE-based ap-
proaches (e.g., Omni-Anomaly[4]) and graph attention-
based method such as MTAD-GAT[5]. We selected these
baselines mainly because: (i) they are self-supervised al-
gorithms that do not need any training labels (different
from [8]), (ii) they rely on a single scale of time-window
(instead of multi-scale [27]) so that the performances are
directly comparable.

The results are reported in Table 2. From the results
we observed that the proposed Event2Graph achieves
competitive performance on SMAP dataset, ranked 2𝑛𝑑

on SMD dataset. In SMAP dataset, we observe that
some of the data suffers from significant regime change
during both training and testing, and our dynamic
graph-based solution helps the algorithm adapt to the
regime change faster than MTAD-GAT[5] and Omni-
Anomaly[4]. We also observe that our algorithm signifi-
cantly outperforms simple LSTM-based solution (LSTM-
VAE and LSTM-NDT), which assumes a complete inter-
dependency graph. They did not model the dynamic
inter-dependency among time series, while our node-
level model explicitly encode the temporal information
along with the attention, which helps to reduce the
false alarms in anomaly detection. Furthermore, since
DAGMM assumes a completely static relationship be-
tween time series, the algorithm lacks of the capability
to adapt to any temporal evolving pattern.

6.3. Ablation study
The objective of this experiment is to provide detailed
analysis over the effectiveness of each proposed module.



By removing each of the critical module of our model,
the performances are reported in Table 2.

6.3.1. Effectiveness of temporal graph attention

Through replacing the temporal graph attention with
a simple MLP module, the model’s F1 score is reduced
by 2.42%. It demonstrated that the temporal attention
plays an important role in aggregating information from
neighborhood nodes.

6.3.2. Effectiveness of event forecasting score 𝜔1:

We remove the event matching score (Eq. 4) and just
use a residual score (Eq. 5) for anomaly detection. We
observe that the model performance drop by 5.48%. The
experiment indicates the event forecasting module in
Event2Graph is essential for accurate anomaly detection.
From the experiment, we also observe that TGA plays a
critical role in guarantee the quality of the forecasting
score 𝜔1. By removing TGA, the forecasting-based model
performance (w/o score𝜔2) degrade from 73.81% F1 score
to 64.51%.

6.3.3. Effectiveness of residual score 𝜔2

We remove the residual score (Eq. 5) and only use fore-
casting score (Eq. 4) to detect anomaly. The model suffers
more than 10% performance degradation. This results
shows that modeling the residual score is essential to al-
low the system to identify the anomaly regions that may
not well characterized by the event matching scores. We
also observe that the TGA may not contribute much to
residual event modeling, a 𝜔2 only model perform com-
petitively well with or without TGA. This phenomenon
tells us the residual event is something unexpected and an
accurate changing point detection is better than learning
simple, repeatable patterns.

6.3.4. Effectiveness of log likelihood function
𝜓𝑁𝐿𝐺

To demonstrate our assumption, we compare the results
with a baseline that using a naive changing point detec-
tion score 𝜓𝑁𝐿𝐺, without adopting any forecasting or
event modeling model. Surprisingly, the changing-point
only model is able to achieve 78.48% F1-score. Outper-
forms DAGMM, LSTM-VAE, as well as LSTM-NDT. This
results further confirm that it is hard to learn any static
pattern by using LSTM or autoencoder for anomaly de-
tection on a challenge dataset, a dynamic model that is
able to adapt to the changing of time series patterns is
preferred.

Table 3
Ablation study on SMD dataset.

Model Precision Recall F1
Event2Graph 88.61 83.38 84.93
w/o TGA 84.81 82.94 82.51

w/o score 𝜔1 82.83 80.29 79.45
w/o score 𝜔2 81.51 71.76 73.81

w/o TGA and w/o 𝜔1 80.56 81.09 79.47
w/o TGA and w/o 𝜔2 75.84 64.33 64.51

𝜓𝑁𝐿𝐺 only 85.89 75.22 78.48

7. Conclusion
We proposed an event-driven bipartite graph solution
for multivariate time series anomaly detection. The so-
lution does not assume any inter-dependency on time
series, and all the relations are learned in a dynamic, data-
driven manner. Our design is based on edge-stream so
no adjacency matrix of the graph is required as input.
As the system’s memory is defined on the node level,
our design left plenty space for future extensions such as
inductive learning and parallel computation. Our solu-
tion achieved very competitive results on two anomaly
detection datasets, and we encourage future works to ex-
plore further using bipartite event graph for multivariate
anomaly detection.
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