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Abstract

Solar magnetic field parameters are frequently used by solar physicists in analyzing and predicting solar events (e.g., flares,
coronal mass ejection, etc). Temporal observation of the magnetic field parameters, i.e., multivariate time series (MVTS)
representation facilitates finding relationships of magnetic field states to the occurrence of the solar events. Forecasting MVTS
of solar magnetic field parameters is the prediction of future magnetic field parameter values based on historic values of the
past, regardless of the event labels. In this paper, we propose a deep sequence-to-sequence (seq2seq) learning approach based
on batch normalization and Long-Short Term Memory (LSTM) network for MVTS forecasting of magnetic field parameters of
the solar events. To the best of our knowledge, this is the first work that addresses the forecasting of magnetic field parameters
rather than the classification of events based on MVTS representations of those parameters. The experimental results on a
real-life MVTS-based solar event dataset demonstrate that our batch normalization-based model outperforms naive sequence

models in forecasting performance.
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1. Introduction

Solar events are characterized by magnetic field param-
eter values on the solar corona such as helicity, flux,
Lorentz force, etc. These magnetic field parameter val-
ues indicate the occurrence of extreme solar events such
as solar flares, coronal mass ejection (CME), and erup-
tion of solar energetic particles (SEP) [1]. These events
are caused by a sudden burst of magnetic flux from the
corona. The X-ray radiation of such extreme solar events
can have devastating effects on life and infrastructure
in space and ground such as disruption in GPS and ra-
dio communication, damage to electronic devices, and
radiation exposure-based health risks to the astronauts.
The cost associated due to infrastructure damage after
extreme solar events can rise up to trillions of dollars [2].

In recent years, the prediction of solar events given a
predefined time window has become an important chal-
lenge in the heliophysics community. Since the theoreti-
cal relationship between magnetic field influx and the oc-
currence of extreme events in solar active regions (AR) is
not yet established, space weather researchers depend on
the data of science-based approaches for predicting solar
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events. The primary data source used in these efforts is
the images captured by the Helioseismic Magnetic Imager
(HMI) housed in the Solar Dynamics Observatory (SDO).
HMI images (captured in near-continuous time) contain
spatiotemporal magnetic field data of solar active regions.
For performing temporal window-based flare prediction
of an AR instance, the spatiotemporal magnetic field
data of that region is mapped into a multivariate time
series (MVTS) instance[3]. MVTS instances, collected
with a uniform sampling rate throughout a present ob-
servation period, are labeled with multiple event classes
(e.g., flare classes), and machine learning-based classi-
fiers are trained with labeled MVTS instances to predict
the occurrences of the events after a preset prediction
window. Although multiple research efforts [4, 5, 6] ad-
dressed MVTS-based solar event prediction, forecasting
of MVTS-represented magnetic field parameters is yet to
be explored.

In this work, we aim to forecast the future values of the
magnetic field parameters, given past values in the MVTS
representations. In case of a sudden data gap, i.e., inter-
ruption in the communication between the satellite and
ground receiver, MVTS forecasting of magnetic field pa-
rameters can play an important role in extrapolation. To
the best of our knowledge, this is the first attempt to fore-
cast the solar magnetic field parameters. We used a deep
sequence-to-sequence learning model based on batch
normalization and Long-Short Term Memory (LSTM)
network that is trained with input-output pairs of exam-
ples, where the inputs are formed by sampling the MVTS
instances for an observation window, and the outputs
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Figure 1: LSTM and Batch normalization-based seq2seq model for MVTS forecasting

are formed by sampling the MVTS instances for a pre-
diction window (which follows the observation window).
Our LSTM-based encoder-decoder model is trained with
a backpropagation algorithm based on mini-batch gra-
dient descent-based optimization for minimizing Mean
Squared Error (MSE) between the observed MVTS (input)
and predicted MVTS (output).

2. Related Work

Recent research efforts on solar event prediction are
mostly based on data science. Data-driven extreme solar
event prediction models stem from linear and nonlin-
ear statistics. Datasets used in these models were col-
lected from line-of-sight magnetogram and vector mag-
netogram data. Line-of-sight magnetogram contains only
the line-of-sight component of the magnetic field, while
vector magnetogram contains the full disk magnetic field
data [7]. NASA launched Solar Dynamics Observatory
(SDO) in 2010. Since then, SDO’s instrument Helioseis-
mic and Magnetic Imager (HMI) has been mapping the
full-disk vector magnetic field every 12 minutes [1]. Most
of the recent prediction models use the near-continuous
stream of vector magnetogram data found from SDO [8].
Magnetic field parameters (e.g., helicity, flux, etc) were
developed with the goal of finding a relationship between
the phosphoric magnetic field behavior and solar activ-
ity, which usually occurs in the solar chromosphere and
transition region of the solar corona.

Deep learning-based sequence-to-sequence models us-
ing Long Short Term Memory (LSTM), Recurrent Neu-
ral Network (RNN), and Gated Recurrent Unit (GRU)

have been used successfully in multiple Natural Lan-
guage Processing (NLP) tasks such as machine trans-
lation [9, 10] and text summarization [11, 12]. Since
multivariate time series are high-dimensional sequence
data, previously MVTS forecasting has been addressed
by different seq2seq models [13, 14]. In [15], batch nor-
malization has shown promising improvements in the
sentiment classification task, where a batch-normalized
variant of LSTM architecture is used and each LSTM cell’s
input, hidden state, and cell state are normalized during
training. Being inspired by encoder-decoder-based ma-
chine translation models, in this work we considered the
MVTS forecasting of solar magnetic field parameters as
a sequence-to-sequence learning task, and used batch
normalization-based LSTM architecture for capturing
long-term dependencies of multi-dimensional sequence
data.

3. Methodology

3.1. Notations

Each solar active region results in different event occur-
rences after a given prediction window represents an
event instance. The event instance ¢ is represented by
a MVTS instance muvts;. The MVTS instance muvts; €
RT*N is a collection of individual time series of N mag-
netic field parameters, where each time series contains
periodic observation values of the corresponding param-
eter for an observation period 7. In the MVTS instance
muts; = {V;, Vg, Uty ) Uty € RN represents a
timestamp vector. We divide the dataset into (X,Y")
pairs, where X; = muts;[t1 : t,,.,:] € Rtobs XN



Yi = mutsi[te,, ., ¢ tr,:] € Riered*N o, s the
observation time, and ¢p.cq is the prediction time.

3.2. LSTM and Batch Normalization-based
MVTS Forecasting

In this section, we present a batch normalization-based
implementation of the encoder-decoder model that uses
LSTM architecture and compare it with other baseline
sequence models of naive stochastic gradient descent
implementation (without batch normalization). There
are different deep sequence learning models, which are
frequently applied in machine translation, and they can
be adapted for time series forecasting. In this study, we
analyze two seq2seq models: the batch normalization-
based seq2seq LSTM Model (BN seq2seq LSTM), and the
seq2seq models based on LSTM/GRU/RNN, and compare
their forecasting results.

Fig. 1 depicts our seq2seq-based model that uses batch
normalization and LSTM architecture. First, in the en-
coder LSTM cells, the value of each time step is used as
input to the encoder LSTM cell together with the previ-
ous cell state ¢ and hidden state h, the process repeats
until the last cell state ¢ and hidden state h are generated.
Then, the decoder LSTM cell uses the last cell state ¢ and
hidden state h from the encoder as the initial states for the
decoder LSTM cell. The last hidden state of the encoder
is also copied tpreq times using a Repeat Vector layer ac-
cording to the length of the forecasting window, and each
copy is inputted into the decoder LSTM cell together with
the previous cell state ¢ and hidden state h. The decoder
outputs hidden states for all the ¢,,.4 time steps and the
hidden states are connected to the final Time-distributed-
dense layer in order to produce the final output sequence.
The time-distributed-dense layer allows to apply a dense
layer to every temporal slice of the input. We use this
final layer to process the output from the LSTM hidden
layer. Every input shape is three-dimensional, and the
first dimension of the input is considered to be the tem-
poral dimension. This means that we need to configure
the last LSTM layer prior to the time-distributed-dense
layer to return output sequences. The output shape will
be three-dimensional as well, which means that if the
time-distributed-dense layer is the output layer, then for
predicting a sequence we need to reshape the final rep-
resentation into a three-dimensional shape [16]. In the
batch normalization-based seq2seq LSTM Model, we use
mini-batches to feed the data into the model. Batch nor-
malization is a useful method for making deep neural
network training faster and more robust, and it normal-
izes the input activations to avoid gradient explosion
caused by the activation function ELU (Exponential Lin-
ear Unit) in the encoder [17]. The batch normalization
layer applies a transformation that maintains the mean
output close to 0 and the output standard deviation close

to 1. We found batch normalization to be significant in
maximizing the performance of MVTS forecasting for the
magnetic field parameters of the solar events, which we
demonstrate in more detail in the experiments section.

3.3. Evaluation Metrics

We used Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE) to
report our model results. The evaluation metrics (MAE,
MSE, and RMSE) measure the amount of error in statisti-
cal models. They assess the average squared difference
between the observed and predicted values.

Mean Absolute Error (MAE) is the average over
the absolute values of the differences between predicted
representations and ground truth representations.

1 n .
MAE = E;m — i

where y; is the ground truth value and g; is the predicted
value.

Mean Squared Error (MSE) is defined as the mean
or average of the square of the difference between actual
and predicted values.

1« 2
MSE = — i — Ui
- ;(y i)

Root Mean Squared Error (RMSE) is the difference
between forecast and corresponding observed values,
where each difference is squared and averaged over the
sample space. It denotes the square root of the MSE.

Experiments

We compared the batch normalization-based seq2seq
LSTM model with the baseline models on multivariate
time series forecasting of magnetic field parameters of
a solar events dataset. The source code of our model
and the experimental dataset are available on our GitHub
repository .

3.4. Dataset Description

As the benchmark dataset of our experiments, we used
the MVTS-based solar flare prediction data set published
by Angryk et al [3]. Each MVTS instance in the dataset
is made up of 25 time series of active region magnetic
field parameters (a full list can be found in [1]). The time
series instances are recorded at 12 minutes intervals for a
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Table 1

Forecasting Performance of Batch Normalization-based seq2seq (LSTM) Model compared to the baselines

Performance Metrics

Gradient Descent LSTM

Gradient Descent GRU

Gradient Descent RNN

BN seq2seq LSTM

Train MAE

14.481 £ 0.043

14.942 + 0.052

15.578 + 0.036

0.094 £ 0.002

Test MAE

14.55 +0.103

15.042 + 0.092

15.68 + 0.107

0.057 = 0.010

Train MSE

18.238 £ 0.075

19.631 + 0.062

21.269 £ 0.031

0.070 £ 0.003

Test MSE

22.598 £+ 0.251

24.906 £+ 0.821

24.589 £ 0.726

0.002 £ 0.001

Train RMSE

18.434 £ 0.039

19.126 + 0.652

19.921 £ 0.821

0.265 £ 0.007

Test RMSE

18.492 £+ 0.348

19.245 + 0.542

20.092 £ 0.672

0.005 =+ 0.001

total duration of 12 hours (60-time steps). The dataset has
the number of observation points 7" = 60, and the number
of dimensions in timestamp vectors N = 25, while the
event occurrence window is 12 hours. Our experimental
dataset consists of 1,540 MVTS instances that are evenly
distributed across four flare classes (X, M, BC, and Q).
We discarded the class labels to fit the dataset for MVTS
forecasting [5, 4], where each MVTS instance is divided
into input and output (ground truth) sequences according
to the observation window (¢,45) and prediction window
(tprea)- In our experiments, tops = 40, and tpreq = 20,
while T = tops + tpred.

3.5. Train/test splitting method

We performed random sampling for train/test splitting,
where we use the stratified holdout method (80 % for
training, and 20 % for testing) with six different random
seeds, and reported the mean error rates along with stan-
dard deviation. Train and test datasets are z-normalized
since magnetic field parameter values appear on differ-
ent scales. The shapes of train and test datasets are as
follows.

« X_train shape:(1232, 40, 25) and y_train
shape:(1232, 20, 25)

« X_test shape:(308, 40, 25) and y_test shape:(308,
20, 25)

3.6. Baseline Models

We evaluated our model with LSTM, RNN, and GRU-
based seq2seq implementations. In the forward pass,
we have input the first ¢,5s vectors of each MVTS to
the encoder cells (LSTM/RNN/GRU) to produce the en-
coded hidden state. That encoded hidden state is the
input to the decoder cells of the same type. The decoder
then predicts the next 25-dimensional timestamp vectors
for each timestamp in ¢,eq and matches the prediction
with ground truth to perform stochastic gradient descent-
based backpropagation. In all three models, the number
of dimensions in cell state and hidden state representa-

tions was 25, the number of epochs in training was 5, and
the learning rate in stochastic gradient descent is 0.01.

3.7. Performance of LSTM and Batch
Normalization-based seq2seq model

When we apply LSTM and batch normalization-based
seq2seq model, we perform the following steps. First,
we extract (X, Y) pairs from all 1,540 MVTS instances,
where the length of each example X is tops = 40, the
length of each output Y is tpreq = 20, and each times-
tamp vector is 25-dimensional.

In the encoder step, the input is of size (b, 40, 25), where
b(= 10) is the batch size of the MVTS instances. For each
encoder LSTM cell, the vector of each time step is used
as the input to the encoder LSTM cell together with the
previous cell state ¢ and hidden state h, and the process
repeats until the last cell state c and hidden state h are
generated. The decoder LSTM cell uses the last cell state
cand hidden state h from the encoder as the initial states
for the decoder LSTM cell. The last hidden state of the
encoder is also copied 20 times using the Repeat Vector
layer and each copy is inputted into the decoder LSTM
cell together with the previous cell state ¢ and hidden
state h. The decoder outputs a hidden state for all the
20-time steps, and these hidden states are connected to
a time-distributed-dense layer to generate the final fore-
casting output which is of size (b, 20, 25). We used Mean
Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) to report our model
performance results. We reported the mean and stan-
dard deviation of the performance measures results in
Table 1. We found that our approach of deep sequence-
to-sequence learning based on batch normalization and
Long-Short Term Memory (LSTM) network significantly
outperformed the baseline methods’ results as Table 1
shows. It is visible that batch normalization makes a
difference of a large margin by producing errors near 0,
whereas the traditional seq2seq models result in large
error values due to the absence of batch normalization.



4. Conclusion

We propose a batch normalization-based deep seq2seq
model for multivariate time series forecasting of mag-
netic field parameters of solar events. Unlike previous
works of MVTS-based event classification, we perform
forecasting of magnetic field parameter values irrespec-
tive of MVTS labels. We compare it with other seq2seq
implementations based on LSTM, GRU, and RNN. Our
proposed approach significantly improved the MAE, MSE,
and RMSE results of MVTS forecasting on a benchmark
solar magnetic field parameter dataset.

For future research, we plan to develop machine learn-
ing models for MVTS forecasting that leverage MVTS
labels. We aim to use the forecasting models for aug-
menting (creating synthetic examples) MVTS instances
of minority classes (rare events). In addition, to utilize
inter-variable dependencies of the MVTS instances for
the task of forecasting, we plan to incorporate graph con-
struction (e.g., functional network computation from the
correlation matrices of the MVTS instances) and graph
neural network (GNN)-based representation learning.
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