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Abstract
Fixing energy leakage caused by different anomalies can result in significant energy savings and extended appliance life.
Further, it assists grid operators in scheduling their resources to meet the actual needs of end users, while helping end users
reduce their energy costs. In this paper, we analyze the patterns pertaining to the power consumption of dishwashers used in
two houses of the REFIT dataset. Then two autoencoder (AE) architectures with 1D-CNN and TCN as backbones are trained
to differentiate the normal patterns from the abnormal ones. Our results indicate that TCN outperforms CNN1D in detecting
anomalies in energy consumption. Finally, the data from the Fridge_Freezer and the Freezer of house No. 3 in REFIT is also
used to evaluate our approach.
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1. Introduction
Throughout recent years, the energy demand has signifi-
cantly gone up due to urban and industrial development
alongside an increase in population [1]. Therefore, cli-
mate change, global warming, and volatility in energy
prices have fuelled the interest in smart systems [2]. In
this regard, the huge potential increase of replacing tra-
ditional home appliances with new in-operation power-
consuming ones by 2040 has caused the residential sector
to account for roughly 60% over 2017-25 and 70% over
2025-40 of electricity demand increase of buildings. As
such, household appliances need to be operating effi-
ciently and used appropriately to achieve energy-saving
goals [3].

To this end, utilizing AI-based technologies and smart
homes as novel interventions to recognize abnormal
power utilization and understand the reasons for each ab-
normality could pave the way for end-consumers both to
renovate wasteful devices and adopt a more sustainable
energy consumption behavior [4][5][6][7]. Moreover, it
facilitates the prediction of end-users power demand as
well as performing an optimal energy distribution by
grid operators depending on specific end-users’ needs.
In addition, electrical anomalies are less likely to remain
unnoticed for a long period of time which would result in
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higher power consumption or damage in the most critical
cases [8].

Thus, for optimization purposes in smart homes, via
implementing load monitoring systems and formulating
smart anomaly detection models using machine learning
techniques, the abnormality can be mitigated [9]. To do
so, it is essential to analyze the energy consumption of
households in order to identify consumption patterns and
extract valuable information from smart homes [8][10].

In this paper, the power consumption patterns of dish-
washers used in houses No. 1 and 2 of the REFIT dataset
are analyzed as examples of devices that are used based
on the needs of users. Then, the data for each usage of
the device is divided into different signals to properly
train autoencoders with different backbones, including
1-dimensional CNN and TCN, to detect abnormal usage.
For this purpose, any predicted value that is greater than
twice the standard deviation of the electricity consump-
tion the day before is considered abnormal.

The rest of the paper is organized as follows. We pro-
vide related work on anomaly detection in energy con-
sumption in Section 2. In Section 3, our methodology is
presented in details. Section 4 concludes the paper and
discusses future work.

2. Related work
In the context of energy usage, anomalies are defined as
deviations from expected behavior that occur when the
consumption of a household appliance does not corre-
spond with its normal pattern [3][11]. Among the key
applications of anomaly detection by load monitoring,
are forecasting maintenance and energy efficiency [12].
Thus, a smart plug, smart appliance, and other appliance-
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Figure 1: The architecture of the CNN-based autoencoder
(CNN-AE)

level monitoring devices are needed to continuously mon-
itor the power consumption of individual appliances in
a house [8]. However, identifying anomalies, and their
nature of them should also be considered, which can be
categorized, based on different dimensions. In the data
science world, anomalies are seen as either single points
that are not necessarily relevant to each other or a set
of data points that constitute a pattern and, therefore,
can be interpreted in relation to each other. The other
dimension of anomaly detection that should be taken
into account is the context which refers to a deviation in
a particular context relating to the structure of the data
[3][13][14]. For example, in the context of a warm sea-
son, a temperature report of -30 degrees Celsius can be
anomalous; however, during a cold season, such a report
may be more common [3]. To this end, understanding
the available data will provide a solid foundation for im-
proving energy efficiency. For this purpose, there are
thirty-one publicly available databases with several fea-
tures, such as the geographical location, period of col-
lection, number of monitored households, the sampling
rate of collected data, and number of sub-metered appli-
ances [15]. Regarding this, a valuable dataset is REFIT
which includes cleaned electrical consumption in Watts
for 20 households in the UK at both the aggregate and
appliance levels [16]. On the other hand, Pang [11] has
provided a comprehensive overview of current anomaly
detection methods to gain an important understanding of
their inherent capabilities and limitations in addressing
some largely unsolved challenges in anomaly detection.
According to his study, Autoencoders, which are a sub-
set of the generic normality feature learning category,
aim to learn some low-dimensional feature representa-
tion space on which the given data instances can be well
reconstructed. While this is a widely used method for
data compression or dimension reduction, by using this

method, the feature representations are enforced to learn
important regularities of the data so that reconstruction
errors are minimized. Consequently, anomalies are dif-
ficult to reconstruct from the resulting representations
and are, therefore, subject to large reconstruction errors
[17].

3. Methodology

3.1. Dataset and preprocessing
The REFIT Electrical Load Measurements dataset con-
tain cleaned electrical consumption data in Watts for 20
households in the UK at both the aggregate and appli-
ance level. The data is related to a period of two years
comprising nine individual appliance measurements at
8-second intervals per house with 1,194,958,790 readings
[16]. The models proposed in this paper are trained using
dishwasher data from houses No. 1 and 2. Furthermore,
data from the Fridge_Freezer and the Freezer of house
No. 3 is used to assess the effectiveness of our approach.

To begin with, it is necessary to resample the data
to convert it into equal time intervals r. Then using
the following formula, the average sampling time, 𝑡 of
the REFIT data is used to fill in a limited number of
signals, n with no data. The remaining empty intervals
are substituted with zero.

𝑛 =

[︂
4 * 𝑡
𝑟

]︂
(1)

Additionally, for devices used according to users’ needs,
consumption data must first be differentiated. The power
consumption pattern may include turning the device on
and off several times per usage. The matching data is
therefore combined into relevant signals. Also, due to
the possibility of failure in some devices that can result
in constant operation for an extended period, we assume
a maximum period for a device to operate.

Figure 2: The architecture of the TCN-based autoencoder
(TCN-AE)

3.2. The proposed models
The development of time series anomaly detection al-
gorithms has recently received considerable attention.



Autoencoder-based approaches are often used to identify
anomalous behavior by analyzing the reconstruction er-
ror of the data [18][19][20]. Having learned a nonlinear
transformation of the input data into a compressed rep-
resentation, latent variables are used to reconstruct the
original input. On the other hand, utilizing the convolu-
tion mechanism in sequential models is computationally
optimal [21]. Also, due to CNNs’ equivariance proper-
ties and sparse interactions, they are translated from
computer vision into the time domain using temporal
convolutional networks (TCN)[20].

In the following sections, we will describe how we
used autoencoders (AEs) for time series data that utilize
1-dimensional CNNs and TCNs as building blocks to
detect energy anomalies in the REFIT dataset.

3.2.1. CNN-based autoencoder (CNN-AE)

We used TensorFlow to implement the architecture con-
sisting of two smaller sequential models, an encoder and
a decoder. Also, considering the speed of the model con-
vergence, our CNN-based autoencoder is comprised of
3 layers of Conv1D using the data of the households’
dishwashers. Furthermore, a nonlinear ReLu activation
function is used in each convolution layer. In this model,
a standard rate of 0.2 is considered for the dropout layer
to randomly remove 20% of the upper layer during learn-
ing.

Figure 1. shows the layers and the number of input and
output parameters of each. The input layer is 320 × 1
(3200 seconds), calculated according to the maximum
operation time of the device.

3.2.2. TCN-based autoencoder (TCN-AE)

The temporal convolutional network (TCN) combines
simplicity with auto-regressive prediction, residual
blocks, and a very long memory. In general, a TCN can
be broken down into three components: a list of dilation
rates 𝐷 = {𝑞1, 𝑞2, ..., 𝑞𝑛𝑟}, the number of 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑠, and
the kernel size 𝑘, which is the same for all filters in a TCN
[20][22]. Inspired by a classical (deep) autoencoder, the
TCN autoencoder encodes sequences, along the temporal
axis, of length 𝑇 into a compressed representation of
length 𝑇/𝑠 (where 𝑠 ∈ Z+) and then tries to reconstruct
the original sequence[20].

In Figure 2, each layer of the TCN-AE is described
by its parameters within the box. TCN-AE receives a
sequence 𝑥[𝑛] of length 𝑇 and dimensionality 𝑑 as its
input. Using a TCN, the encoder first processes input
sequence 𝑥[𝑛] of length 𝑇 and dimension 𝑑. Afterward, a
one-dimensional convolutional layer with 𝑞 = 1, 𝑘 = 1,
and 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 8 is used to reduce the dimensionality of
the TCN’s output. As the last layer in the encoder, the
temporal average pooling layer downsamples the series

by a factor of 𝑠. To do so, groups of size 𝑠 are averaged
along the time axis.

In the decoder module, the downsampled sequence
is returned to its original length by performing a near-
est neighbor interpolation on the upsampled sequence.
Upsampled sequences are passed through a second TCN
with independent weights parameterized similarly to the
encoder-TCN. As a final step, the input sequence is re-
constructed with a Conv1D layer that ensures that the
dimensionality of the input is matched (by setting 𝑘 = 1
and 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 𝑑) [20]. As described in the next section,
the input sequence and its reconstruction will be used
for detecting anomalies after TCN-AE has been trained.

Figure 3: (a) Examples of the normal energy consumption
of the dishwasher (b) Examples of the abnormal energy con-
sumption of the dishwasher

3.3. Experimental results
3.3.1. Anomaly detection

We compute a threshold value of 2𝜎 above the predicted
value to measure the trend in electricity consumption
over time, where 2𝜎 is the standard deviation on the
day before the actual moment [23]. An abnormal state is
defined as a value exceeding the threshold for predicted
electricity consumption at the actual moment. Equations
(2) and (3) show the calculation of 𝜎 and 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

𝜎 =

√︂∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

𝑛
(2)

𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ̂︀𝛾 + 2𝜎 (3)

where 𝜎 is the standard deviation, 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the
threshold, ̂︀𝛾 is the predicted value, 𝑥𝑖 is the electricity
consumption, 𝑥 is the average electricity consumption,
and 𝑛 is the number of samples.

A normal electricity usage pattern detection for the
dishwasher is shown in Figure 3 (a), where the real-time



Table 1
Evaluation of CNN1D-AE performance with a different data division ratio

Model Division Ratio MAE MAPE

CNN1D-AE 9:1 0.1781 %22.55
CNN1D-AE 8:2 0.1570 %20.07
CNN1D-AE 7:3 0.1702 %21.99

Table 2
Evaluation of TCN-AE performance with a different data division ratio

Model Division Ratio MAE MAPE

TCN-AE 9:1 0.1527 %21.39
TCN-AE 8:2 0.1371 %17.52
TCN-AE 7:3 0.1412 %19.88

threshold curve follows the sequence trend, indicating
the model depicts the dishwasher’s normal electricity us-
age. As can be seen in the figure, the real power consump-
tion curve does not exceed the threshold range, which
indicates a normal level of electricity consumption. As
shown in Figure 3 (b), anomalous consumption patterns
occur when actual values exceed the threshold. Conse-
quently, the method can distinguish between normal and
abnormal consumption behavior.

3.3.2. Evaluation

As Table 1. and Table 2. show, for both architectures, the
best performance is obtained with the data division ratio
of 8:2, and clearly, TCN-AE is more efficient than CNN-
AE. Our unsupervised approach has also been evaluated
using the data from the Fridge_Freezer and the Freezer
of house No. 3 in REFIT. The results in Table 3. confirm
the best division ratio of 8:2 and the higher performance
of TCN compared to CNN1D.

4. Conclusion and future work
This paper presents the starting point of our work on
studying how would applying deep learning algorithms,
and explainability improve energy efficiency, environ-
mental sustainability, and user adoption. In this regard,
first, we preprocessed our data by resampling and differ-
entiating each usage. Next, the extracted patterns of dish-
washer usage in houses No. 1 and 2 of the REFIT dataset
were analyzed. Two deep learning models, CNN-AE and
TCN-AE were then trained to detect abnormalities. While
the TCN backbone performed better, we evaluated our
models using the data from the refrigerators of house No.
3 in REFIT as well.

Through the implementation of energy monitoring
systems and the formulation of intelligent anomaly de-

tection techniques, abnormal behaviors can be mitigated.
This is possible, especially if user-centric explainable
recommender systems are combined with anomaly de-
tection modules. However, there is no proper labeled
dataset available to develop accurate algorithms or de-
tect different types of anomalies. Accordingly, we plan to
run a laboratory to build the first appropriately labeled
energy anomaly dataset.
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