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Abstract
In the context of crisis informatics, the integration and exploitation of high volumes of heterogeneous
data from multiple sources is one of the big chances as well as challenges up to now. Semantic Web
technologies have proven a valuable means to integrate and represent knowledge on the basis of domain
concepts which improves interoperability and interpretability of information resources and allows
deriving more knowledge via semantic relations and reasoning. In this paper, we investigate the potential
of representing and processing geospatial information within the semantic paradigm. We show, on the
technical level, how existing open source means can be used and supplemented as to efficiently handle
geographic information and to convey exemplary results highly relevant in context of crisis management
applications. When given semantic resources get enriched with geospatial information, new information
can be retrieved combining the concepts of multi-polygons and geo-coordinates and using the power
of GeoSPARQL queries. Custom SPARQL extension functions and data types for JSON, XML and CSV
as well as for dialects such as GeoJSON and GML allow for succinct integration of heterogeneous data.
We implemented these features for the Apache Jena Semantic Web framework by leveraging its plugin
systems. Furthermore, significant improvements w.r.t. GeoSPARQL query performance have been
contributed to the framework.
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1. Introduction

With the increase in frequency and severity of crises and hazards worldwide, the development
of means and methods to cope with the corresponding interruptions of economic, social,
cultural and political life has become one of nowadays most pressing societal issues. Crisis
informatics seeks to aid crisis management and resilience efforts by use of modern information
and communication technologies. Based on the rapid rise of the Web, the amount of relevant
data made available by governmental, volunteered and scientific initiatives is continuously
increasing. However, the processes of integration and sharing faces many challenges, among
them the intrinsic heterogeneity of information in terms of data sources, data types, content
and concepts. It could be observed that, the information required to answer a certain factual
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question or gain a better understanding of a situation is available, but dispersed among and
siloed in a multiplicity of information sources.

Semantic Web technologies have proven a valuable means to integrate and represent knowl-
edge on the basis of domain concepts which improves interoperability and interpretability
of information resources and allows deriving implicit knowledge via semantic relations and
reasoning. The aim of this paper is to investigate the potential of representing and processing
geospatial information within the semantic paradigm. Due to the spatio-temporal nature of
crises, geographic information is one key to effective monitoring, planning and decision-making
in crisis management application scenarios. Adding a spatial dimension to the Web of Data /
Semantic Web not only requires means for geospatial representation and interlinking of entities
and resources but also for inferring implicit spatial relations from the objects’ geometry together
with the possibility for flexible searching and querying geographic information all together.

In this paper, we show, on the technical level, how existing open source means can be used
and supplemented as to efficiently handle geographic information and to convey exemplary
results highly relevant in context of crisis management applications, motivated from use cases
within our current project Coypu. Within a concrete implementation of the current common
standard, GeoSPARQL 1.0, we analyse certain shortcomings and offer improvements. Moreover,
we implement parts of the future standard, GeoSPARQL 1.1 and add further non-standard
functions to it.

The paper is structured as follows: In Section 2, we give an overview of related work.
Section 3 details the SPARQL functions used and provided by this work. Then in Section 4,
an applied example combining all these features is presented. Finally, Section 5 concludes this
paper.

2. State of the Art and Related Work

As for Semantic Web frameworks, Apache Jena1 (Java) forms the basis for our work. It has been
first presented in [1]. One if its most important features is its GeoSPARQL 1.0 implementation2,
which was presented in [2].

OpenStreetMap3 (OSM) is a large open and free data source for world-wide geographic data.
However, in order to make it usable with Semantic Web tooling, its published data needs to
be RDFised. LinkedGeoData [3], first started in 2009, is an effort to add a spatial dimension
to the Web of Data / Semantic Web by means of SPARQL-to-SQL rewriting against OSM data
stored in a PostGIS database[4]. There are other approaches for producing RDF from OSM data
by means of extract-transform-load (ETL). Sophox4 by Yuri Astrakhan is one project of that
category. Another approach specifically for mapping OpenStreetMap data to RDF and a related
specialised triple-store implementation has been described in [5], which performs very fast.
However, actually answering queries requires pre-computed data. We have used their osm2rdf
tool as part of the pipeline for Section 4.

1https://jena.apache.org
2https://jena.apache.org/documentation/geosparql/index.html
3https://www.openstreetmap.org
4https://sophox.org/, https://github.com/Sophox
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A similar approach to integrating geospatial data as RDF and querying using GeoSPARQL on
the example of hospitals outside of a flooded region has been presented in [6]. They appear
to have used a custom GML converter. The inverse was attempted in [7], connecting a Web
Feature Service to Linked Data, thus giving the Geographic information system access to the
Web of Data.

Our RDF Processing Toolkit (RPT) features a command-line tool and Jena-based Java library
for quickly setting up workflows that produce RDF from heterogeneous sources such as CSV,
JSON, XML and RDF bymeans of SPARQL 1.1 syntax with extension functions. The effectiveness
of RPT has been demonstrated for domains such as subject indexing and dataset such as in [8]
and [9]. In this work, we further extend the toolkit to support the geospatial use cases described
in this work.

In this regard, SPARQL Anything[10] covers a similar ground. The main difference is that
SPARQL Anything extends the semantics of the SERVICE clause to perform opinionated RDF-
isation of non-RDF sources. As a step towards future interoperability of these complementary
approaches by means of allowing for plugin abstractions we contributed an improved custom
SERVICE extension system to Jena5.

3. Approach

We provide a comprehensive framework to integrate several kinds of geospatial data sources
into RDF data. The main components are:

• RDF Processing Toolkit6 can be easily used on command line to integrate a manifold of
different data sources using SPARQL standards and extensions.

• Apache Jena7 is a free and open source Java framework for building Semantic Web and
Linked data applications. Our extension module JenaX8 adds additional features like web
API and JSON processing.

• GeoSPARQL9 is maintained by the Open Geospatial Consortium. It defines a vocabulary
for representing geospatial data in RDF, and it defines an extension to the SPARQL query
language for processing geospatial data.

Our approach is to integrate and enhance GeoSPARQL as well as extend and enhance SPARQL
so as to integrate and query various data sources, including geospatial data, using Semantic
Web technologies. In what follows, our main contributions within each of the above component
are shortly described.

3.1. Apache Jena

Streaming results functions The existing GeoSPARQL implementation in Apache Jena
has been extended to return geo-objects in a streaming manner10. This greatly improves the
5https://github.com/apache/jena/pull/1388
6https://github.com/SmartDataAnalytics/RdfProcessingToolkit
7https://jena.apache.org/
8https://github.com/Scaseco/jenax
9https://www.ogc.org/standards/geosparql
10https://github.com/apache/jena/pull/1331
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performance of SPARQL queries making use of LIMIT, as the result set computation is stopped
once the limit is reached.

geof:asGeoJSON A function to convert the geometry data into the GeoJSON format [11].
This is especially helpful since many JavaScript frameworks support drawing GeoJSON data on
a map11.

3.2. JenaX

Our Jena extension framework JenaX features extensions for query rewriting, caching, additional
optimisers, utilities and abstractions for common tasks and a set of SPARQL extensions for
working with remote and local data in various formats. A selection of highly relevant features
for processing spatial crisis data is as follows:

geof:lineMerge Some datasets such as OpenStreetMap represent large objects as a collection
of geometries. Linemerge can be used to turn a collections of line strings, such as for a river or
administrative boundary, into a single RDF literal.

geof:simplifyDp A function that uses the Douglas-Peucker algorithm to simplify polygons.
A typical use case is to improve the performance of map visualisations on client devices (e.g.
mobile phones) by reducing the number of vertices of large spatial objects.

geof:aggCollect An aggregate function to group geometries into a single RDF literal holding
a WKT geometry collection for further processing (by using lineMerge or simplifyDp, for
instance).

CSV Using { <source.csv> csv:parse (?jsonRow "excel -h -o") }, a CSV source can
be streamed into a set of solutions where each CSV row is represented as an RDF literal that
holds a JSON array or object. A dialect such as excel can be specified followed by flags that
provide additional control. For example, -h treats the first row as headers and, applying it in
conjunction with -o, each row is returned as a JSON object – rather than an array – with the
headers as keys.

JSON Loading of JSON documents is non-streaming, which means that they are always fully
copied into memory. The xsd:json datatype can be used with SPARQL’s conventional machin-
ery for parsing strings into RDF literals: BIND('{"key": "value"}'^^xsd:json AS ?json).
Attributes can be extracted using BIND(json:path(?json, "$.name") AS ?name), and arrays
can be unnested into individual bindings using ?jsonArray json:unnest (?jsonItem ?index).
Note, that the maximum byte size of strings in Java is 2GB which is a limiting factor when
passing documents as strings.

11https://plotly.com/python/mapbox-county-choropleth/
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Figure 1: Elbe river with nearby transport and administrative regions

XML The functions for XML processing are similar to those of CSV and JSON: An XML
document can be loaded from a local or remote source using <source.xml> xml:parse ?xml
and XPath expressions of the form ?xml xml:unnest ("//item" ?item) can be used to create
individual SPARQL solution bindings from each match. Note, that our XML functions avoid
needless string-serialization of the internal XML model which means that documents larger
than 2GB can be ingested and processed. However, when eventually writing the query results
out, no RDF literal’s serialization must exceed that limit.

3.3. RDF Processing Toolkit

The RDF processing toolkit (RPT) is the command line front end that bundles various func-
tionalities to realise SPARQL-based ETL workflows: Connecting to a remote SPARQL endpoint
or starting a new local one, loading RDF data, executing queries that may exploit the afore-
mentioned function extensions, and doing serialization of query results both in standard and
custom formats. Environment variables can be accessed from within SPARQL, again using func-
tion extension sys:getenv('envVarName') as well as syntax convention: Any IRIs in SPARQL
statements of the form <env:varName> will be substituted with a value derived from the corre-
sponding environment variable’s value. Further conventions exist to control the RDF term type,
datatype and language tag.

4. Exemplary Results

In this section, we present selected examples that showcase what our tools can deliver.

Live API consumption and federation One show-case is the querying of Web APIs and
the geographic data processing. Essentially, one can either perform live requests against those
APIs or materialise them into the Knowledge Graph.



Listing 1: Retrieving the river Elbe with intersecting administrative areas

SELECT ?adm {
BIND("rgb(43,131,186)" AS ?geomColor)
SERVICE <cache:https://coypu.aksw.org/osm/sparql> { # (1)
SELECT (geof:lineMerge(geof:collect(?lit)) AS ?geom) { # (2)
?s a osm:relation ; osmkey:name:de "Elbe" ; osmrel:member/osm:id ?m .
?m geo:hasGeometry/geo:asWKT ?lit } }

GRAPH <https://data.coypu.org/adm2> {
?adm spatial:intersectBoxGeom(?geom) . # (3a)
?adm geo:hasGeometry/geo:asGML ?adm_geom_lit_ .
FILTER(geof:sfIntersects(?geom, ?adm_geom_lit_)) } # (3b)

}

Either approach has advantages and disadvantages. APIs on the one hand are up-to-date and
easy to use but one might have to deal with request limits and coarse granularity. Materialised
geographic data, on the other hand, can be linked with other existing concepts but could be
out of sync after some time. For example, the Nominatim API hardly provides geometries of
highways because it is mostly concerned with things that have addresses. If we materialise the
OSM data ourselves, we can choose exactly the kind of data we want to load.

In the first experiment, we want to visualise the river Elbe on a map. Following the first of
the two mentioned options, this can be implemented using a live consumption approach. In
that case, we apply a SPARQL query that uses basic federation12 to retrieve content from a
Wikidata. In the last step, the geospatial information is extracted from the raw JSON result
(using url:text, xsd:json and json:path). This is shown in the Appendix, File 2.

The second approach requires transformation before the geospatial data can be made available
in a Knowledge Graph. In this example, data from OpenStreetMap is transformed to RDF
using a “simple” mapping. While simple mapping does not follow best practices in RDF/OWL
modelling, it has the advantage that it can be executed quickly and still enables access to all of
OpenStreetMap’s data with SPARQL. This way we can retrieve all information about a river
using simple triple patterns. Large objects in OSM are typically modelled as collections of smaller
ones, so in order to to obtain a single line-string (or line-collection; whatever is appropriate) for
a river it has to be assembled from fragments. We can use our custom GeoSPARQL functions
lineMerge and collect to do this as demonstrated as part of Listing 1. The full query is shown
in the Appendix, File 3.

Geo-linking We continue to work with the example of the Elbe river and further expand
it with other Knowledge Graphs that we have collected in our triple store. For example, a
graph with railroad network, another graph with road network, a graph with countries and
administrative regions, like states, or a graph with company data and their locations.

This way, we can use GeoSPARQL to answer the questions like: “Through which adminis-

12SERVICE <https://query.wikidata.org/sparql> {...}
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Figure 2: Earthquake region with affected companies

trative regions does the river flow?”, “What major transportation infrastructure is nearby the
river?”, “What companies are nearby?” These queries are more easily answered when we have
Geographic information available in SPARQL, than if we only have non-geographic SPARQL
available.

In Figure 1, the river Elbe is shown, now linked to information of the railroad and road network
and to administrative regions. The query in Listing 1 demonstrates (1) how to merge all line-
strings belonging to the Elbe (2) cache the result and (3) use it find intersecting administrative
areas. The complete query is linked in the Appendix, File 4.

In the Coypu project, we envision applying the same principles to similar use cases. For
example, with sufficient data about flooded region we could find out which roads might be
blocked, which companies might be affected, or which state should provide disaster relief.

Earthquake regions Another use-case within the Coypu project is to find companies poten-
tially affected by earthquakes, as shown in Figure 2.

In this example, we combine again two approaches available in our tools. First, we consume
a live feed of significant earthquakes published by the U.S. Geological Survey, Department of
Interior – using url:text and json:path. Next, we match it to company locations that we have
stored in a Knowledge Graph using GeoSPARQL and the function spatial:withinBoxGeom.
Finally, we convert the GeoJSON to WKT for display purposes, using the geo:geoJSONLiteral
data type and the spatialF:transformDatatype function. The query for this is presented in
the Appendix, File 5.

Mapping Geography Markup Language Another common format used with geospatial
data is the GeographyMarkup Language. Many Geographic data sets are available as Geography
Markup Language (GML). Often, the GeoServer program is used to host data sets which can be

https://github.com/AKSW/D2R2_2022_GeoQueries/blob/main/4.%20Join%20river%20with%20nearby%20transportation%20grid%20from%20OpenStreetMap%20and%20administrative%20regions%20from%20GADM%20data-set.rq
https://github.com/AKSW/D2R2_2022_GeoQueries/blob/main/5.%20Earthquake%20regions%20and%20nearby%20companies.rq


Listing 2: Extracting GML from an XML document referenced by URL from the environment

SELECT * {
BIND(xml:parse(<env://INPUT>) AS ?xmlstream) .
?xmlstream xml:unnest
("/*[local-name()='FeatureCollection']/*[local-name()='member']/*" ?item) .

BIND(xml:path(?item, "/*/geonode:portname/text()") AS ?portname) . [ ... ]
BIND(xml:path(?item, "/*/*/*[namespace-uri()='http://www.opengis.net/gml/3.2']")

AS ?geo_) .
BIND(strdt(str(?geo_), geo:gmlLiteral) AS ?geoLitGML) .

}

exported as GML.
The GML format is XML based. We can transform it into RDF, for example by using our RDF

Processing Toolkit. The key functions are shown in Listing 2.
Using xml:parse, the GML file is opened from the location specified in the INPUT environment

variable. Then, for each fragment of the GML document matching the XPath expression specified
in the xml:unnest method, a new ?item is created. Later on, the various properties in the items
are mapped to RDF using BIND and xml:path. GeoSPARQL then allows us to consume the GML
Geometries contained in the GML document, using the standard strdt function. If we have the
GML mapped to RDF, we can again use this new Knowledge Graph. The full sample query to
map a GML data source is shown in the Appendix, File 6.

One application that is enabled by the fusion of data sources, such as the Water Ports database
maintained by the World Food Programme (WFP), is the comparison to data mapped in the
OpenStreetMap Crowd Sourced Mapping data of the world. Here, we can investigate how many
port structures can be located in OSM, and which ones are in the WFP dataset. We do this using
the function ?osm_geometry spatial:nearbyGeom(?wfpdb_geometry 3 units:kilometre) to
find port structures in OpenStreetMap that are within three kilometres of a port inside the WFP
database. The full query for this is shown in the Appendix, File 7.

Pitfalls We conclude this section by summarising some quite common and relevant ones
within the context under consideration.

One problem that we found was, that consuming GML in Jena GeoSPARQL did not work. We
traced this down to a wrong XML namespace used in the GeoSPARQL standard, and opened an
issue about it which led to a fix in the specification.

We encountered another issue when downloading GML from a GeoServer. It is possible
that the requested Coordinate Reference System is not supported. In that case, the GeoServer
might silently respond with an invalid Coordinate Reference System URI, effectively making
the GeoSPARQL engine unable to process the data properly.

A further issue arises when using SPARQL to RDFize of large XML documents, such as ones
downloaded from a GeoServer. The amount of data that fits into an RDF literal is typically
capped by the maximum string length (in Java 2GB). In order to raise the cap to the available
amount of RAM, we revised xml:parse to perform a streaming parse of the XML input into

https://github.com/AKSW/D2R2_2022_GeoQueries/blob/main/6.%20Mapping%20GML%20data%20to%20RDF%20using%20RDF%20Processing%20Toolkit.rq
https://github.com/AKSW/D2R2_2022_GeoQueries/blob/main/7.%20Comparing%20water%20ports.rq


Listing 3: Coordinate reference system transformations in order to calculate buffer in kilometres

SELECT * {
BIND(spatialF:transformSRS(?river_geom,

<http://www.opengis.net/def/crs/EPSG/0/5243>) AS ?river_geom_metric) .
BIND(geof:buffer(?river_geom_metric,

"1"^^xsd:double, <http://www.opengis.net/def/uom/OGC/1.0/kilometer>)
AS ?river_with_buffer) .

BIND(spatialF:transformSRS(?river_with_buffer,
<http://www.opengis.net/def/crs/OGC/1.3/CRS84>) AS ?final_geom) .

}

an in-memory model that can be subsequently chunked into serialisable RDF literals with
xml:unnest.

When looking at the SPARQL query needed for Figure 1, there is another thing to be aware
of: When calculating a buffer around the river to find entities nearby the river, it is not directly
possible to do in metres. This is because of the World Geodetic System being in degree. We have
to choose a metric reference system and convert the geometries back and forth. The required
SPARQL functions are shown in Listing 3.

Another interesting performance issue arose when we tried to geo-match all companies
located in the United States. Because the pre-filter is using an envelope of the USA geometry,
and there are a few tiny uninhabited islands which are claimed by the U.S., the bounding box
almost encompasses the whole world. Thus, it is more efficient to break the U.S. down into its
parts before locating the companies.

If we want to find power lines in e.g. OSM, we are quickly overwhelmed with the huge
number of matches. But not all power lines are be relevant for our project. Fortunately, we can
reduce the result set via voltage and/or length features, depending on country conventions.

5. Conclusion

In this work, we contributed to and showed the usefulness of three major components with
several features: First of all, to Apache Jena, we contributed batch service requests, GeoSPARQL
performance improvements, GeoJSON export, and various fixes, such as for the issue that
could cause compressed datasets to only become loaded partially. Secondly, in our JenaX exten-
sions module, we provide enhancements for querying remote web APIs from inside SPARQL,
we improved GeoSPARQL support thereby implementing some features from the upcoming
GeoSPARQL 1.1 standard as well as the presently non-standard functions collect, union,
lineMerge, simplify, lat, lon, centroid, and a GeoJSON reader, among others. Furthermore,
we provide extensions for JSON, CSV, XML and generic array processing inside SPARQL. This
way, SPARQL can be exploited to serve as the host language for the integration of data in
virtually any format. And finally, we presented and produced the RDF Processing Toolkit, a
versatile RDF processing program which can make use of all our extensions. We will continue
to work on and further improve these tools.
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