
Extending GeoGebra/realgeom with QEPCAD B to
obtain proofs on geometric inequalities
Zoltán Kovács

1
, Róbert Vajda

2

1The Private University College of Education of the Diocese of Linz, Salesianumweg 3, Linz, 4020, Austria
2Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged, 6720, Hungary 6720

Abstract
We report on our recent improvements of the GeoGebra/realgeom system that is able to symbolically

compare geometric quantities of a given planar geometric figure. QEPCAD B is connected as an external

tool now to solve the geometric problem that was translated into an algebraic form first, and by using

real quantifier elimination, a generally true/false answer can be given. Our implementation allows free

access to this toolset, not just for researchers but teachers and students too, on all major platforms

including Windows, Mac and Linux.
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1. Introduction

In this paper we present a free software system that is able to prove inequalities in planar

Euclidean geometry by providing a graphical user interface. We introduce a combination of four

software components: GeoGebra [1], Giac [2], realgeom [3] and QEPCAD B [4, 5]. The novelty

we show in this paper is the insertion of the fourth component in the computation process.

We already published a paper [6] on combining the three components with the proprietary

software Mathematica [7]. Our system, called GeoGebra Discovery [8] is available online at

https://github.com/kovzol/geogebra-discovery (we refer to its version 2021Mar13).

Fig. 1 shows the network layout of our system. Some components are optional: Maple (and

its underlying subsystems), Mathematica and Reduce (with its underlying subsystem) can serve

just benchmarking purposes and have no relevance in our current focus in this paper.

It is very important that all backends listed in Fig. 1 provide cylindrical algebraic decom-

position (CAD) with real quantifier elimination (RQE) that are crucial to solve inequalities

in our problem setting. Roughly speaking, given a set 𝑆 of polynomials in R𝑛
, a CAD is a

decomposition of R𝑛
into connected semialgebraic sets on which each polynomial of 𝑆 has

constant sign. CAD can provide effective RQE, that is, a simplification of a quantified formula

to another one that does not contain any quantifiers. See [9] for further details.
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Figure 1: Computation hierarchy

2. An example: Generalizing Pythagoras’ Theorem

Let 𝑎, 𝑏 and 𝑐 denote the lengths of sides in a right triangle, where 𝑐 is the longest one. According

to Pythagoras, it is well known that 𝑎2+ 𝑏2 = 𝑐2. As a school exercise, one can ask the question

what happens if we omit the assumption of having a right triangle, and no condition is given to

the order of lengths 𝑎, 𝑏 and 𝑐, either. By using our tool it can be quickly shown mechanically

that in general the equality 𝑎2 + 𝑏2 >
𝑐2

2
holds. We use only free software components in our

current contribution to achieve this result. This allows a large number of users to make their

own experiments on studying similar (but eventually more difficult) questions, including high

school students who may have difficulties to access commercial software.

Fig. 2 shows how a typical screen layout of GeoGebra Discovery looks like, and, in particular,

how the above example is solved for the user. Four windows can be seen: GeoGebra (Classic 5, a

Java desktop application) on the right, a black one in the background shows the log messages of

GeoGebra, the blue one corresponds to the component realgeom by showing its log information,

and, in the foreground, GeoGebra communicates the result of comparison of the input quantities.

Here we explain in a nutshell how the user obtains the required output. First, the application

suite is started by running a batch program. It starts the component realgeom that launches

QEPCAD B in the background. After this step, GeoGebra’s user interface is started. In Ge-

oGebra’s application window the user needs to draw a triangle by using the Polygon tool.

(This step can also be performed with other built-in geometric tools.) Next, in the Input Bar the

command Relation(𝑎2 + 𝑏2,𝑐2) is to be typed. The Relation command looks for equality of



Figure 2: A typical screenshot of GeoGebra Discovery

the two expressions, but here we are also interested if they are eventually multiples in general,

independently of the input points. Thus, GeoGebra informs the user that the quantities 𝑎2 + 𝑏2

and 𝑐2 differ, but after clicking the button More. . . a symbolic preparation is started. After

sending the outsourced data to realgeom/QEPCAD, the answer is obtained below 1 second, and

communicated as shown in Fig. 2.

In fact, there are several mathematical and technical steps performed in the background. Most

of them are completely invisible for the end user. First of all, the geometric setup is translated

into a set of algebraic equations and inequalities: this step is performed inside GeoGebra. Then,

another internal step is made: the Giac computer algebra system (CAS) checks whether there is

a constant 𝑚 > 0 such that

𝑎2 + 𝑏2 = 𝑚 · 𝑐2, (1)

by using elimination via Gröbner bases (see, for example, [10] for more information on the

elimination technique). In our case, there is no such constant, so the realgeom system is invoked

via a call through http as a next step.

The realgeom software first simplifies the equation system part of the input by using some

sophisticated Giac code, including specialization of the input coordinates and delinearizing

the system of equations. Then it uses a pipe to send the problem description to QEPCAD (as

fallback a shell connection is also available), which, for the current setup, corresponds to the

formula



(∃𝑣5)(∃𝑣6)(∃𝑣8)(∃𝑣10)(∃𝑣7) (𝑣7 > 0 ∧ 𝑣8 > 0

∧ 𝑣25 − 2𝑣5 + 𝑣26 − 𝑣28 + 1 = 0 ∧ 𝑣10𝑣6 − 1 = 0 (2)

∧ 𝑣25 + 𝑣26 − 𝑣27 = 0 ∧ −𝑚+ 𝑣27 + 𝑣28 = 0
)︀

under the assumption 𝑚 > 0. Here we quickly explain the quantified formula (2). The realgeom

system assumes that points 𝐴 and 𝐵 are fixed to (0, 0) and (1, 0), respectively. This can be

done without loss of generality. The variables 𝑣5, 𝑣6 stand for the coordinates of point 𝐶 , while

𝑣7 and 𝑣8 describe the lengths of sides 𝑎 and 𝑏. The remaining equations describe the geometric

setup. They are obtained in an automated way in GeoGebra, by translating the user’s input into

an algebraic system. The existentially quantified formula is assembled finally by the realgeom

system.

After retrieving the computed data, for this setup, namely the quantifier-free formula

2𝑚− 1 > 0, (3)

realgeom rewrites QEPCAD’s output in a format that is usable by GeoGebra:

𝑚 >
1

2
, (4)

here, again, Giac is used. Finally, GeoGebra is formatting the obtained data into a final output

form and displays the inequality

𝑎2 + 𝑏2 >
𝑐2

2
. (5)

3. Results

We created a database of 113 test cases for various triangles and some other polygons, to be able

to compare the various backends that are already available in realgeom. A major part of the test

cases is based on [11]: they are comparisons of various expressions of quantities in a triangle.

Currently 5 different computation methods can be tested:

1. Classic5-q: GeoGebra (Java) first tries to use elimination to solve a problem. If it is not

successful or the answer is amibiguous, realgeom is called with the QEPCAD backend.

2. Classic5-m: GeoGebra (Java) first tries to use elimination to solve a problem. If it is not

successful or the answer is amibiguous, realgeom is called with the Mathematica backend.

3. Classic5-rg-q: GeoGebra (Java) immediately calls realgeom with the QEPCAD backend.

4. Classic5-rg-m: GeoGebra (Java) immediately calls realgeom with the Mathematica

backend.

5. Classic6: GeoGebra (JavaScript) uses elimination to solve a problem.

By default, the first method is used. We note that the web version of GeoGebra (Classic 6) has

no support to solve inequality systems with quantifier elimination.



Table 1
Steps to take to get the result

Toolbar
No. Name Icon Description Value

1 Point 𝐶 𝐶 = (0, 2)

2 Point 𝐵 𝐵 = (6, 1)

3 Segment 𝑎 Segment 𝐶,𝐵 𝑎 = 6.08

4 Line 𝑔 Line through 𝐶 perpendicu-
lar to 𝑎

𝑔 : −6𝑥+ 𝑦 = 2

5 Point 𝐴 Point on 𝑔 𝐴 = (0.33, 3.99)

6 Segment 𝑏 Segment 𝐶,𝐴 𝑏 = 2.02

7 Segment 𝑐 Segment 𝐴,𝐵 𝑐 = 6.41

8 Text 𝑡𝑒𝑥𝑡1 “Comparison of the Sides of a Right
Triangle via realgeom”

9 Text 𝑡𝑒𝑥𝑡2 Compare(𝑎+ 𝑏, 𝑐) “𝑐 < (𝑎+ 𝑏) ≤ ((
√
2) · 𝑐)”

In our benchmarking database we set a time limit of 30 seconds for each test. According to

our recent results at https://prover-test.geogebra.org/job/GeoGebra_Discovery-comparetest/

73/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html (as of 15 March 2021)

Mathematica far outperforms QEPCAD. From 113 test cases Mathematica successfully solves

107, the rest time out (except one that crashes in GeoGebra due to exhaustion of resources,

before continuing with any external computations). QEPCAD shows a lower performance, but

still 41 tests are successfully processed: 40 of them below 5 seconds and 31 below 1 second.

(By raising the time limit to 20 minutes we cannot get significantly better results for QEPCAD,

either.)

Acceptance of a test result is currently decided in the following way: If any answer is given

by the backend, then the result is accepted. For such a small amount of test cases a quick human

verification can actually double-check if the outputs are indeed correct. However, some outputs

can indeed differ significantly, even if they are equivalent and correct. For example, in the test

case IsoTriangle-Perimeter_CircumRadius_a (it is about comparing the perimeter 𝑝 and

the circumradius 𝑅 of an arbitrary but isosceles triangle) Mathematica reports the inequality

𝑅 ≥ (1/(3 ·
√
3)) · 𝑝, while QEPCAD B communicates 𝑅 ≥ ((

√
3/9)) · 𝑝.

We show one of these tests in detail, namely, the test case RightTriangle-Bottema11.20
which is taken from [11].

Tab. 1 shows which steps in GeoGebra need to be made to achieve the result as shown in

Fig. 3. This result differs a bit from the one in Fig. 2: here we used the Compare low level

command to immediately get the two inequalities, instead of using the high level interface of

the Relation command. Also, we learn that the sum 𝑎+ 𝑏 is actually bounded by 𝑐 and

√
2 · 𝑐.

https://prover-test.geogebra.org/job/GeoGebra_Discovery-comparetest/73/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html
https://prover-test.geogebra.org/job/GeoGebra_Discovery-comparetest/73/artifact/fork/geogebra/test/scripts/benchmark/compare/html/all.html


Figure 3: Screenshot of benchmark RightTriangle-Bottema11.20

In fact, our system always expects to find sharp positive constants 𝑚 and 𝑀 such that

𝑚 ·𝑄1 <
(=)

𝑄2 <
(=)

𝑀 ·𝑄1 (6)

where 𝑄1 and 𝑄2 can be arbitrary homogeneous expressions of quantities of the same degree.

In our implementation these quantities must always be distances between two points of the

planar construction. In Fig. 3 the constants 𝑚 = 1 and 𝑀 =
√
2 are obtained, while the first

inequation is sharp, but the second one allows equality as well.

By comparing the performance of Mathematica and QEPCAD here we see that both systems

are very fast. They deliver the solution far below 1 second. This also confirms that realge-

om/QEPCAD can be used to obtain non-trivial results, by allowing a large scale of users to

study inequalities in a planar Euclidean geometry construction.

We provide another figure that shows the density estimate of benchmark time output vi-

sualized with statistics software R’s sm package [12] on those 41 tests that uniformly work

on both systems (see Fig. 4). The 𝑥-axis shows the time in milliseconds. According to this

diagram, Mathematica’s vantage is clear because of its smaller deviation, however, QEPCAD’s

performance is also remarkable.

4. Technical considerations and further work

Our aim was to reach as much potential users as possible. So we created a version of GeoGebra

Discovery for each major platform, including Windows 10 (32-bit), Mac OS and Linux (64-bit).

We used the repositories [13] and [14] to compile QEPCAD B 1.74 on Mac and Linux, and for

Windows we used an own build of Petter Strandmark’s QEPCAD B 1.69 fork from GitHub.

For the Mac and Linux versions, for better portability, we compiled QEPCAD statically and

released all components as a single .zip bundle. (On Mac we also provided a Java Runtime

Environment in the package.) The bundles can be downloaded at https://github.com/kovzol/

geogebra/releases/tag/v5.0.591.0-2021Mar13.

https://github.com/kovzol/geogebra/releases/tag/v5.0.591.0-2021Mar13
https://github.com/kovzol/geogebra/releases/tag/v5.0.591.0-2021Mar13
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Figure 4: Comparison of Mathematica and QEPCAD

Our final aim is to embed our experimental network of the four systems into one tool,

namely, into the mainstream version of GeoGebra, developed at University of Linz, Austria.

It runs on several platforms, including desktop computers with various operating systems

(Windows, Mac and Linux), and the web platform, and also smartphones. This high variety of

technological background requires heavy simplification of the underlying technologies and it

calls for minimizing the applied external tools.

That is, for the long term our aim is to embed all external parts of our machinery into

GeoGebra. For the realgeom part, this seems to be achievable since it is a single Java application

with no graphical user interface: only some sophisticated algorithms are included that can be

copied to GeoGebra.

On the other hand, copying QEPCAD B into GeoGebra seems to be somewhat more difficult.

QEPCAD is based on Saclib [13], a C library that offers CAS computations. QEPCAD is written

in C++. Thus, it seems a viable way to compile both systems as a Java Native Interface (JNI) and

include them as a dynamically loadable object on all desktop platforms. The GeoGebra Team has

already quite a lot of experience on this technological step because Giac, also written in C++, is

embedded in the same way in GeoGebra since 2013 [2]. In that case SWIG (http://www.swig.org/)

was used to perform the step from C++ to Java.

Besides the native platform, a web application and a smartphone version should also be

supported. Compilation of C/C++ applications for the web is already well supported by various

tools. Here we highlight Emscripten [15] that provides multiple targets including JavaScript or

WebAssembly. For GeoGebra’s former developments this tool is already known: it is continu-

http://www.swig.org/


ously used to compile Giac as an embedded system for the web/smartphone platforms. On the

other hand, Giac’s “online” version has some limitations at the moment: it does not support

allocating a high amount of memory, and its speed significantly underperforms the JNI version.

There is, however, still hope to make substantial improvements in this direction by using the

most recent versions of Emscripten.

We remark that Saclib has a built-in garbage collector (GC) that needs to be initialized in the

beginning of a QEPCAD session, by setting the maximal value of the used cells. This number

cannot be increased during a QEPCAD session, and this issue results in some limitations in the

current version of GeoGebra Discovery. As a possible future improvement, dynamic increase of

the GC space could be a solution for this problem.

A more serious problem is that QEPCAD does not optimize the input. This results in well-

known speed issues, even on very simple inputs. To solve this problem, we could use the Tarski
system [16, 17]: it can preprocess the input planned to be processed with QEPCAD, and it usually

suggests a better input form for the user. By following this concept, we also consider adding

Tarski as a preprocessor between realgeom and QEPCAD. We expect a substantial speedup after

this step.

In fact, the Saclib-QEPCAD machinery is more a piece of research software than an industrial

application. It was evolutionary software during the last decades, but as of today, its technologi-

cal background is somewhat outdated. Therefore, we also consider trying other software as

underlying backends. As of writing of this paper, the SMT-RAT [18] system seems to be a more

up-to-date framework that could be a potential long-term backend to support symbolic proofs

on geometric inequalities in GeoGebra.

Even if the above mentioned technical difficulties can be solved, speed remains an issue

for more complicated inputs. This also means that studying inequalities in planar Euclidean

geometry by automatically obtained proofs will be still a challenging research field in the

following years as well.

5. Conclusion

We presented our recent improvements on GeoGebra Discovery that combine various software

tools to automatically obtain sharp constants in inequalities like (6). Our first impressions

with its new backend QEPCAD B are very positive and we find this system to be suitable in

many levels of studying Euclidean geometry. There is, however, still much room for further

development.

One issue is the complexity of our system: it prevents its easy embedding into the mainstream

version of GeoGebra. The second issue is speed: as it is well known, CAD has doubly exponential

complexity in the number of variables (see [19, 20]), so in general there is no hope to cover all

problems in feasible time. But the questions we raise are quite specific, so there seems to be

much room for remarkable speedups.

For some possible optimization ideas we refer to our recent paper [6], but here we also

highlight that as future work we plan to measure the difficulty of the input problems. According

to the number of free parameters, equations and dimension (that is, degree of freedom), for

example. By having a detailed set of data we may be able to observe how the geometric problem



setting relates to the types of algebraic objects.

In the class of isosceles and right triangles we observed that the related translated algebraic

problems are one-parameter problems, whose solutions can be obtained by adapted parametric

real root counting/finding methods as well. This shows a potential speedup for these type of

problems.

Also, we would like to extend the benchmark suite with some problems for quadrilaterals of

special types, among other inputs.
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