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Abstract
An evaluable function computing the border array of a list in Isabelle/HOL is presented. The correctness
of the function is verified in a straightforward lightweight manner, and it is applied to computation of
other important properties of lists.
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1. Introduction

A border of a word 𝑤 (word is used as a preferred synonym for ‘list’ or ‘string’ in this text) is a
word 𝑢 (possibly empty, that is, of length 0) such that 𝑢 ̸= 𝑤 and 𝑢 is both prefix and suffix of
𝑤. The maximal border of 𝑤 is its longest border. The concept of the border is complementary
to the concept of a periodic root. If 𝑤 = 𝑝 · 𝑢 where 𝑢 is a border of 𝑤, then 𝑝 is a periodic root
of 𝑤, that is, 𝑤 is a prefix of 𝑝 · 𝑝 · 𝑝 · · · (Here · denotes the concatenation, which is motivated
by the fact words with concatenation form a monoid). Obviously, a border of 𝑤 is determined
by its length. The border array BA𝑤 = [𝑏0, . . . , 𝑏|𝑤|−1] of 𝑤 is the list (of the same length as
𝑤, which is denoted here by |𝑤|) of natural numbers such that 𝑏𝑖 is the length of the maximal
border of the prefix of 𝑤 of length 𝑖+ 1. In particular, the last element of BA𝑤 is the length of
the maximal border of 𝑤.

The border array, possibly slightly modified and with different terminology, is a well known
structure. In particular, the border array of the searched pattern plays a crucial role in the
Knuth-Morris-Pratt text search algorithm (cf. the function 𝑓 defined on p. 327 of [1]). Moreover,
establishing the maximal border is itself a search task: the maximal border of 𝑤 corresponds to
(the beginning of) the first repeated occurrence of 𝑤 in itself. It follows that using the efficient
Knuth-Morris-Pratt algorithm for the computation of the maximal border of a word is equivalent
to the first part of the algorithm, namely to the computation of the whole border array.

2. Motivation

My interest in formalization of different aspects of periods of words, and therefore in (maximal)
borders, is motivated by the project formalizing combinatorics on words, see [2] and [3]. The
maximal border can be used for characterization of several other important properties od the
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word, for example for establishing its primitivity. The word is primitive if it is its own (trivial)
power only. In other words, a word is imprimitive if it is a power of a shorter word. For example,
𝑎𝑏𝑎𝑏 is imprimitive, while 𝑎𝑏𝑎𝑏𝑎 is primitive. Denote the shortest periodic root of 𝑤 by 𝜋(𝑤).
That is, 𝜋(𝑤) is the shortest word such that 𝑤 is a prefix of 𝜋(𝑤) ·𝜋(𝑤) ·𝜋(𝑤) · · · . The following
lemma holds:

Lemma 1. The word 𝑤 is imprimitive if and only if 𝜋(𝑤) ̸= 𝑤 and 𝜋(𝑤) · 𝑤 = 𝑤 · 𝜋(𝑤).

Proof sketch. Let 𝑤 = 𝑟𝑘. Then both 𝑟 and 𝜋(𝑤) are periods of 𝑤, which implies |𝜋(𝑤)| ≤ |𝑟|
by the minimality of 𝜋(𝑤). The proof is based on the fact (which is a weak version of the
Periodicity Lemma, see [4])) that if |𝑟|+ |𝜋(𝑤)| ≥ |𝑤|, then 𝑟 and 𝜋(𝑤) are powers of the same
word (which is then also a periodic root of 𝑤). This implies that 𝜋(𝑤) = 𝑟 if 𝑘 ≥ 2.

On the other hand, words commute if and only if they are powers of the same word. The rest
is easy.

If we denote the maximal border of 𝑤 by 𝛽(𝑤), we have 𝑤 = 𝜋(𝑤) · 𝛽(𝑤). Therefore, being
able to compute the maximal border yields an effective test of the primitivity of the word.

3. The algoritm

For convenience and future reference, I briefly and informally review a concrete version of the
well known algorithm computing the border array. Let 𝑤 be the word whose maximal border
we want to compute. Fix the elements of 𝑤 as 𝑤 = [𝑤𝑛, 𝑤𝑛−1, . . . , 𝑤1, 𝑤0], where |𝑤| = 𝑛+ 1.
Following the order of construction of lists we shall process 𝑤 from right to left, and construct
gradually its suffix border array, that is, a list [𝑏|𝑤|, 𝑏|𝑤|−1, . . . , 𝑏1] of natural numbers where 𝑏𝑖
is the length of the maximal border of 𝑠𝑖, which is the suffix of 𝑤 of length 𝑖.

The construction uses, in addition to 𝑤, three variables arr, pos and bord with the following
meaning. The integer pos indicates the currently processed position of 𝑤, while arr is the
suffix border array of the already processed part. More precisely, we have 𝑤 = 𝑤1 · 𝑤2, where
pos = |𝑤1| and |arr| = |𝑤2|. The list arr = [𝑏|𝑤2|, . . . , 𝑏1] of natural numbers is the suffix
border array of 𝑤2 (and a suffix of the computed suffix border array of 𝑤). The initial value of
bord (for a new pos) is 𝑏|𝑤2|.

The algorithm terminates with pos = 0. If pos ̸= 0, let 𝑎 be the last element of 𝑤1. The
algorithm is currently looking for the maximal border of 𝑎#𝑤2 (where # denotes insertion of
an element at the beginning of a list), and considers 𝑎#𝑝 as a candidate, where 𝑝 is the prefix of
𝑤2 of length bord. Moreover 𝑝 (or bord) has two additional properties:

• 𝑝 is a border of 𝑤2;
• bord+ 1 is an upper bound on the length of the maximal border of 𝑎#𝑤2.

These conditions reflect the basic idea of the algorithm: if 𝑎#𝑢 is the maximal border of 𝑎#𝑤2,
then 𝑢 is a border of 𝑤2, and (in view of the second condition) also a border of 𝑝, which is also
a suffix of 𝑤2. This dictates the next step: the algorithm compares 𝑎 and 𝑤bord.

• If 𝑎 = 𝑤bord, then 𝑎#𝑝 is the maximal border of 𝑎#𝑤2. Then arr can be updated, and
the algorithm proceeds to pos− 1;



• If 𝑎 ̸= 𝑤bord, then there are two possibilities:

– if 𝑝 is empty, then 𝑎#𝑤2 is unbordered (its maximal border is empty), and we can
again proceed to pos− 1;

– otherwise, the next candidate is 𝑎#𝑝′ where 𝑝′ is the maximal border of 𝑝. The
length of 𝑝′ is stored in arr, namely, it is 𝑏bord.

4. Implementation and related work

My formalization of the above described algorithm in Isabelle/HOL is realized by three functions:
kmp_arr, kmp_bord and kmp_pos which map the four parameters 𝑤, arr, bord and pos to
updated values corresponding to the situation after one step of the algorithm. The algorithm
kmp is then a straightforward recursive call which is exited when pos = 0. The termination is
obtained easily by the lexicographic order on the pair (pos, bord).

The invariant properties of variables described above are captured by the predicate
kmp_valid. The key task is then to prove lemma kmp_valid_step which shows that the prop-
erties are indeed preserved by the above mentioned functions. That is, if (𝑤, arr, bord, pos)
satisfies the predicate, then also the quadruple(︀

𝑤, kmp_arr(𝑤 arr bord pos), kmp_bord(𝑤 arr bord pos), kmp_pos(𝑤 arr bord pos)
)︀

does. A fully structured commented proof in Isar language is given. Together with obvious
validity of the predicate for the initial quadruple (𝑤, [0], 0, |𝑤| − 1), this establishes the correct-
ness proof, which is explicitly reformulated for the border_array (which simply inverts the
suffix border array yielded by kmp).

Summarizing, our main goal is achieved by a pair of theorems. The correctness theorem
bord_array shows that the function border_array indeed computes the desired length of
maximal borders:

theorem bord_array: assumes Suc k ≤ |w|
shows (border_array w)!k = |max_border (take (Suc k) w)|

The function can be evaluated. For example,

value border_array [5,4,5,3,5,5,5,4,5::nat]
yields

[0, 0, 1, 0, 1, 1, 1, 2, 3]

This trivially leads to the code equation generating theorem max_border_comp that computes
the maximal border of 𝑤.

theorem max_border_comp [code]: max_border w = take ((border_array w)!(|w|−1)) w

As can be seen, the described formalization is a handmade version of a verification process
which can be nowadays heavily automatized by the Isabelle Refinement Framework (IRF) by
Peter Lammich (see [5], [6], [7]). Moreover, this very framework has been used to formal-
ize the full Knuth-Morris-Pratt algorithm by Fabian Hellauer [8]. Specifically, our function
border_array (which is essentially the above mentioned function 𝑓 of [1]) is defined (again



in a slightly modified form) in [8] via its specification, computed by means of the Refinement
Framework, and its correctness is then proved using tools of refinement automation (for example
18 gooals out of 22 in the correctness proof are discharged by the method vc_solve taking
several seconds). The theory [8] is well written, and it contains, unsurprisingly, many theorems
about borders that closely match some of my theorems and that I could easily reuse.

Therefore, in view of the above work, the value of the formalization presented here is open
to judgment. I want to make two comments. First, using IRF brings about a significant overhead
(in terms of the bootstrapping time for example) which discourages me from making my theory
depend on it. In particular since the theory of borders is relatively simple layer of our larger
development. Second, it is not clear (to me) how easily the exported code can be used in
subsequent proofs in the way we need as indicated in Section 2, and described in the next
section.

5. Towards the intended application

Using appropriate code equations we are now able to evaluate several important properties of
particular words, like the maximal border, the minimal periodic root and the minimal period,
as well as predicates bordered and primitive. For example, primitivity can be tested using
Lemma 1 and the equality 𝑤 = 𝜋(𝑤) · 𝛽(𝑤) by the following four pieces of code leading to the
function KMP described in the previous section:

lemma primitive_iff [code]: primitive w←→ w ̸= 𝜀 ∧ (𝜋 w = w ∨ 𝜋 w · w ̸= w · 𝜋 w)

lemma min_per_root_take [code]: 𝜋 w = take (|w| − |max_border w|) w
lemma max_border_comp [code]: max_border w = take ((border_array w)!(|w|−1)) w
fun border_array :: ′a list⇒ nat list where
border_array 𝜀 = 𝜀
| border_array (a#w) = rev (KMP (rev (a#w)) [0] 0 (|a#w|−1))

An obvious drawback is that the evaluation is available only for types that are of class equal,
which does not apply to general lists of type ’a list. In order to avoid this limitation, we
encode 𝑤 into a binary alphabet (which is of class equal) by a simple function bin_encode:

fun bin_encode :: ′b⇒ ′b⇒ ′b⇒ Enum.finite_2
where bin_encode x y = (𝜆 z. (if z = x then Enum.finite_2.a1 else Enum.finite_2.a2))

Decoding function bin_decode is analogous. We can now prove that the encoded word is
primitive if and only if the original one is:

lemma prim_bin_enc_iff: assumes x ̸= y and ws ∈ lists {x,y}
shows primitive ws←→ primitive (map (bin_encode x y) ws)

Theories

An archive version of the formalization described in this paper is available at [9] and consists of
four theories:

• CoWBasic.thy introduces large amount of properties of words extending further the
deafult theory List.thy and its extension Sublist.thy in Isabelle’s HOL-Library.



• Reverse_Symmetry.thy is an auxiliary theory for CoWBasic.thy automating generation
of reverse-symmetrical facts.

• Border_Array.thy contains the main material described in this paper.
• Spehner.thy illustrates a particular use of the primitivity predicate and the encoding

into the binary alphabet.

A current (and possibly significantly modified) version of these theories is maintained as part of
our large development [3].

Note added in proof: Recently, we implemented an alternative method of proving primitivity
of a word, which makes this particular application of the border array calculation slightly
outdated. We have also already formalized the theorem spehner, which was used without
proof (with sorry) for sake of illustration in the theory Spehner.thy (see [10]).
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