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Abstract
When producing large formally verified mathematical developments that make use of typeclasses it is
easy to introduce overly strong assumptions for theorems and definitions. We consider the problem of
recognizing from the elaborated proof terms when typeclass assumptions are stronger than necessary.
We introduce a metaprogram for the Lean theorem prover that finds and informs the user about possible
generalizations.
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1. Motivation

Developing and maintaining large libraries of formalized mathematics in an interactive theorem
prover, such as the libraries mathlib [1] in Lean [2], Mathematical Components [3] in Coq [4],
or the Archive of Formal Proofs and base libraries for Isabelle/HOL [5] is a time consuming
process. In addition to the overall design and organisation of the library, inclusion of useful
results and writing of proofs, library maintenance requires maintaining interoperability of
theories and deduplication of overlapping or identical results. Contributors to such a library
with a specific formalization goal in mind often prove background results in the generality that
they are needed. When such work is included into a large library it is desirable that all results
be maximally useful for other potential use cases and not overly specific, this often leads to
time consuming refactoring efforts before new material can be included.

The goal of this paper is to demonstrate that when typeclasses are used to implement
hierarchies of assumptions on formalized objects it is possible to automate the process of
generalizing results by relaxing typeclass assumptions. Pons [6] has previously considered a
similar problem, and describes a mechanism for generalizing assumptions about functions and
types, but without specifically considering heierachies of typeclasses.

Our focus is mostly on the applications to the formalization of mathematics, it is also conceiv-
able however that relaxing typeclass assumptions can be of use for other users of interactive
theorem provers, such as for software verification.
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2. Typeclasses

Typeclasses were introduced by Wadler [7] as a way to provide polymorphism in strongly typed
programming languages. They are used in interactive theorem provers [8] and their libraries
of formalized mathematics to manage levels of mathematical structures on an object [9, 10].
When a term is used the user does not ordinarily supply typeclass arguments, instead they are
inserted automatically by a typeclass system that finds instances to match the needed argument,
possibly by chaining together the instances declared in the library. From the perspective of
interactive theorem provers, typeclasses reduce the burden on the user of the tool to be explicit
about which instances are used and in fact hide them completely from the end user.

Commonly used typeclass hierarchies for mathematical libraries include: algebraic struc-
tures, including binary operations and their properties, properties of relations and ordering,
topological spaces, (pseudo-)metric spaces, and their properties. Additionally mixtures of the
aforementioned hierarchies that interact, such as ordered algebraic structures, topological
groups and normed algebraic structures may also be included in the typeclass system, leading
to a highly nontrivial hierarchy.

In addition to the situation mentioned in the introduction, where results introduced for one
purpose may be generalized to a more widely useful form, generalization can also become
possible when new typeclasses are inserted into an existing hierarchy. For instance in the
mathlib library the concepts of non-unital and/or non-associative rings were added in March
20211, several years after rings were introduced in core Lean. In the interim period several
thousand lemmas and theorems were added to mathlib concerning rings. This leaves the difficult
library maintenance problem of filling out the library of lemmas for these newly introduced
algebraic structures, without duplicating existing work.

3. Examples

We introduce some of the key considerations by looking at some examples in the Lean theorem
prover using the mathlib library.

Consider the following lemma:

lemma mul_inv {G : Type*} [ordered_comm_group G] (a b : G) : (a *

b)−1 = a−1 * b−1 :=
by rw [mul_inv_rev, mul_comm]

It is clear that the statement and the proof require a commutative group structure, but that
the assumption that 𝐺 be an ordered commutative group plays no role. Despite the shortness
of the statement and proof script the generated proof term contains many chains of typeclass
instances including those shown in Figure 1.

There are in addition other instances between these classes, not made use of in the original
proof, but available to the typeclass system.

The only typeclass parameters actually required to satisfy the assumptions of the applied
lemmas mul_inv_rev and mul_comm are group G and comm_semigroup G. We cannot

1See https://github.com/leanprover-community/mathlib/pull/6786.
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Figure 1: Typeclass chains in the proof of mul_inv.

replace the assumption ordered_comm_group G with this pair of assumptions however as
they have overlapping fields, they both should refer to the same multiplication operation. This
is visible in the figure as there is an instance chain from each of these to has_mul. Instead a
meet of these two typeclasses in the typeclass graph should be chosen as the generalization, in
this case it is comm_group.

The following theorem states that given a ring homomorphism between two fields and a
natural number 𝑝, one of the fields has characteristic 𝑝 if and only if the other has characteristic
𝑝 (including 𝑝 = 0):

lemma ring_hom.char_p_iff_char_p {K L : Type*} [field K] [field L]
(f : K →+* L) (p : N) : char_p K p ↔ char_p L p :=
begin

split;
{ introI _c, constructor, intro n,

rw [← @char_p.cast_eq_zero_iff _ _ p _c n, ←
f.injective.eq_iff, f.map_nat_cast, f.map_zero] }

end

We see that the proof script splits the iff statement into each direction, but both directions are
proved by the same tactic block. It is non-trivial to determine just by reading the proof given
what the weakest assumptions possible are, and it is not immediately clear from the statement
either. While it is of course possible to work out the correct generality by hand by inspecting
the assumptions needed for each lemma applied, we hope this provides a realistic example
where the “right” answer is not immediately clear.

In fact the weakest possible typeclass assumptions for the proof of
ring_hom.char_p_iff_char_p are precisely the assumptions needed to apply
ring_hom.injective to perform the rewrite ← f.injective.eq_iff. These are



that 𝐾 should be a division ring, and 𝐿 should be a nontrivial semiring. This example
highlights another important point; simply taking the meet in the typeclass graph of the
required classes is not always optimal. The meet of the classes nontrivial and semiring in
the present version of mathlib is domain, once again an overly strong assumption, as there
is no reason not to simply assume [nontrivial K] [semiring K]. We should allow one
assumption to be replaced by several distinct assumptions if there is no conflict in doing so. The
typeclasses nontrivial and semiring both provide instances of the nonempty typeclass,
which contains no data, so it is a Prop and hence a subsingleton in Lean. Thus despite the fact
that they do both provide instances of the same class, the instances will be equal and there is
no issue allowing both assumptions separately.

4. Algorithm

We now describe in more detail an algorithm to find possible typeclass generalizations, given a
proof term.

One important thing to note here is that we also handle typeclasses with more than one
argument that are partially applied. For instance it is desirable to be able to generalize group G
to has_pow G Z. This is distinct from monoid G generalizing to has_pow G N, so we treat
these partially applied typeclasses as the basic objects of interest, we call them bound classes.

The first step is to traverse the entire environment and build a directed graph of bound classes
with instances between them. We also precompute the transitive closure and a topological sort
of this graph.

Algorithm 1: Generalising typeclasses assumptions in a declaration.

foreach typeclass argument c do
𝑆 ← [];
foreach maximal chain of instances ending in c in the statement or proof do

add the head bound class of the chain to 𝑆;
end
𝑇 ← the set of strongly connected components for the subgraph of bound classes
reachable from 𝑆 (ignoring subsingletons);
𝑜← [];
foreach 𝑢 in 𝑇 do

add a meet of 𝑢 to 𝑜;
end
return o

end

5. Implementation

We have implemented the above ideas for the Lean theorem prover as a metaprogram written
in Lean itself2. This means that no external tools beyond Lean itself are needed for users to

2the implementation is available at https://github.com/alexjbest/lean-generalisation

https://github.com/alexjbest/lean-generalisation


integrate this tool into their Lean developments. We may also make use of the linter framework
[11] which provides a convenient means for users to run different checks on the current file,
and for continuous integration tools to regularly lint an entire library on multiple cores. This
introduces a dependency on mathlib itself, but this tool can be imported and applied to any
Lean development, and the import removed when generalization is complete.

We note that it is important to precompute and cache useful information about the typeclass
graph, such as a topological sort of the graph, and its transitive closure. With the current size
of mathlib this precomputation is quite reasonable, even with non-optimal algorithms.

6. Summary of results

By running the metaprogram described above on a current version of the mathlib library3,
which contains around 80,000 declarations we can gauge the effectiveness of this approach. Note
that the process of generalizing typeclass assumptions using such a tool is naturally an iterative
process, by generalizing one theorem other theorems that made use of the original theorem may
also become generalizable. This makes it most natural to use such a tool interactively in a file
when formalizing some theory. Nevertheless, for ease of measurement we simply apply a single
pass in our test, thus there are likely many more interesting or useful typeclass relaxations that
can be discovered by such a tool if used iteratively.

In total the current implementation produces 2877 results, some of these are false positives,
or at least not particularly useful generalizations. To get a sense of what generalizations were
possible in a library like mathlib, we list in Table 1 some of the most common generalizations
found by this pass.

Here several generalizations such as changing a field typeclass to a (commutative) ring give
rather large relaxations of structure, and potentially introduce a large number of new useful
lemmas in the library.

The replacement of integral_domain with comm_ring and no_zero_divisors appears
mathematically trivial, but in fact results in the removal of the assumption that the ring in
question be nontrivial (which is part of mathlib’s definition of an integral domain). Replacements
such as this are mathematically not significant and it is not the case that this generalization
would be useful to an end user directly. However, making this generalization relieves the user of
such a theorem from the burden of adding a non-trivial assumption which can then proliferate
through the library. These small assumptions that nonetheless need verifying whenever a
theorem is applied can slow down formalization efforts and make future formalization unduly
time consuming and tedious compared with the actual mathematics being formalized.

It is important that such a tool be usable interactively when working on for-
malizing a mathematical theory. Running our implementation on the mathlib file
topology/ordered/basic.lean (the second longest in mathlib by number of lines) takes
between 1 and 2 minutes on a modern laptop, depending on if the typeclass graph is already
computed and cached. This checks 475 declarations and reports 183 results currently.

3commit 29b63a7e91d079b159dfc2cf0fb4d2a1ce1c409b, not including core Lean library



Table 1
Generalizations found in the Lean mathlib.

Original typeclass Replacement typeclasses (number of times replaced)
comm_ring comm_semiring (42), ring (40), semiring (27), has_zero (8)
add_comm_group add_comm_monoid (96), add_group (5), sub_neg_monoid (5), {has_add, has_neg,

has_zero} (3)
semiring non_assoc_semiring (53), non_unital_non_assoc_semiring (23),

{add_comm_semigroup, has_one} (13), {add_comm_monoid, has_mul} (8), has_mul
(7), has_zero (5)

field division_ring (23), comm_ring (12), integral_domain (12), semiring (7),
domain (4), ring (4), has_inv ring (3)

ring semiring (55), non_assoc_semiring (8), {add_group, has_mul} (4), {has_add,
has_neg, mul_zero_one_class} (4)

preorder has_lt (36), has_le (31), {has_le, is_refl} (3), {has_lt, is_asymm} (3), {has_lt,
is_irrefl, is_trans} (3)

comm_semiring semiring (26), monoid (10), add_zero_class (4), {has_mul, is_associative,
is_commutative} (4), has_pow (4), mul_one_class (4)

normed_space module (23), semi_normed_space (38)
add_monoid add_zero_class (51), {has_add, has_zero} (5)
monoid mul_one_class (34), has_mul (11), {has_mul, has_one} (5), has_pow (5)
module has_scalar (20), distrib_mul_action (8), mul_action (6)
normed_group semi_normed_group (36), has_norm (10), has_nnnorm (3)
integral_domain comm_ring (15), domain (8), {comm_ring, no_zero_divisors} (7), comm_monoid

(3), {has_mul, has_zero, no_zero_divisors} (2), {no_zero_divisors,
semiring} (2)

partial_order preorder (33)

7. Limitations and Further Work

By only inspecting the existing proof of a theorem naturally not all possible generalizations
of theorems can be found. It is quite easy to write proofs that require stronger assumptions
than necessary, especially when using powerful automation. Trying to remove this limitation
completely shifts the problem to one of automatic theorem proving. However, an intermediate
problem where some automation may be possible is to find theorems for which the same proof
script proves a generalized theorem. This is especially likely with small proofs that make heavy
use of automation to begin with. Here a brute force strategy of weakening typeclasses in
theorem statements and re-running the same proof script seems far too slow to be used on the
scale of a large library in a prover such as Lean, however similar techniques have been used in
the Mizar system [12]. Nevertheless, a tool to automate this process could still be useful for
small new developments.

Currently the system as implemented in Lean will provide to the user a list of possible typeclass
generalizations by printing the name of the declaration and describing the argument that can be
generalized. The structure of Lean files allows for variables to be defined within a section these
assumptions can then hold for all declarations in large chunks of the file. This decoupling of



the location of the assumptions used for each theorem and the theorems themselves sometimes
makes it tedious to rearrange the file to actually implement the suggestions. Therefore better
tooling to reorganise Lean files in a content-aware manner will improve the usability of the
tool described in this paper.

A mild extension of this work would be to consider not just assumptions, but also concrete
types in a theorem statement. For instance theorems proven about explicitly constructed types
such as the natural, rational or real numbers often make use of (ordered) algebraic properties
of these types, which are filled in via typeclasses. Recognizing these typeclass chains in the
same way as described here could allow parts of libraries concerning these concrete types to be
generalized to include any object satisfying some typeclass hypotheses.

A core design principle of Lean 4, the next iteration of the Lean theorem prover [13], is that
the majority of the system be written in Lean itself. This allows for extensibility of the Lean
system by users, rather than having to build different vesions of Lean for user extensions. Using
this it may be possible to integrate the minimisation of typeclass assumption into Lean’s own
typeclass system, providing a more accurate and efficient tool.

8. Conclusion

Recognizing too strong typeclass assumptions automatically is possible, and can be done
efficiently. Such tools can save maintainers of mathematical libraries time by providing more
general results for free from an existing library, and provide users of formal proof systems with
interesting information about what generality theorems hold in.
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