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Abstract

Most of the engineering and physical systems are generally characterized by differential and difference
equations based on their continuous-time and discrete-time dynamics, respectively. Moreover, these
dynamical models are analyzed using transform methods to prove various properties of these systems,
such as, transfer function, frequency response and stability, and to find out solutions of the differential/d-
ifference equations. The conventional techniques for performing the transform methods based analysis
have been unable to provide an accurate analysis of these systems. Therefore, higher-order-logic theorem
proving, a formal method, has been used for accurately analyzing systems based on transform methods.
In this paper, we survey developments for transform methods based analysis in various higher-order-logic
theorem provers and overview the corresponding real world case studies from the avionics, medicine
and transportation domains that have been analyzed based on these developments.
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1. Introduction

The engineering and physical systems exhibiting dynamical behaviours are generally modeled
using differential [1] and difference [2] equations based on their corresponding dynamics that
can be continuous-time and discrete-time, respectively. To analyze these models capturing the
dynamics of such systems, transform methods, such as, the Laplace transform [3], the Fourier
transform [4], the Discrete Fourier Transform (DFT) [5] and the z-Transform [6], have been
widely used. These transform methods facilitate finding out solutions of these differential and
difference equations based models and analyzing their various important properties, such as,
transfer function, frequency response and stability, as shown in Figure 1.

The continuous-time dynamical behaviour of a system is generally modeled using differential
equations. These differential equations-based models are not easier to analyze in time-domain,
especially, for the case of larger systems (n-order differential equations for larger n). Transform
methods, which include the Laplace and the Fourier transforms have been widely used to
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Figure 1: Transform Methods

analyze these differential equations. These methods involve a transformation of the time-
domain model to its corresponding frequency domain representation (s-domain for the Laplace
and w-domain for the Fourier transform), which converts the differential equations involving
integrals and differentials to their corresponding algebraic equations having multiplication
and division operators, as shown in Figure 1. These equations are further solved to analyze
various properties of the system, such as, transfer function and frequency response, and to
obtain solutions in frequency domain [3, 4]. Finally, the inverse transforms (the inverse Laplace
and the inverse Fourier) are applied to obtain the time-domain solutions of the differential
equations-based models.

Similarly, the dynamics of a discrete-time system are captured using difference equations.
These difference equations based models are analyzed using the discrete-time transform methods,
which include the Discrete Fourier Transform (DFT) and the z-transform. These transform
methods perform a conversion of the discrete time model to its corresponding frequency domain
representation (z-domain for the z-transform and w for the DFT), as shown in Figure 1. These
representations are further solved to analyze various properties of the given system, such as,
transfer function and frequency response, and to obtain solutions in frequency domain [5, 6].
Finally, the inverse transforms are applied to obtain the time-domain solutions of the difference
equations based models.

Conventionally, the transform methods based analysis has been performed using paper-
and-pencil based proofs and computer based symbolic and numerical techniques. However,
these methods suffer from their inherent limitations and thus compromise the accuracy of
the analysis [7]. Formal methods [8], in particular, higher-order-logic theorem proving [9]



can overcome the limitations of the conventional methods and thus provides an accurate
transform methods based analysis of the systems. It has been widely used for the transform
methods based analysis of the engineering and physical systems. These transform methods have
been formalized using various higher-order-logic theorem provers, such as, HOL Light [10],
HOL4 [11], Coq [12] and Isabelle [13]. Moreover, these formalizations have been used for
analyzing various safety-critical systems, such as, linear analog circuits, automobile suspension
systems, a drug therapy model, unmanned aerial vehicles, synthetic biological circuits, power
converters and digital filters. In this paper, we survey these contributions regarding formalization
of transform methods that have been done using higher-order-logic theorem proving.

The rest of the paper is organized as follows: Section 2 provides the developments of the
Laplace and the Fourier transforms in various theorem provers and their associated analysis of
the continuous-time systems. We provide the formalization of the DFT and the z-transform and
the associated analysis of the discrete-time systems in Section 3. Section 4 presents a discussion
about the features and availability of the transform methods based analysis and its comparison
in different theorem provers. Finally, Section 5 concludes the paper.

2. Transform Methods for Analyzing Continuous-time Systems

The Laplace and the Fourier transforms have been formalized using various higher-order-logic
theorem provers. Moreover, these formalizations have been used for formally analyzing many
engineering and physical systems. Taqdees et al. [14] formalized the Laplace transform using
multivariate calculus theories of HOL Light. This formalization mainly includes the formal
definition of the Laplace transform and the formal verification of its various properties, such
as, linearity, frequency shifting, first-order differentiation, higher-order differentiation and
integration in time-domain. Moreover, the authors used their formalization of the Laplace
transform for formally verifying the transfer function of a Linear Transfer Converter (LTC)
circuit. Next, the authors extended their framework by providing a support to formally reason
about the linear analog circuits, such as first-order and second-order Sallen-Key low-pass
filters by formalizing the system governing laws such as Kirchhoff’s Current Law (KCL) and
Kirchhoff’s Voltage Law (KVL) using HOL Light [15]. Later, Rashid et al. [16] proposed a new
formalization of the Laplace transform based on the notion of sets and verified some more
properties of the Laplace transform, such as, time shifting, time scaling, the Laplace transform
a n-order differential equation and uniqueness [17]. The authors also formally verified the
Laplace transform of some commonly used functions, such as, exponential function, sine and
cosine functions. Finally, they used their proposed formalization of the Laplace transform for
analyzing the control system of an Unmanned Free-swimming Submersible (UFSS) vehicle [16]
and 4-7 soft error cross talk model [17]. Similarly, the formalization of the Laplace transform
has been used for formally analyzing the unmanned aerial vehicles [18] and synthetic biological
circuits [19, 20].

Wang et al. [21] provided a formalization of the Laplace transform using the Coq theorem
prover. The authors formally defined the Laplace transform and formally verified a few of its
classical properties, such as, linearity, frequency shifting and differentiation in time domain.
Moreover, they applied their proposed formalization for formally verifying a flight control



system using Coq. Similarly, Immler [22] formalized the Laplace transform using the Isabelle
theorem prover. The authors mainly verified some of the classical properties of the Laplace
transform, such as, linearity, frequency shifting, uniqueness, differentiation and integration in
time-domain. Gang et al. [23] used HOL4 for the formalization of the Laplace transform. The
authors formally modeled the Laplace transform and verified some of its classical properties,
such as, linearity, frequency shifting, differentiation and integration in time domain. Next, they
used their proposed formalization for formally verifying the transfer function of a motor.

Table 1
Continuous-time Transform Methods in Various Theorem Provers
Transform Methods | Theorem Prover Formalization Details/ Verified Properties
Coq Linearity, frequency shifting, differential [21]
Linearity, frequency shifting, integration, time shifting,
HOL Light time scaling, first-order and higher-order
differentiations in time domain [14, 17]
Laplace Transform Linearity, frequency shifting, integration,
Isabelle first-order and higher-order differentiations

in time domain, integration [22]

Linearity, frequency shifting, differentiation and

HOL4 integration in time domain [23]
Linearity, frequency shifting, modulation, time reversal,
HOL Light first-order and higher-order differentiations
Fourier Transform in time domain [24]
HOL4 Linearity, time reversal, frequency shifting, differentiation,

and integration in time domain [25]

Rashid et al. [26] formalized the Fourier transform using the HOL Light theorem prover.
The authors provided a formal definition of the Fourier transform and formally verified its
various classical properties, such as, linearity, frequency shifting, modulation, time reversal,
first-order and higher-order differentiations in time-domain. Furthermore, they formally veri-
fied the Fourier transform of some commonly used functions, such as, exponential, sine and
cosine functions. Moreover, they used their proposed formalization for formally analyzing an
Automobile Suspension System (ASS), an audio equalizer, a drug therapy model and a MEMs
accelerometer [24]. Similarly, Guan et al. [25] formalized the Fourier transform using HOL4. The
authors provided a formal definition of the Fourier transform and formally verified its various
properties, such as, linearity, time reversal, frequency shifting, differentiation and integration
in time domain. Moreover, they used their proposed formalization for formally verifying the
frequency response of a RLC circuit. A summary of the formalizations of the Laplace and
the Fourier transforms in various theorem provers and the systems that have been formally
analyzed using these transform methods can be found in Tables 1 and 2.

3. Transform Methods for Analyzing Discrete-time Systems

The DFT and z-Transform have been formalized using various higher-order-logic theorem
provers. Moreover, these formalizations have been used for formally analyzing many discrete-



Table 2
Analysis of Continuous-time Systems using Transform Methods

Transform Methods | Theorem Provers Applications
Coq Flight control system [21]

LTC [14], UFSS vehicle [16],
4-7 soft error cross talk model [17],
HOL Light Sallen-Key low-pass filter [15],

unmanned aerial vehicles [18],
synthetic biological circuits [19, 20]
Isabelle No application

HOL4 Motor [23]
Automobile suspension system [26],
a drug therapy model [24],

Laplace Transform

Fourier Transform HOL Light an audio equalizer [24],
MEMs accelerometer [24]
HOL4 RLC circuit [25]

time systems. Siddique et al. [27] formalized z-transform using the HOL Light theorem prover.
The authors provided a formal definition of the z-transform and formally verified its various
properties, such as, linearity, time shifting and scaling in z-domain. Moreover, they used their
proposed formalization for the formal analysis of Infinite Impulse Response (IIR) Digital Signal
Processing (DSP) filter. Later, the authors extended their proposed framework by providing
the formal verification of some more properties, such as, time scaling, complex conjugate and
a formal support for the inverse z-transform and used it for formally analyzing a switched-
capacitor interleaved DC-DC voltage doubler [28].

Table 3
Discrete-time Transform Methods in Various Theorem Provers
Transform Methods | Theorem Prover Formalization Details/ Verified Properties
DET HOL4 Implicit perlolelty, lerea.lrlty, symmet.ry, frequency shifting,
time shifting, convolution [29]
FET HOL4 FFT, inverse FFT [30]
Coq FFT [31]
- Transform HOL Light . Ilngarlty, time Shlftll."lg an.d sgalmg in z-domain,
time scaling, complex conjugation, inverse z-transform [28]

Shi et al. [29] proposed a formalization of DFT using the HOL4 theorem prover. The authors
presented a formal definition of the DFT and formally verified its various properties, such
as, implicit periodicity, linearity, symmetry, frequency shifting, time sifting and convolution.
Moreover, the authors used their proposed formalization for formally verifying Fast Fourier
Transform (FFT) and cosine frequency shifting. Capretta et al. [31] formally verified the FFT
using the Coq theorem prover. Similarly, Akbarpour et al. [30] provided a formal specification
and verification of the FFT at different abstraction levels using the HOL4 theorem prover. A
summary of the formalization of the transform methods for discrete-time systems in various
theorem provers and their associated applications can be found in Tables 3 and 4.



Table 4
Analysis of Discrete-time Systems using Transform Methods

Transform methods | Theorem Provers Formalization Details / Verified Properties
DFT HOL4 FFT, cosine frequency shifting [29]
HOL4 FFT at different levels of abstraction and inverse FFT [30]
FFT
Coq FFT [31]
. IIR DSP filter [27], switched-capacitor
#-Transform HOL Light interleaved DC-DC voltage doubler [28]

4. Theorem Proving Support for Transform Methods based
Analysis

Figure 2 depicts the formal libraries of transform methods that are available in various higher-
order-logic theorem provers for performing the analysis of the engineering and physical systems.
For example, the Laplace transform is available in most of the theorem provers. Moreover, its
formal library in the HOL Light theorem prover is quite dense and has been frequently used for
analyzing various safety-critical systems as given in Table 2. Similarly, the z-transform is only
available in HOL Light. Similarly, HOL4 contains both the continuous-time and discrete-time
Fourier transforms. Moreover, no transform methods is available in the PVS theorem prover.
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Figure 2: Support for Transform Methods in Higher-order-logic Theorem Provers



5. Conclusion

Transform methods are widely used for analyzing the engineering and physical systems ex-
hibiting dynamical behaviours. Due to the safety-critical nature of these system, their accurate
analysis is of utmost importance. This paper surveys the transform methods that have been
formalized using different theorem provers by highlighting various safety-critical systems that
have been formally analyzed based on transform methods. In this regard, only HOL Light
theorem prover contains most number of transform methods, such as, the Laplace and the
Fourier transforms, and the z-transform. Similarly, PVS contains no transform methods library
and we need to develop these libraries that can be used for performing transform methods
based analysis using PVS.
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