
Dynamic User Interfaces via Incremental Knowledge
Management
Michael Kohlhase1, Richard Marcus1, Navid Roux1 and John Schihada1

1Computer Science, FAU Erlangen-Nürnberg

Abstract
Extending the UFrameIT Framework, we propose an upgrade to the User Interface features that is directly
built on the knowledge-based part, Mmt. In the game engine, it suffices to interpret the output and
visualize it accordingly, resulting in features that work generically and out of the box for all games built
with UFrameIT.

Initially, we were using fixed text descriptions and a static UI that created unnecessary mental
load when players were trying to match between the abstract problem description and concrete game
situations. To improve this, we introduce dynamic UI synchronization. We relate the progress of the
player to the abstract formalized solution and give hints accordingly. These hints are generated via
partial views; given a partial solution to the problem, Mmt can check the dependencies and point towards
the missing information. In the game, we can use this to highlight not yet assigned as well as even not
yet existing facts in the game. This way, the player gets immediate feedback during the solution process.

Keywords
Serious Games, MMT, User Interfaces, User Experience, Knowledge Management, Development Tool,
Unity, Game Engine

1. Introduction

The UFrameIT framework [CICM20] is a system and software library for supporting develop-
ment and improving gameplay of knowledge-driven Serious Games. Serious Games range from
educational games that teach about certain topics like math to process simulations like machine
maintenance. However, for complex domains like STEM (science, technology, engineering,
and mathematics), where practical application in a virtual world and gamification concepts
promise engaging alternatives to traditional teaching methods, games are often equally difficult
to develop.

The FrameIT Method We implement the FrameIT Method in the UFrameIT Framwork,
which connects Unity [Uni] with the Mmt system [Rab18], which takes care of managing

MathUI 2021
$ michael.kohlhase@fau.de (M. Kohlhase); richard.marcus@fau.de (R. Marcus); navid.roux@fau.de (N. Roux);
john.schihada@fau.de (J. Schihada)
� https://kwarc.info/kohlhase (M. Kohlhase); https://kwarc.info/people/rmarcus/ (R. Marcus);
https://kwarc.info/people/nroux/ (N. Roux); https://kwarc.info/people/jschihada/ (J. Schihada)
� 0000-0002-9859-6337 (M. Kohlhase); 0000-0002-6601-6457 (R. Marcus); 0000-0002-8348-2441 (N. Roux);
0000-0002-8601-7449 (J. Schihada)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:michael.kohlhase@fau.de
mailto:richard.marcus@fau.de
mailto:navid.roux@fau.de
mailto:john.schihada@fau.de
https://kwarc.info/kohlhase
https://kwarc.info/people/rmarcus/
https://kwarc.info/people/nroux/
https://kwarc.info/people/jschihada/
https://orcid.org/0000-0002-9859-6337
https://orcid.org/0000-0002-6601-6457
https://orcid.org/0000-0002-8348-2441
https://orcid.org/0000-0002-8601-7449
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


in-game acquired knowledge and makes use of the Mmt language to formalize this knowledge
– helping game developers to focus on the actual game implementation.

We synchronize both sides via facts, pieces of information the player can collect by interacting
with the game. To represent theorems, we use scrolls, which we also visualize parts of in the
game so that players can interact with these (cf. Figure 2). In particular, players can access
scrolls in the UI and enter facts into the scroll to form a solution to the problem in the game.

Players can access them in the UI and enter facts into the scroll to form a solution to the
problem in the game.

Running Example The FrameIT Method is supposed to allow players to apply abstract
knowledge in real-world problems that are presented in the form of Serious Games. As running
example, we continue with the one from our original paper [CICM20], where we also describe
the example in greater detail. The task is to solve a mathematical puzzle where the player needs
to determine the height of a tree via trigonometry, e.g., using the tangent function (cf. Figure 1).
In the game, the player marks the points at the base and the top of the tree, and an arbitrary
third point on the ground. These points are added as point facts to the fact store. Then they
measure two angles, the one enclosed at the root of the tree and the one on the ground, as well
as the distance between the respective points. The resulting facts are then used to populate the
scroll interface to produce the desired tree height as a fact.

Figure 1: Running Example: Opposite Len: The player is supposed to compute the height of the tree by
measuring facts and applying the tangent.

Problems of Unguided Solution Finding The big problem with our previous iteration
was that players generally do not measure or compute the necessary facts in a fixed order. In
contrast, textbook descriptions of applying the tangent function, for example, do use a certain
set of variables to define the problem. Even with a good understanding of the topic in question
that nudges players to measuring facts in the “best possible” order, assigning them correctly
can cause problems. It may seem trivial to simply exchange these variables for applications to
specific game situations, but players struggled to do this in practice because the mismatching
variable names simply created additional mental load. Especially for novice players, it can then
be difficult to discern if they are struggling with the content or just the user interface.



Figure 2: Empty Scroll with Fact
Collection at the top

Let us look at at the basic situation depicted in Figure 2,
where the player has measured a few facts (making up the
triangle DAE) and is about to populate the so far empty scroll.
If the player now assigned their facts labeled 𝐷,𝐴,𝐸 to the
facts 𝐴,𝐵,𝐶 of the scroll, they would still see the static UI
description of what the scroll is actually computing in terms
of𝐴,𝐵,𝐶 . Importantly, the labels of the user-acquired points
do not match the labels of the input slots required by the
scroll (namely, 𝐴,𝐵,𝐶). Even more confusingly, the labels
partially overlap since 𝐴 appears in both sets of labels.

An obvious remedy is to reflect the labels of the facts
assigned so far in the labels appearing in the scroll description.
This is one of the new features we will describe in this paper.
However, this still can lead to ambiguous situations like the
one depicted in Figure 3. The points and the distance are now assigned but which angles are
required? The right angle can be identified directly but for the other angle DAE, it becomes
important in which order the points of the triangle are to be interpreted. In three dimensions the
player can even view the triangle from two different sides, invalidating traditional conventions.
In this case, we can see that the point D is actually the point at the top of the tree (cf. Figure 3).
Note that the difficulty here is then usually not the measuring of the correct facts in the first
place but rather choosing the correct ones from the fact collection, in particular, when more
facts than necessary have been collected.

Figure 3: Partially Filled Scroll

Even ignoring the individual difficulties when trying to fill
the scroll, the issue becomes apparent that the player only
gets notified that the proposed solutions is incorrect after
every fact has been assigned and the solution attempt has
been tested by the system. Beside making sure that the type
of fact is correct for each fact assignment, there has been no
further user guidance feature so far.

While this can still seem rather manageable for the tangent
example overall, moving to tasks that involve more variables,
possibly with multiple substeps and scroll applications, fur-
ther user assistance becomes vital, which we propose in the
form of automatic knowledge-based hint generation.

Related Work We employ a separation of concerns of
presenting (viewing, user-interfacing with) and processing
(infering, deducing) knowledge. We outsource these concerns to UFrameIT as implemented in
Unity and Mmt, respectively. A similar separation is employed by many software products in
the realm of graphical modeling. For example, tools like game engines (e.g., Unity), 3D modeling
tools (e.g., Blender [Ble]), and graphical CAS-flavored systems (e.g., GeoGebra [GG]) all employ
a similar separation. There, visualized objects (which we call facts) are often structured and
accessible in a hierarchical scene graph.



In our approach and those of the mentioned tools, there is a bijective correspondence and
synchronization between the visualized objects and the objects stored in the scene graph. This
is an essential feature to allow users to perform operations on the scene graph that, e.g., the
graphical frontend lacks an implementation for, and to perform vernier adjustments, e.g., of
objects’ coordinates.

In the UFrameIT framework, we go a step further and let the processing side also generate
new objects/suggestions by means of inference and deduction. This is made possible by our
usage of Mmt as a generic knowledge management system. Moreover, via the API accessed by
the presenting side, we communicate those objects to the player and let them play with as if
they were objects the player had created themself.

Contribution Especially for serious games, it is important to give meaningful explanations to
the player that adapt to the specific point of progress toward the solution. With Mmt, the feature
of showing hints emerges as an instantiation of our generic algorithms, i.e., it neither needs to
be hardcoded for fixed in-game situations nor requires a custom crafted system monitoring the
player’s progress. In this sense, our contributions are the dynamic UI text synchronization, the
automatic and generic generation of hints, and the necessary additions to Mmt.

Note that in this paper, we want to present functionalities that can support professional
developers in designing and implementing good UIs, and evaluating the quality of our current UIs
would not be useful at this point. Our focus is on the pipeline within the UFrameIT framework
that allows deriving UIs and related features directly from the knowledge representation.

Overview To lay the groundwork for the later description of the technical implementation,
we will outline the Mmt features that we make use of in the UFrameIT framework in Section 2.
Section 3 describes the features from the player perspective so that we can show how they benefit
during gameplay. We will continue in Section 4 by diving into the framework implementation
and highlight the modular approach between Unity and Mmt. Section 5 concludes the paper
and gives an outlook on possible future framework extensions.

2. FrameIT Knowledge Management in MMT

Here we will summarise the basic Mmt foundations and concepts that our base framework is
built on.

MMT The Mmt system offers a framework for flexiformally representing and reasoning with
declarative languages such as logics, type theories, and set theories. This makes it also suitable
to represent and reason with a wide range of mathematical knowledge, as desired for our
purposes. Flexiformality allows formalizations in a way that is formal enough for applications
(such as Frame IT) to depend upon, but still informal enough to obviate the need to derive
everything from first principles (e.g., as is common in proof developments in Coq). The MMT
API implements complex algorithms generically for any language in the framework. This is
a crucial feature that makes the FrameIT approach scale to different use cases such as math-



educational games (as in our running example) or physics-inspired simulations, e.g., to simulate
work machines using cogwheels.

MMT Theories The primary way to organize knowledge in Mmt is given by theories. These
are effectively named lists of constants of the form 𝑐 : 𝐴[= 𝑡], where 𝐴 is the type of 𝑐 and 𝑡 is
an optionally given definition. Here, the terms 𝐴 and 𝑡 stem from some user-chosen dependent
type theory. Since we skip over exact details of representation anyway and keep developments
in this paper at an intuitive human-readable syntax, we omit details of the type theory and refer
to [Rab17]. Theories allow for modularity by means of include declarations.

Consider the following two Mmt theories that formalize (some of) the background knowledge
behind our running example:

theory OppositeLen𝑃 = {
include EuclidGeo

A, B, C : point
AxAngleC : ∡BCA

.
= 90°

AngleB : ∡ABC
DistBC : BC

}

theory OppositeLen𝑆 = {
include OppositeLen𝑃

DistCA : CA
.
= tan(AngleB · DistBC)

}

The theory OppositeLen𝑃 first includes a development of Euclidean Geometry (omitted)
and then goes on to declare a handful of undefined constants. In general, if a theory contains
undefined constants, we can think of it as an abstract interface (as in software engineering)
whose implementation details are still outstanding. Here, OppositeLen𝑃 captures the abstract
interface of a triangle (given by A, B, C) with one known side length and an adjacent angle
(given by DistBC and AngleB) and that is right-angled at C (demanded by AxAngleC). In such
an abstract situation, mathematics tell us that the length of the side opposing DistBC and
AngleB can be computed via tan(AngleB · DistBC). And this is precisely captured by the
theory OppositeLen𝑆 , which includes the abstract situation captured by OppositeLen𝑃 and
adds one defined constant. This defined constant DistCA simply postulates that CA is given by
this formula. Such a pair of OppositeLen𝑃 and OppositeLen𝑆 is exactly what we call scroll.
The UFrameIT Framework organizes each fact – be it from the player marking an object in the
virtual world or generated by Mmt – as constants into Mmt theories.

MMT Views Concrete instantiations of these abstract settings can be captured by views. Every
view is a truth-preserving translation from some domain to some codomain theory by assigning
for every undefined domain constant a codomain expression. Suppose ConcrSituation is
a theory including EuclidGeo and containing three points P, Q, R. For example, this theory
could have been built by the player marking those three points in the virtual world. We can
now instantiate OppositeLen𝑃 in ConcrSituation by the view 𝑣 from the former to the
latter (given below). Importantly, this allows us to carry over OppositeLen𝑆 to the concrete
situation, too, by means of a pushout in the category of theories and views. The resulting theory
NewSituation is presented in Figure 4. Looking at this from the game perspective, such a



pushout happens when players apply the scroll, while the view itself phrases a specific game
situation abstractly.

view 𝑣 : OppositeLen𝑃 → ConcrSituation = {
A = P

B = Q

C = R

AxAngleC = some proof of ∡QRP .
= 90°

AngleB = the value of ∡PQR
DistBC = the value of QR

}

OppositeLen𝑃 ConcrSituation

OppositeLen𝑆 NewSituation
⌜

theory NewSituation = {
include ConcrSituation

DistRP : RP
.
= tan(the value of ∡PQR · the value of QR)

}

Figure 4: The NewSituation Theory as a result of a pushout

Applying Scrolls Therefore, with the application of scrolls and the respective pushout
computation, new knowledge/facts can be gained from existing ones. Intuitively, the pushout
NewSituation can be seen as the union of ConcrSituation and OppositeLen𝑆 , so that they
exactly share OppositeLen𝑃 [Rab]. Such a pushout exists, if the provided view 𝑣 is complete,
so that each constant in OppositeLen𝑃 is mapped onto a constant in ConcrSituation and
the single types of the mapped components match. However, the basic view functionality is not
sufficient for the dynamic UI features we need in UFrameIT games. For the following dynamic
UI features, we need to check views more than once at the end and need further additions to
the framework.

3. Player Guidance through Dynamic User Interfaces

To alleviate the problem of missing player guidance in UFrameIT games, we introduce Dynamic
Scroll Descriptions and Visual Hints. Both of these together make up our new Dynamic User
Interface, which allows players to get help from the system step-by-step.

With these, we can continuously match the problem description with the solution proposed
by the player (cf. Figure 5). This feature is very straight forward. The player can insert facts
that were collected through interaction with the game world into the slots within the scroll UI
that are required to solve the game problem. Since the problem description in the UI refers to
exactly these required facts, the system just needs to update the variables in the description
text.

Figure 5: Scrollview Assistance

Dynamic Scroll Descriptions This way, the
player always knows which place assigned facts
have in respect to the solution, e.g. the measured



point D is the point of the triangle where a right
angle needs to exist.

On the Mmt side, we have implemented this
in the form of a templating engine, which al-
lows to interpret parts of the scroll description
as links to the facts that are used in the scroll
formalization.

Visual Hints Our system can automatically
generate hints for next steps during the solution process (cf. Figure 6) With this feature, players
can ask the system to derive the next step based on incomplete solutions. A simple example
might be that the player starts with assigning the measured distance between a point on the
ground E and the root of the tree D. For this to be a possible solution to the problem, the second
and third point in the scroll need to be exactly these points. Consequently, requesting a hint in
this state highlights the slots in the scroll, the suggested two points in the fact collection list
and their corresponding fact representation in the game. We call this backward view completion.
Vice versa, assigning the three points that are supposed to make up the triangle also define the
angles and the distance that are necessary to apply the tangent. The system can then show
the player where the respective facts are by using an animation, equivalent to the one used
for backward view completions. In contrary to those, we can now have the special case, that
the respective fact isn’t already existent. Nevertheless the game-side temporarily creates and
animates a new fact with the same properties. We call this forward view completion.

Figure 6: Hint Animations

To compute these in Mmt, we use par-
tial view applications: we now allow im-
plicit assignments in views, which allow
us to compute missing dependencies as
we now longer have to input all defined
facts of a scroll for the view.

Especially the visual hints via view
completions can directly lead the player
to the solution, lowering the difficulty of
the game and possibly preventing players
to come up with the solution themselves.
In this sense, didactic experts or develop-
ers are supposed to define the circumstances when the hints should appear. One way to do this
might be to create separate tutorial and application modes but more fine-grain variants are also
possible.

Note that in a software like this, which tries to support the develop process, possible benefits
of using it can be viewed from two angles:

• The end-user perspective: how do they benefit from the supported features?
• The developer perspective: how much work can be saved?

The important point for our framework is that developers essentially get these features for free



and only have to configure them to their preferences. We will describe the implementation that
allows this in the next section in detail.

4. Enabling Dynamic User Interfaces

To enable the described UI features in a way that can be applied to future, possibly very different
game problems or domains, we need a generic integration. This is exactly where we exploit
the fact that we use a knowledge based backend in the form of Mmt. In the following, we will
describe the MMT implementation and the synchronization with the game engine.

Synchronizing Managed Knowledge with the User Interface In UFrameIT, synchroniza-
tion is a bidirectional process where the current state of knowledge about the virtual world is
exchanged between the game-side and MMT. Until now this synchronization took place in the
following situations: [CICM20]

1. List available Scrolls: The game-side queries, which operationalized mathematical theo-
rems (scrolls) Mmt can offer

2. Add facts: The game-side tells Mmt, which facts the player has acquired via gadgets
3. Request Pushout computations: The game-side transmits a complete scroll mapping, Mmt

tries to derive new knowledge and correspondingly responds

In order to establish dynamic game user interfaces, another synchronization step after each
scroll mapping had to be integrated, where Mmt already tries to derive new knowledge from
partial scroll mappings. Consequently, the derived knowledge can be used as player guidance
or assistance.

{
"scroll": "MMT URI",
"assignments": [
{

"fact": {"uri": "MMT URI"},
"assignment": /∗ SOMDoc ∗/

},
...
]

}

Listing 1: Scroll Application Format

The new server endpoint which serves that purpose
receives json-data in the same format as in synchro-
nization step in 3. In both cases, a scroll reference and
its corresponding scroll mappings are needed, see List-
ing 1. Both scrolls and facts can be referenced by means
of Mmt uri’s. Furthermore the assignment list consists
of elements that represent the mapping between the
abstract fact-element of the scroll and a concrete fact
acquired inside the game. The ’SOMDoc’-Format used
for the ’assignment’-property in Listing 1 is a result of
the complete rework of the overall json format struc-
ture employed in the frameit-server. This format is
used in most of the server endpoint data and allows us
to express almost any Mmt symbol declaration, facts
included. ’SOMDoc’ is a JSON representation of an OMDoc subset [Koh05] and implements
several parts of the OpenMath-JSON standard [Wie].



{ "kind": "OMI", "decimal": 0 }
{ "kind": "OMF", "float": 0.0 }
{ "kind": "OMS", "uri": "MMT URI" }
{ "kind": "OMSTR", "string": "string" }
{

"kind": "RAW",
"xml": "OMDoc XML string"

}
{

"kind": "OMA",
"applicant": /∗ SOMDoc ∗/,
"arguments": [/∗ SOMDoc ∗/]

}

Listing 2: SOMDoc Format

Listing 2 shows a list of all possible ’SOMDoc’ json
terms, where the ’RAW’ term is a way to encode unrep-
resented terms, which are excluded from the represented
OMDoc subset. After Mmt has processed the request
payload, the FrameIT-Server is able to fill the dynamic
scroll info data (Listing 3) and send it back to the game-
side.

Figure 7 shows an example, where the player selected
three points P,Q and R and measured the angle ∡𝑃𝑄𝑅
between them. Afterwards he mapped the angle ∡𝑃𝑄𝑅
onto the scroll’s abstract angle ∡𝐴𝐵𝐶 . As both ∡𝑃𝑄𝑅
and ∡𝐴𝐵𝐶 are Angle-Facts, which internally reference
three Point-Facts P,Q,R and A,B,C respectively, the server
is able to infer that these points should be mapped onto
each other. Therefore these types of insights get wrapped

into the ’completions’-field (Listing 3) in the same format as the assignments from Listing 1.

Figure 7: Backward-Completions

The rendered-field (Listing 1) is another way to
guide the player for finding the correct scroll map-
pings, especially when scrolls become more com-
plex and the amount of components increases. Each
scroll (Listing 4) has a description and a list of re-
quired facts that are necessary to compute the ac-
quired facts. Each time the player changes the scroll
mapping, the returned rendered scroll will change
and affect the scroll’s text labels that are visible in
the game UI. Not only the required fact’s label will
adopt the one from the assigned fact, also the description internally consists of sub-labels that
get correspondingly adjusted (see Section 3).

Figure 8: Forward-Completions

Furthermore the required facts represent the in-
ference result in forward direction. Figure 8 depicts
the situation where a player measured the same facts
as in Figure 7 but instead of mapping angle ∡𝑃𝑄𝑅
onto angle ∡𝐴𝐵𝐶 , he only mapped its components
P,Q,R onto A,B,C. As a consequence the required
fact ∡𝐴𝐵𝐶 of the rendered scroll internally refer-
ences the already assigned facts P,Q,R. The player
can therefore be advised to additionally map an An-
gleFact that represents an angle between the com-
ponents P,Q,R onto angle ∡𝐴𝐵𝐶 . In order to provide the game-side with a complete overview
of the current state of knowledge, the two remaining fields ’valid’ and ’errors’ indicate if the
sent scroll mappings are complete, correct and sufficient for potentially computing pushouts.
Even though they are currently not processed from the game-side, they can be of special interest
for upcoming features.



{
"original": /∗ Scroll ∗/,
"rendered": /∗ Scroll ∗/,
"completions": /∗ Assignments ∗/,
"valid": true|false,
"errors": /∗ Errors ∗/

}

Listing 3: Dynamic Scroll Info Format

{
"ref": "MMT URI",
"label": "label",
"description": "description",
"requiredFacts": [/∗ Fact ∗/],
"acquiredFacts": [/∗ Fact ∗/]

}

Listing 4: Scroll Format

Integrating Managed Knowledge into the User Interface In order to integrate the man-
aged knowledge and therefore obtaining a dynamic user interface (see Figure 6), the game-side
has to process the dynamic scroll info data (Listing 3) returned from the endpoint. The Dynamic
Scroll Descriptions (see Figure 5) are simply generated from the labels of the rendered scroll and
the corresponding required facts (see Listing 3,4). As both scrolls and facts do have a reference,
the counterpart in the UI can easily be looked up and adjusted. However, the establishment of
visual hints in the UI is split up into two parts:

1. Enabling hint buttons for specific scroll parameters
2. Performing visual hints when the corresponding buttons are pressed

In part 1, we want to find out for which scroll parameters hints are available while already
preparing data for part 2. Therefore, both the forward- as well as the backward-completions,
reflected by the completions- and the rendered-field (see Listing 3), have to be examined. For
the completions-field the search process is straight forward: Each completions-assignment
references a scroll parameter and an associated fact, that has already been determined by
the player. Thus, the hint-button for the corresponding scroll parameter is enabled and the
assignment is stored for potential, subsequent hint invocations. For the rendered-field, we’re
only searching for complex, parsable required facts that haven’t already been assigned. In this
case, each existing fact type that internally references other facts is meant to be complex and
every complex fact where these referenced facts already exist is parsable. If we found some of
these we can once more enable the corresponding scroll parameter and save the parsed fact. As
the data for part 2 is already prepared, the remaining steps are very simple:

1. Find an entry in the prepared data, that references the requested scroll fact
2. Find the fact in the global fact-list, that matches the prepared data entry
3. If no matching fact was found in step 2: Create a temporary fact with the same properties,

that destructs itself after the hint animation
4. Animate the requested scroll parameter
5. Animate the representation of the fact, found in step 2/3, in the game
6. Animate the fact icon in the fact collection list, that belongs to the fact, found in step 2/3



5. Conclusion

We have presented two additions to the UFrameIT framework that make user interactions in
UFrameIT games much more fine-grained and intuitive. Dynamic Scrolls Description dynami-
cally updates the variables names in scroll formulae to the assignments already fixed by the
user. Automatic Hint Generation allows to visualize scroll components in the game world by
highlighting them selectively.

With these new features players are now guided through the game with the help of a dynamic
UI that can deliver hints to the player and synchronize variable names. We have implemented
generic algorithms in the Mmt system that the UFrameIT framework instantiates to get those
features. Moreover, we have augmented the UFrameIT API as little as possible such that the game
engine only interprets the information sent to it by Mmt and thus is generic in improvements
on the Mmt side.

The UFrameIT framework is under continuous development, and we are aiming for a
knowledge-based serious game development toolkit. Next steps will include functionality
for crafting in-game problems like the running example in the game itself and assembling such
problems into dynamic game levels. For both we also want to make use of the knowledge-
management capabilities of Mmt: for problems, we can either search for 3D configurations that
fit a given scroll, or find matching scrolls given a problem. For level aggregation, we can use
the Mmt (background) knowledge graph to select “next problems” where the user has already
mastered all but one prerequisite in earlier parts of the level/game.

The work presented here constitutes the base for a game developers’ API that allows fine-
grained customization of the set of available features (e.g., hints, scrolls, in-game problems),
thus allows developers to flexibly craft their own games while obviating much of the overhead
our framework takes care of.

References

[Ble] Blender. Blender: the free and open source 3D creation suite. https://www.blender.org/.
Version 2.93. url: https://www.blender.org/ (visited on 07/14/2021).

[CICM20] Michael Kohlhase et al. “FrameIT: Detangling Knowledge Management from Game
Design in Serious Games”. In: Intelligent Computer Mathematics (CICM) 2020. Ed. by
Christoph Benzmüller and Bruce Miller. Vol. 12236. LNAI. Springer, 2020, pp. 173–
189. isbn: 978-3-030-53518-6. url: https://kwarc.info/kohlhase/papers/cicm20-
frameit.pdf.

[GG] International GeoGebra Institute. Graphing Calculator – GeoGebra. url: https :
//www.geogebra.org (visited on 05/27/2020).

[Koh05] Michael Kohlhase. “OMDoc: Open Mathematical Documents”. In: Open Source for
Education in Europe: Research and Practise. Ed. by Fred de Vries et al. Proceedings
at http://hdl.handle.net/1820/483. Open Universiteit Nederland. Heerlen, The
Netherlands: Open Universiteit Nederland, Nov. 2005, pp. 137–143. url: http://hdl.
handle.net/1820/483.

https://www.blender.org/
https://www.blender.org/
https://kwarc.info/kohlhase/papers/cicm20-frameit.pdf
https://kwarc.info/kohlhase/papers/cicm20-frameit.pdf
https://www.geogebra.org
https://www.geogebra.org
http://hdl.handle.net/1820/483
http://hdl.handle.net/1820/483
http://hdl.handle.net/1820/483


[Rab] Florian Rabe. “Theory Expressions (a Survey)”.

[Rab17] Florian Rabe. “How to Identify, Translate, and Combine Logics?” In: Journal of
Logic and Computation 27.6 (2017), pp. 1753–1798.

[Rab18] Florian Rabe. “MMT: A Foundation-Independent Logical Framework”. Online Doc-
umentation. 2018. url: https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.
pdf.

[Uni] Unity Technologies. Unity Realtime Development Platform. https : / /unity.com/.
Version 2019.3.6. url: https://unity.com/ (visited on 03/19/2020).

[Wie] Tom Wiesing. OpenMath-JSON. url: https : / / omjson . kwarc . info/ (visited on
10/13/2018).

https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://kwarc.info/people/frabe/Research/rabe_mmtsys_18.pdf
https://unity.com/
https://unity.com/
https://omjson.kwarc.info/

	1 Introduction
	2 FrameIT Knowledge Management in MMT
	3 Player Guidance through Dynamic User Interfaces
	4 Enabling Dynamic User Interfaces
	5 Conclusion

