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Abstract
We present two formalizations with the natural proof assistant Naproche which explore the notational
and typographical potential of the new LATEX input format. The first formalization leads up to Yoneda’s
Lemma in category theory. Commutative diagrams are defined and printed using the LATEX package
tikz-cd. A specific Naproche module translates a commutative diagram defined by tikz-cd commands
into equalities of functional compositions which are proved by the Naproche reasoner. The second
formalization is an abstract version of Euclid’s proof of the infinitude of primes, using general algebraic
concepts. It uses LATEX commands to follow the common mathematical practice of making some obvious
symbols implicit and hide them from the typeset output. The hidden information can be revealed by
hovering over the PDF output.

Adequate typographical representations are crucial for the communication and understanding
of mathematics. LATEX is universally used for mathematical typesetting; diagrams convey
geometric intuitions of complex situations; on the other hand some information needs to be
hidden so that central ideas come to the fore. Although special notation is indispensable for
mathematical writing, and although it is generally well-understood by experts, there are hardly
any fixed rules. The choice of notation is usually at the author’s discretion and may be a matter
of conventions and styles. The two formalizations presented in this paper have been the topic
of a Bachelor thesis project by the second author [1] and a seminar project by the first author
[2] with special emphases on commutative diagrams and information hiding, respectively.

The natural proof assistant Naproche (“Natural Proof Checking”) accepts input in the con-
trolled natural language ForTheL (“Formula Theory Language”), approximating ordinary mathe-
matical language and texts, including symbolic material [3]. The latest version of Naproche also
introduces a LATEX dialect for ForTheL so that high-quality mathematical typesetting is readily
available. Naproche is available in the Isabelle Prover IDE, together with example formaliza-
tions from various domains of university mathematics in a style that is naturally readable by
mathematicians [4]. ForTheL documents in LATEX format use the file extension .ftl.tex which
is continuously checked for logical correctness by the Naproche component of the Isabelle
platform. At the same time the file can be typeset and printed by LATEX. This means that a
.ftl.tex file can be projected out semantically by a parsing process to (first-order) symbolic
logic, while it can also be projected to mathematical typesetting. Some LATEX commands like the
theorem environment
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\begin{theorem} ... \end{theorem}

are interpreted logically and typographically. Other LATEX commands are ignored by the logical
processing. One can also arrange that parts of the logical content are not printed out to reduce
typographical complexity and to enhance understanding. This interplay is a topic of ongoing
development and research.

Our first formalization explores the treatment of commutative diagrams in category theory.
Diagrams are input linearly by tikz-cd commands. These can be printed in two dimensions
using tikz-cd. To extract the logical content of a diagram, a new (sub-)parser for tikz-cd
commands was written which finds all paths through a finite diagram and then generates
function identities for distinct paths whose sources and targets agree. The use and treatment of
diagrams is demonstrated in the axiomatic setup of categories and in the proof of the Yoneda
lemma.

The second formalization presents an “algebraic” approach to arithmetic and primes. In
ForTheL, the distributivity of a ring 𝑅 can be expressed by:

\begin{Axiom}[DistribI]
Let $x,y,z \in \sR{R}$.
$x \tR{R} (y \pR{R} z) = (x \tR{R} y) \pR{R} (x \tR{R} z)$.
\end{Axiom}

where \sR{R}, \sR{R}, and \sR{R} stand for the underlying set, the multiplication, and the
addition of 𝑅 resp. Often a structure is identified with its underlying set, and it is clear from the
context which multiplication and addition are to be used. Such simplifications facilitate reading
and understanding of texts and can be implemented by “forgetful” LATEX functions:

\newcommand{\sR}[1]{#1}
\newcommand{\tR}[1]{\cdot}
\newcommand{\pR}[1]{\cdot}

The print-out of the above distributive law thus takes the familiar form

Axiom. (DistribI) Let 𝑥, 𝑦, 𝑧 ∈ 𝑅. 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧).

without extra indices like ·𝑅 or ·𝑅 etc. Note that we output the formal parts of ForTheL texts on
a light-gray background throughout this paper.

Such “hacks” lead to a conveniently readable Euclid formalization and motivate further
systematic work on presenting or hiding information in the LATEX projection. This is also related
to elaboration mechanisms like in Lean, where implicit variables can be hidden since their
values can be derived automatically [5].

The apparent loss of information in the PDF output can be counteracted by dynamic features
of electronic documents. In our formalization we employ a hovering mechanism to display
extra information in a balloon, which is, e.g., available for Adobe Reader and some other PDF
viewers. Augmenting the definitions of the LATEX commands \sR{R}, \tR{R}, and \pR{R} we
can arrange that complete terms and possibly other information are displayed on “mouse-over”.



1. Commutative Diagrams and the Yoneda Lemma in Category
Theory

Commutative diagrams are essential in category theory. Natural formalizations require pretty-
printing of diagrams by some LATEX package and the logical checking of their mathematical
content. For this purpose, we have added an experimental module to Naproche which reads
out functional equalities from commutative diagrams defined in the tikz-cd environment. We
have used this in a Naproche formalization of the beginnings of category theory up to the
Yoneda-Lemma. The complete formalization is available at [1]. The introductory chapter of the
thesis contains information how to run Naproche with the diagram module.

As an example, we give the definition of the one-sorted notion of a category as we use it in
our formalization. Standard categories can be viewed as one-sorted by identifying every object
with the identity function on that object itself (see [1]).

Definition. (Category) A category is a collection of arrows 𝐶 such that
(for every arrow 𝑓 such that 𝑓 𝜖 𝐶 we have
𝑠[𝑓 ] 𝜖 𝐶 and 𝑡[𝑓 ] 𝜖 𝐶 and 𝑡[𝑠[𝑓 ]] = 𝑠[𝑓 ] and 𝑠[𝑡[𝑓 ]] = 𝑡[𝑓 ] and
....
....
and (for each arrow 𝑓, 𝑔 such that 𝑓, 𝑔 𝜖 𝐶 we have
(𝑡[𝑓 ] = 𝑠[𝑔] =⇒ (there is an arrow ℎ such that ℎ 𝜖 𝐶 and

𝑠[𝑓 ] 𝑡[𝑓 ]

𝑡[𝑔]

𝑓

ℎ
𝑔

and for every arrow 𝑘 such that 𝑘 𝜖 𝐶 and 𝑔 ∘𝑐 𝑓 = 𝑘 we have ℎ = 𝑘)))
and for all arrows 𝑓, 𝑔, ℎ such that 𝑓, 𝑔, ℎ 𝜖 𝐶 and 𝑡[𝑓 ] = 𝑠[𝑔] and 𝑡[𝑔] = 𝑠[ℎ]

𝑠[𝑓 ] 𝑡[𝑓 ]

𝑡[𝑔] 𝑡[ℎ]

𝑓

(𝑔∘𝑐𝑓) (ℎ∘𝑐𝑔)

ℎ

.

We briefly describe the implementation of the diagram parser and its use. For a more detailed
description see [1].

Our new Haskell module provides a translation from tikz-cd code to a conjunction of
equations which is then translated to FOL by the ForTheL parser for further checking.

tikzcdP :: String -> String
tikzcdP a = maybe " Error: No proper diagram found."
(printEq . mkEqtClasses . arrows . mkPaths . snd) (runParser diagramP a)

If no error is thrown, this function



1. identifies the arrows of a diagram through diagramP

2. lists all possible paths with mkPaths

3. finds paths that are meant to be equal by mkEqtClasses

4. conjuncts these equations via printEq

The input is parsed into a Diagram type, which is a list of Arrow. An Arrow is a triple consisting
of a name, source and target. A position is a tuple of integers as we view diagrams as two
dimensional objects on a grid. We start in the upper left corner on initpos = (0,0) and count
down each row in the left entry and up each column on the right. Since we want to identify
paths with the same source and target, we define a corresponding equality on Arrow and obtain
an instance of Eq.

data Arrow = Arrow
{ name :: String
, source :: Position
, target :: Position
} deriving Show

instance Eq Arrow where
(==) a b = source a == source b && target a == target b

data Diagram = Diagram
{ arrows :: [Arrow]
} deriving Show

diagramP :: Parser Diagram
diagramP = Diagram <$> many arP

arP :: Parser Arrow
arP = Parser $ \input -> do
let pos = pstn input
(input1, rest) <- runParser (spanP (/= '{')) input
let newpos = src rest pos
(input2, _) <- runParser (charP '{') input1
(input3, dr) <- runParser (spanP (/= '}')) input2
(input4, _) <- runParser (spanP (/= '{')) input3
(input5, _) <- runParser (charP '{') input4
(input6, name) <- runParser (spanP (/= '}')) input5
(input7, _) <- runParser (charP '}') input6
case name /= " " of
True -> Just (show newpos ++ input7, Arrow name newpos (trgt dr newpos))
_ -> Nothing



The diagram parser repeats arP as often as possible. The arrow parser waits for braces to get
the direction and name of the current arrow. The current position is added to the beginning
of the unparsed input at show newpos ++ input8 to keep track of it. When the next arrow is
parsed, we get this position by pstn input.

All possible paths are built by:

mkPaths1 :: Arrow -> Arrow -> [Arrow]
mkPaths1 a x
| source x == target a =

[Arrow ((name x) ++ " \\mcirc " ++ (name a)) (source a) (target x)]
| source a == target x =

[Arrow ((name a) ++ " \\mcirc " ++ (name x)) (source x) (target a)]
| otherwise = []

mkPaths2 :: Arrow -> Diagram -> Diagram
mkPaths2 x d = case arrows d of
[] -> Diagram []
(y:ys) -> Diagram $ mkPaths1 x y

++ arrows (mkPaths2 x (Diagram ys))

mkPaths :: Diagram -> Diagram
mkPaths d = case arrows d of
[] -> Diagram []
x : xs -> Diagram $ x : arrows (mkPaths (Diagram (xs ++ newA)))
where

newA = arrows $ mkPaths2 x $ Diagram xs

The thesis [1] contains a correctness proof for this algorithm.
Now the path complete diagram has to be partitioned by our predefined equality relation for

Arrow. For an arrow x and a list of arrows xs, mkEqtClass2 compares any arrow of xs with x
and creates a list of arrows equal to x. Finally, x itself is added.

mkEqtClass1 :: (Eq a) => a -> a -> [a]
mkEqtClass1 x y
| x == y = [y]
| otherwise = []

mkEqtClass2 :: (Eq a) => a -> [a] -> [a]
mkEqtClass2 x xs = case xs of
[] -> [x]
y : ys -> mkEqtClass2 x ys ++ mkEqtClass1 x y

Then mkEqtClasses creates a class z by taking the first arrow y from a list of arrows xs and
comparing it to the rest ys. The recursive call of this function is restricted to the original list
minus the generated class. (This behaves well since partitions are disjunct.)



mkEqtClasses :: (Eq a) => [a] -> [[a]]
mkEqtClasses xs = case xs of
[] -> []
y : ys -> z : mkEqtClasses (ys \\ z)
where z = (mkEqtClass2 y ys)

Finally, the classes are printed out by connecting class members with \= and classes with and.

printEq1 :: [Arrow] -> String
printEq1 l = case l of
[] -> " "
[x] -> name x
x : xs -> name x ++ " = " ++ printEq1 xs

printEq :: [[Arrow]] -> String
printEq a = case filter (\l -> length l >= 2) a of
[] -> " "
[l] -> printEq1 l -- ++ " ."
l : ls -> printEq1 l ++ " and " ++ printEq ls

To test the parser consider the following diagram:

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝑓

ℎ
Φ

𝑗

𝑔 𝑘

𝑖

The parser yields

Just
( " (-2,1) & F"
, Diagram
{ arrows =

[ Arrow {name = " f", source = (0,0), target = (0,1)}
, Arrow {name = " h", source = (0,0), target = (-2,0)}
, Arrow {name = " \\Phi", source = (0,0), target = (-2,1)}
, Arrow {name = " j", source = (0,0), target = (0,2)}
, Arrow {name = " g", source = (0,1), target = (-2,1)}
, Arrow {name = " k", source = (0,2), target = (-2,2)}
, Arrow {name = " i", source = (-2,1), target = (-2,2)}]})

The final output is

\Phi = g \mcirc f and i \mcirc \Phi = i \mcirc g \mcirc f = k \mcirc j



where \mcirc is the composition function of arrows in our formalization of categories.
We want to demonstrate the usage of commutative diagrams within our formalized proof

of the Yoneda-Lemma. Note that Nat[𝐶,𝐷, 𝐹,𝐺] is the class of all natural transformations
𝛼 : 𝐹 → 𝐺 where 𝐹,𝐺 : 𝐶 ⇒ 𝐷. Such a natural transformation has its 𝑑-component
𝑇 [𝐶,𝐷, 𝐹,𝐺, 𝛼, 𝑑] for every 𝑑 𝜖 𝐶 .

Axiom. (PhiDef) Let 𝐹 be a functor from 𝐶 to 𝑆𝐸𝑇 . Let 𝑐 𝜖 𝐶 . Let 𝛼 ∈
𝑁𝑎𝑡[𝐶, 𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶, 𝑐], 𝐹 ].

Φ(𝛼) = 𝑇 [𝐶, 𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶, 𝑐], 𝐹, 𝛼, 𝑠[𝑐]](𝑠[𝑐]).

Lemma. (Yoneda) Let C be a locally small category. Let 𝐹 be a functor from 𝐶 to 𝑆𝐸𝑇 .
Let 𝑐 𝜖 𝐶 and 𝑠[𝑐] = 𝑐.

Φ is a bijection between 𝑁𝑎𝑡[𝐶, 𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶, 𝑐], 𝐹 ] and 𝐹 [𝑐].

For comparison we give a textbook version as it can be found in [6].

Lemma. (Yoneda) For any functor 𝐹 : 𝐶 → 𝑆𝑒𝑡, whose domain 𝐶 is locally small, and any
object 𝑐 ∈ 𝐶 , there is a bijection Nat(𝐶(𝑐,−), 𝐹 ) ∼= 𝐹𝑐 that associates a natural transformation
𝛼 : 𝐶(𝑐,−) ⇒ 𝐹 to the element 𝛼𝑐(1𝑐) ∈ 𝐹𝑐.

Let us compare the diagrams of a standard proof of the Yoneda-Lemma with the diagrams
in our single-sorted Naproche formalization. In the second diagram we have 𝑠[𝑔] and 𝑡[𝑔]
corresponding to the objects 𝑑 and 𝑒 on the left as source and target of 𝑔.

Proof. The association Φ(𝛼) := 𝛼𝑐(1𝑐) is clearly well defined. We need to verify for any
element 𝑥 ∈ 𝐹 (𝑐), that Ψ(𝑥), defined componentwise by Ψ(𝑥)𝑑(𝑓) := 𝐹 (𝑓)(𝑥) for each 𝑑 ∈ 𝐶
and 𝑓 : 𝑐 → 𝑑, is the inverse of Φ. Any element 𝑓 : 𝑐 → 𝑑 of 𝐶(𝑐, 𝑑) is sent to 𝐹 (𝑓) applied on
Φ(𝛼) = 𝑥.

By naturality of 𝛼,

𝐶(𝑐, 𝑐) 𝐹 (𝑐)

𝐶(𝑐, 𝑑) 𝐹 (𝑑)

𝛼𝑐

𝑓* 𝐹 (𝑓)

𝛼𝑑

commutes.

For all arrows 𝑑, 𝑓 such that 𝑑 𝜖 𝐶 and
𝑓 𝜖 𝐻𝑜𝑚[𝐶, 𝑐, 𝑑] we have

𝐻𝑜𝑚[𝐶, 𝑐, 𝑐] 𝐹 [𝑐]

𝐻𝑜𝑚[𝐶, 𝑐, 𝑑] 𝐹 [𝑑]

𝑇 [𝐶,𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶,𝑐],𝐹,𝛼,𝑐]

𝐻𝑜𝑚𝐹 [𝐶,𝑐][𝑓 ] 𝐹 [𝑓 ]

𝑇 [𝐶,𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶,𝑐],𝐹,𝛼,𝑑].

Hence
Ψ(Φ(𝛼))𝑑(𝑓) = 𝐹 (𝑓)(Φ(𝛼)) = 𝐹 (𝑓)(𝛼𝑐(1𝑐)) = 𝛼𝑑(𝑓*(1𝑐)) = 𝛼𝑑(𝑓).

Further we have

Φ(Ψ(𝑥)) = Ψ(𝑥)𝑐(1𝑐) = 𝐹 (1𝑐)(𝑥) = 1𝐹 (𝑐)(𝑥) = 𝑥.



To see why Ψ(𝑥) is a natural transformation
we have to show that

𝐶(𝑐, 𝑑) 𝐹 (𝑑)

𝐶(𝑐, 𝑒) 𝐹 (𝑒)

Ψ(𝑥)𝑑

𝑔* 𝐹 (𝑔)

Ψ(𝑥)𝑒

commutes for every arrow 𝑔 ∈ 𝐶(𝑑, 𝑒).

Let us show that for any arrow 𝑔 such that
𝑔 𝜖 𝐶 we have

𝐻𝑜𝑚[𝐶, 𝑐, 𝑠[𝑔]] 𝐹 [𝑠[𝑔]]

𝐻𝑜𝑚[𝐶, 𝑐, 𝑡[𝑔]] 𝐹 [𝑡[𝑔]]

𝑇 [𝐶,𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶,𝑐],𝐹,Ψ(𝑥),𝑠[𝑔]]

𝐻𝑜𝑚𝐹 [𝐶,𝑐][𝑔] 𝐹 [𝑔]

𝑇 [𝐶,𝑆𝐸𝑇,𝐻𝑜𝑚𝐹 [𝐶,𝑐],𝐹,Ψ(𝑥),𝑡[𝑔]].

By definition, Ψ(𝑥)𝑑 sends 𝑓 : 𝑐 → 𝑑 to 𝐹 (𝑓)(𝑥) and Ψ(𝑥)𝑒 sends 𝑔*(𝑓) to 𝐹 (𝑔*(𝑓))(𝑥).
Therefore, the claim follows by functoriality of 𝐹 . □

Diagrams are an indispensable notation for equal paths in categories. They illustrate the
mathematical core and make it more comprehensible for the reader. We have reproduced the
proof above in Naproche using the diagram package.

Our notation of natural transformations in Naproche mentions all parameters explicitly,
which makes the display somewhat bulky. The next section discusses methods to hide obvious
or trivial parameters. We plan on combining those methods with the diagram parser so that
that the final diagram might take the form

𝐶(𝑐, 𝑑) 𝐹 [𝑑]

𝐶(𝑐, 𝑒) 𝐹 [𝑒]

Ψ(𝑥)𝑑

𝑔* 𝐹 [𝑔]

Ψ(𝑥)𝑒

Note that on certain PDF viewers hovering over the blue parts will reveal the terms with all
parameters.

2. Hiding Implicit Notation in a Proof of Euclid’s Theorem

We present an approach to the infinitude of primes via wellfounded order relations in rings,
defined by divisibility. The complete formalization can be found in [2]. Prime numbers are
minimal elements in the divisibility order and Euclid’s main argument is captured abstractly by
the order theoretic Stranger Theorem:

Theorem. Let 𝑂 be a wellfounded order. Assume for every element 𝑥 of 𝑂 there exists a
𝑦 ∈ 𝑂 such that 𝑥 and 𝑦 have no common predecessors by 𝑂. Then

{𝑚 ∈ 𝑂 |𝑚 is a minimum of 𝑂}

has no upper bound by 𝑂.

We work in general structures like magmas, monoids or rings to exhibit the abstract arguments.
Although Naproche does not yet have dedicated mechanisms for algebraic structures, we can
make use of the first-order approach to typing to deal with subtyping and coercions.



We introduce a method to only display “mathematically relevant” information in the LATEX-
output to prevent losing the overview. The hidden information is not completely lost in the
document, since it can be made visible by moving the mouse over the text. Thus uncertainty
about meanings of terms can be resolved without inspecting the .ftl.tex file.

2.1. (Un)hiding informations in Magmas

A magma is a set together with a binary operation on it. In principle we must distinguish
between a magma 𝑀 and the underlying set |𝑀 | since there may be two different magma
structures on the same set. We first introduce the new word magma by the signature-command

Signature. A magma is a notion.

and then we pretype some variable to be a magma:

Let 𝑀 denote a magma.

Its underlying set can be defined as

\begin{signature}
$\sGC{M}$ is a set.

\end{signature}

The function \sGC has two faces: from the Naproche perspective the function sGC is a class
function from the class of magmas to the class of sets; from the LATEX perspective, the function
sGC puts absolute value bars around its argument, as it is defined by

\newcommand{\sGC}[1]{\vert #1 \vert}

The binary operation on a magma can be introduced by

\begin{signature}
Let $x,y \in \sGC{M}$. $x \gdot{M} y$ is an element of $\sGC{M}$.

\end{signature}

Note that the operation depends on the parameter 𝑀 , so that \gdot really is a ternary mixfix
function. The logical processing by Naproche requires all three parameters to determine the
magma under consideration. But if the magma is understood from the context one usually
suppresses that parameter in the printed output. This can be achieved by defining the LATEX
command \gdot as

\newcommand{\gdot}[1]{\cdot}

Omitting obvious parameters of a function is not the only situation in which we may use
such “hacks”. One often identifies a structure with its underlying set. So we want to print out
𝑀 instead of |𝑀 |. This can be achieved by redefining the LATEX command \sGC without the
vertical bars.

A reader may be interested to see the full information behind the LATEX printout. This is
possible without looking up the .ftl.tex-file. Some PDF viewers, such as Adobe Reader or



Foxit Reader, feature so-called tooltips for editable PDF files to show alternative information
in a box through a mouseover event. This allows to define a version of \sGC which normally
omits the vertical bars, but shows the bars on mouseover, using the LATEX command \tooltip:

\newcommand{\sG}[1]{\mbox{\tooltip{$#1$}{$|#1|$}}}

For Naproche, \sG should have the same meaning as \sGC. This can be arranged by an alias
command of the form

Let 𝑀 stand for |𝑀 |.

Similarly for the operation on the magma we can define:

\newcommand{\gdot}[1]{\mbox{\tooltip{$\cdot$}{$\cdot_{#1}$}}}

The associative law then becomes:

Definition. 𝑀 is associative iff (𝑥·𝑦)·𝑧 = 𝑥·(𝑦·𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 .

Everything which is colored blue is linked to a hidden expression which gets visible if one
moves the mouse over it. Note, that the color of the multiplication symbol is difficult to see.

2.2. Monoids

Now we expand the magma-theory to monoids.

Definition. A monoid is an associative magma with a neutral element.

For eventual study of prime numbers we define divisibility in a Monoid 𝑀 :

Definition. Let 𝑥, 𝑦 ∈ 𝑀 . 𝑥 divides 𝑦 in 𝑀 iff there exists 𝑘 ∈ 𝑀 such that 𝑘·𝑥 = 𝑦.

Now we already can prove the transitivity of divisibility :

Lemma. (transitiveDiv) Let 𝑘,𝑚, 𝑛 ∈ 𝑀 . Suppose 𝑛 divides 𝑚 in 𝑀 and 𝑚 divides 𝑘
in 𝑀 . Then 𝑛 divides 𝑘 in 𝑀 .

Proof. Take an 𝑙 ∈ 𝑀 such that 𝑙·𝑛 = 𝑚.
Take an 𝑝 ∈ 𝑀 such that 𝑝·𝑚 = 𝑘.
Then 𝑘 = 𝑝·𝑚 = 𝑝 ·(𝑙·𝑛) = (𝑝·𝑙)·𝑛. Thus 𝑛 divides 𝑘 in 𝑀 .

2.3. The divisor order-relation

Divisibility defines an order. As with magmas we introduce orders 𝑂 together with their
underlying set |𝑂| and appropriate tooltips and aliases. In Naproche, relations can be declared
with the keyword “atom”.

Signature. Let 𝑥, 𝑦 ∈ 𝑂. 𝑥𝑂𝑦 is an atom.

Definition. Let 𝑥 ∈ 𝑂. A predecessor of 𝑥 by 𝑂 is an element 𝑦 of 𝑂 such that 𝑦≤𝑥.



To see the implementation of partial orders, minima and upper bounds, see [2].
Now we combine the theory of monoids and orders to obtain the divisor-relation on a monoid.

Let M denote a monoid.

Definition. | is an order on 𝑀 such that for any 𝑥, 𝑦 ∈ 𝑀 we have 𝑥|𝑦 iff 𝑥 divides 𝑦 in
𝑀 .

Lemma. | is reflexive and transitive.

Proof. | is reflexive. Indeed 𝑥 divides 𝑥 in 𝑀 for all 𝑥 ∈ 𝑀 .
| is transitive (by transitiveDiv).

Since our goal is to show that there are infinitely many primes, we may want to use a property
of finiteness: If you have finitely many elements 𝑎1, . . . , 𝑎𝑛 of a monoid you can multiply them
all together. This is captured order-theoretically as follows:

Axiom. (FiniteMultiplication) Let M be an abelian Monoid. Let 𝑋 be a finite subset of
𝑀 . Then 𝑋 has an upper bound by |.

The further formalization of groups (i.e. the definition of inverse elements in monoids) can
be found in [2].

2.4. Rings

A ring has an (additive) abelian group structure and a (multiplicative) monoid structure both of
which have the same underlying set. If 𝑅 denotes a ring and |𝑅| is the underlying set, we can
introduce the extra structure as follows:

Signature. Ab(𝑅) is an abelian group based on 𝑅.

Signature. Mu(𝑅) is a Monoid based on 𝑅.

Let 𝑥+𝑦 stand for 𝑥 ·Ab(𝑅) 𝑦.
Let 𝑥·𝑦 stand for 𝑥 ·Mu(𝑅) 𝑦.

0 and 1 can be defined as the neutral elements of Ab(𝑅) and Mu(𝑅) resp. Adding distributi-
tivity axioms, we have completely formalized the algebraic structure of rings.

2.5. Wellfounded Orders

We now introduce an order-theoretic concept which will give strong results about minimal
elements (which later will be standard prime numbers).

Definition. 𝑂 is wellfounded iff 𝑂 is a partial order and for all nonempty subsets 𝑆 of
|𝑂| there exists a minimum of 𝑆 with 𝑂.

Definition. ℳ(𝑂) = {𝑚 ∈ 𝑂 |𝑚 is a minimum of 𝑂 }.

To show the strength of the concept of wellfounded orders, here is one example:



Lemma. Let 𝑂 be a wellfounded order. Let 𝑥 ∈ 𝑂. Then there exists a predecessor 𝑦 of 𝑥
by 𝑂 such that 𝑦 is a minimum of 𝑂.

Proof. Define 𝑋 = {𝑧 ∈ 𝑂 | 𝑧≤𝑥}. 𝑋 ⊆ 𝑂. Take a minimum 𝑧 of 𝑋 with 𝑂. 𝑧 is a minimum
of 𝑂.

The idea of relative primality is captured by the notion of stranger.

Definition. Let 𝑥 ∈ 𝑂. A stranger of 𝑥 in 𝑂 is an element 𝑦 of 𝑂 such that 𝑥 and 𝑦 have
no common predecessors by 𝑂.

Theorem. (StrangerTheorem) Let 𝑂 be a wellfounded order. Assume every element of
𝑂 has a stranger in 𝑂. Then ℳ(𝑂) has no upper bound by 𝑂.

Somewhat surprisingly, Naproche could find a derivation without an explicit proof given.

2.6. The ring of integers

We now introduce Z as a commutative ring and

Signature. N>0 is a submonoid of Mu(Z).

We call the elements of N>0 positive numbers. This signature command requires, that N>0 is
closed under the Z-multiplication and that 1 is a positive number.
Furthermore we require for positive number 𝑛,𝑚:

Axiom. (MultEquiv) Assume 𝑛 divides 𝑚 in Z and 𝑚 divides 𝑛 in Z. Then 𝑛 = 𝑚.

Note, that we used another tooltip here. If you don’t use the long-term-expressions provided by
tooltip you have to be careful, since in the PDF file a blue Z can indicate either the underlying
set or the underlying monoid. It helps the reader, that the context (’∈ Z’ or ’divides . . . in Z’)
already forces a disambiguation.
The key point of the last axiom is, that | is a partial order.

Axiom. 𝑛+𝑚 is a nontrivial positive number,

where nontrivial means ̸= 1.
We denote the order |>1 for | restricted to the set of nontrivial positive numbers N>1. The
reason to use this restriction of the underlying set is that prime numbers are exactly the minimal
elements of |>1 (i.e. a nontrivial positive number such that the only nontrivial divisor is itself).
We need one final axiom:

Axiom. Let 𝑆 be a nonempty subset of N>1. Then there exists a minimum of 𝑆 with |.

Of course |>1 is a partial order, since it is the restriction of the partial order |. The axiom ensures,
that |>1 is also wellfounded.



2.7. Euclids Theorem

Lemma. (ExistenceOfStrangers) Every element of N>1 has a stranger in |>1.

Indeed, 𝑥 + 1 is a stranger of 𝑥 in |>1. This follows, since a nontrivial common divisor of 𝑥
and 𝑥+ 1 would also divide the difference 1 (lemma divDif [2]) but is also divisible by 1. By
(MultEquiv) it already has to be trivial.

Letting P denote the set of prime numbers, we get Euclid’s theorem in Naproche:

Theorem. (Euclid) P is not finite.

Proof. Proof by contradiction. Assume P is finite.
P = ℳ(|>1).
ℳ(|>1) has no upper bound by |>1 (by ExistenceOfStrangers, StrangerTheorem).
ℳ(|>1) is a finite subset of N>0. N>0 is an abelian monoid.
Take an upper bound b of ℳ(|>1) by | (by FiniteMultiplication).
b = 1. ℳ(|>1) is nonempty.
Contradiction.
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