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Abstract

With the rapid advances of Al-based tools, the question of whether to use such tools or conventional
rule-based tools often arises in many application domains. In this paper, we address this question when
considering the issue of ambiguity in requirements documents. For this purpose, we consider GPT-3 that
is the third-generation of the Generative Pretrained Transformer language model, developed by OpenAl
and we compare its ambiguity detection capability with that of a publicly available rule-based NLP tool
on a few example requirements documents.
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1. Introduction

GPT-3 is the third-generation of the Generative Pretrained Transformer language model, devel-
oped by OpenAl, it is an autoregressive language model and it is the largest language model
constructed to date. Having sufficient data, GPT-3 can solve all kinds of tasks: it did not have
any fine-tuning to solve specific tasks, like translation or text generation [1, 2]. chatGPT is a
GPT-3 based conversational chatbot that has gained popularity in recent months. It is designed
to respond to questions and provide information in a conversational manner, using specific
training to handle conversational text and generate natural and coherent responses.

Until now, attempts to define Al-based tools for analyzing software requirements have faced
the well-known lack of a corpus of annotated requirements documents on which to train the
models. Some existing NLP tools harness the power of machine learning for linguistic analysis
of the NL, supported by the very large size of the examples data that can be used to train the
learning model, and integrate Al based language analysis with a rule-based system for ambiguity
search in requirements, but they cannot be considered Al tools [3, 4].
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Being GPT-3 the largest language model constructed to date, we decided it was worth trying
to evaluate its ability to analyze software requirements, and to compare its performance against
a traditional rule-based NLP tool.

In this paper, we present a first step in this direction, in which we compared on a few
requirements documents examples the ambiguity detection ability of chatGPT with that of a
publicly available rule-based NLP tool, QuARS, that we already used in a previous work for
ambiguity and variability detection in requirements [5, 6, 7].

The experiments described below aim at giving a first answer to the following research
questions: RQ1 Can chatGPT be used to detect ambiguities in requirements? RQ2 How does
the chatGPT performance for ambiguity detection compare to a rule based NLP tool?

The scope of the experiments is limited to four requirements documents and to a single query
asked to chatGPT; however, since chatGPT returns different answers when the same question
is asked again, we have run each query a few times.

Section 2 briefly introduces the issue of ambiguity detection in requirements, and the two
different detection approaches of the two tools. Section 3 describes the example requirements
documents used as a benchmark. The analysis of the data generated by the experiments in view
of the research questions is addressed in Section 4. Final sections on threats to validity, lessons
learned and conclusions follow.

2. Ambiguity detection

Software requirements are normally expressed informally through natural language sentences,
which are potentially ambiguous, and this ambiguity is a known source of problems in the later
stages of software development. In the requirement engineering community, many tools have
been developed to help the analyst in detecting ambiguous requirements.

2.1. Rule based NLP tools for ambiguity detection

In the last decades some tools (e.g. [8, 9, 10, 11, 12, 13]) have been defined that address the
automated analysis of requirements documents by means of Natural Language Processing (NLP)
tools [14] with the purpose of detecting ambiguities in them. This kind of analysis is aimed at
identifying typical natural language defects, especially focusing on ambiguity sources. We list
in Table 1 the most common sources of ambiguity, with a classification inspired by [15, 16, 17].

As a representative of these NLP tools, in this work we apply QuARS - Quality Analyzer
for Requirement Specifications, developed in our lab [18], which shows a good performance
when compared with similar tools [7]. QuARS performs an automatic linguistic analysis of a
requirements document in plain text format, according to the deterministic rules defined by a
given quality model. Its output indicates the defective requirements and highlights the words
that reveal the defect. The defect identification process includes lexical and syntactical analysis,
while semantic analysis is not supported.



Table 1
Ambiguity classes and indicators.

Ambiguity classes Indicators

Homonymy and  occur when a term can have different meanings, some examples are: bank, can,  bat...

polisemy having different (homonymy) or one (polisemy) et-  (homonymies), left, right, fall, minute, ... (poly-
ymology semies)

Analytical, occur when a sentence admits more than one gram-  syntactic analysis: the sentence admits two or

attachment, matical structure, and different structures have dif-  more syntactic trees

coordination ferent meanings

Anaphora occurs when an element of a sentence depends for  relative and demonstrative pronouns: that, which,
its reference on another, antecedent, element and their, it, them, they, both,...
it is not clear to which antecedent it refers

Vagueness occurs when it is not possible to interpret a sen-  clear, easy, strong, good, bad, adequate, tall,

tence in a unequivocal way

short, various, completed, similar, similarly, accord-
ingly,...

Comparatives
& superlatives

occurs when the term of comparison or the uni-
verse of discourse are missing

better, easier, worst, faster, bigger, biggest,...

Disjunctions

occurs when a sentence admits different models in
which the first, the second or both disjuncts are
true

or, and/or,...

Escape clauses

occurs when a sentence admits different models,
containing or not the object the escape clause

case, possibly, if possible, if appropriate, among
others, as a minimum, when required, ...

Weakness

occurs when the sentence contains weak verbs

may, can, could,...

Quantifiers

in presence of quantifiers, ambiguities are due to
the scope or to the universe of quantification

a, all, always, every, any, nothing,...

Under-
specification

occurs when the sentence contains terms that need
to be instantiated or qualified

information, interface, attack, button, channel,
component, procedure, process, report, session,...

Passive voice

occurs when the subject of the passive sentence is

auxiliary to be with a past participle and no agent

not be revealed

specified (by)

2.2. chatGPT for ambiguity detection

As an Al large language model (LLM), chatGPT doesn’t use rules to detect ambiguities in the
traditional sense. Instead, it uses training data and algorithms to generate an answer. LLMs
are such complex algorithms that it is arduous, if not infeasible, to know exactly how and why
the model returns a particular result (lack of explainability and transparency) and it is rare
to get the same answer twice (nonreproducibility). These are well-known issues that need to
be considered when switching from rule-based approaches to LLMs, particularly if there is a
need to guarantee a quality level of the requirements. The purpose of this work, however, is to
investigate whether chatGPT has reasonable performance in ambiguity detection compared
with rule-based tools, such that it would make it a useful tool in software development, alone or
in combination with rule-based tools. To the best of our knowledge, there is no documentation
or literature so far on the ambiguity detection capabilities of chatGPT.

3. Data preparation

To perform our experience we have used two simple requirements documents introduced in
previous papers, and two third-party requirements documents':
Coffee machine that gives few requirements of an automatic coffee vending machine;

!All documents are available at https://github.com/Vibe-NLP/RequirementsForValidation.


https://github.com/Vibe-NLP/RequirementsForValidation

Table 2
Characteristics of the requirement documents: number of requirements, number of words, authorship
and characteristic of the system to be.

reqs | words| issued by characteristics
Coffee machine 6 63 authors toy example
E-shop 18 263 | authors toy example
Library 94 1815 | company information system
DigitalHome 112 | 1121 | academia control system

Table 3
Coffee-machine requirements

C1 After inserting a suitable coin, the user shall choose a beverage and select the amount of sugar.
C2 The machine shall offer, as beverages, Coffee and Cappuccino or Tea.

C3 The machine shall always offer coffee.

C4 A ringtone possibly has to be played after beverage delivery.

C5 After the beverage is taken, the machine returns idle.

C6 The British market requires tea and excludes any ring tone.

Table 4
E-shop requirements

E1 The system shall enable the user to enter the search text on the screen.

E2 The system shall display all the matching products based on the search.

E3 The system possibly notifies with a pop-up the user when no matching product is found on the search.

E4 The system shall allow a user to create his profile and set his credentials.

E5 The system shall authenticate user credentials to enter the profile.

E6 The system shall display the list of active orders and/or the list of completed orders in the customer profile.

E7 The system shall maintain customer email information as a required part of customer profile.

E8 The system shall send an order confirmation to the user through email.

E9 The system shall allow an user to add and remove products in the shopping cart.

E10 The system shall display various shipping methods.

E11 The order shall be shipped to the client address or, if the shipping to store service is available, to an associated
store.

E12 The system shall enable the user to select the shipping method.

E13 The system may display the current tracking information about the order.

E14 The system shall display the available payment methods.

E15 The system shall allow the user to select the payment method for order.

E16 After delivery, the system may enable the users to enter their reviews and ratings.

E17 Shipping time should be as fast as possible.

E18 The system must report the available products, if the availability of these are are less than 10 percent the
system should show a pop-up.

E-shop that describes a simple online shopping system;

Library, that describes the requirements for the System Administration Module of a urban
library system.

DigitalHome, that specifies the requirements for developing a domotic system.

In Table 2 we summarise some characteristics of the considered documents. In Tables 3 and 4
we present the requirements of the coffee machine and E-shop, respectively.



4. Data Collection and Analysis

To address the RQs, including RQ2 that requires a comparison with a rule based NLP tool, we
perform the following steps:

Automatic detection: We apply both QuARS and chatGPT to each document. The document
is given as input to QuARS in text format while chatGPT is queried by asking: “Find the
ambiguities of the following software requirements document: <list of requirements in text
format>".

QUuARS returns the requirements that are considered ambiguous, along with the term or
expression that is an indicator of ambiguity and the defect class to which it refers. chatGPT has
a less structured and more variable response format, but basically indicates which requirements
are ambiguous and why.

Review: The output of the tools is reviewed by the authors in a joint meeting and each defect
identified as ambiguity or false positive. The classification derived at this stage is the one used
for data analysis in the following step.

Assessment: The analysis is both quantitative, in terms of performance metrics, and quali-

tative, to understand in detail what kind of defects are identified or ignored by the two tools.
For the quantitative analysis, we use the following metrics, where ¢ p is true positive, fpis
false positive and fn is false negative:

o tp | f ound ambuguities n true ambuguities|
precision = = —
tp+ fp | found ambuguities|
" tp | f ound ambuguities n true ambuguities|
recall = =
tp+ fn |true ambiguities|

4.1. Coffee machine

As an initial case study we consider the coffee machine, which is short enough to allow us to
fully report the output of QUARS and the response to a query to chatGPT. We are well aware
that considering only one response is statistically irrelevant, but this example is mainly for
illustrative purposes. Let us first report the output of QuARS:

The line number: 1. after inserting a suitable coin, the user shall choose a beverage and select the
amount of sugar.
is defective because it contains the wording: suitable

The line number: 2. the machine shall offer, as beverages, coffee and cappuccino or tea. is defective
because it contains the wording: or

The line number: 3. the machine shall always offer coffee.
is defective because it contains the wording: always

The line number: 4. a ringtone possibly has to be played after beverage delivery.
is defective because it contains the wording: possibly

The line number: 6. the british market requires tea and excludes any ring tone.
is defective because it contains the wording: any

Then we have asked chatGPT obtaining the following answer:



Table 5
Coffee machine case study. We report the indicator found with its defect class.

QuaR$S chatGPT Manual analysis

Req Indicator | Defect Indicator | Defect Indicator
C1 suitable vagueness suitable vagueness suitable
C2 or disjunction or ambiguous disjunction or

- - - - coord. ambiguity
C3 always quantification always contradiction -
C4 possibly optionality possibly optionality possibly

- - - - passive voice
C5 any quantification - incompleteness -

1. It is not clear what is meant by ”a suitable coin.” Is there a specific type of coin that the
machine will accept, or will it accept any coin?

2. The statement ”The machine shall offer, as beverages, Coffee and Cappuccino or Tea” is ambiguous
because it is not clear whether the machine will offer all three options (Coffee, Cappuccino, and
Tea) or only one of the options (Coffee, Cappuccino, or Tea).

3. The statement “The machine shall always offer coffee” seems to contradict the previous statement
about the available beverage options.

4. It is not clear what is meant by ”a ringtone possibly has to be played after beverage delivery.”
Is this a requirement or just a possibility?

5. The statement ”The British market requires tea and excludes any ring tone” does not specify how
the machine should handle these requirements. Is the machine supposed to automatically adjust its
behavior for the British market, or is this something that the user needs to manually set?

4.2. Results analysis and comparison

We have manually analysed the requirements, according the classification of ambiguity sources
in Table 1 and then assessed the tools’ outcome. Results are summarised in Table 5 and
commented below; performance results are non-significant in this toy example.

1. 7suitable coin” in C1 is an ambiguity, detected by both tools;

2. 7or” in C2 is an ambiguity detected by both tools. In the same requirement there is a
coordination ambiguity, undetected by the tools;

3. 7always” in C3 is a false positive, detected as ambiguity by QuaRS. ChatGPT returns an
indication of a possible contradiction, which might exist, but is not an ambiguity;

4. the fact that the ring tone is possibly played, in C4, is an ambiguity and it is detected by
both tools;

5. in C6 QuARS finds “any”, which is a false positive, while chatGPT detects an incomplete-
ness that actually exists, but is not an ambiguity.

4.3. E-shop

Our second experience involved the E-shop example: we performed a manual analysis, an
analysis with QuARS, and queried chatGPT twice, on different days. For space reasons, we
do not report the whole outcomes but only the found indicators and kind of defect in Table 6.
Performance values are in Table 7 and show that the performance of chatGPT can be highly



Table 6
E-shop case study. All indicators found are true positives unless labeled as false positives (fp).

QuaRS chatGPT 1 chatGPT 2 Manual analysis
Req Indicator | Defect Indicator | Defect Indicator Defect Indicator
E2 all quantif. (fp) - - - - -
E3 possibly optionality possibly optionality - - possibly
- - - - no quantif. -
E6 and/or optionality and/or ambig. disj. and/or ambig. disj. and/or
ET0 various vagueness - - - - various
E11 or optionality or ambig. disj. - - or
- - - - associated vague (fp) -
E13 may weakness may weakness - - may
- - - - current unclear (fp) -
El6 may weakness may weakness - - may
E17 should weakness should replace by shall - - should
- - - - as fast as | subjective as fast as possi-
possible ble
E18 should weakness should replace by shall - - should
Table 7
E-shop and Smart Home: performance measures.
QuaRS chatGPT1 chatGPT2
precision recall precision recall precision recall
eshop 0,89 (8/9) 0,8 0,89 (8/9) 1(7/7) 0,78 (7/9) 0,6 (3/5) 0,33 (3/9)
smart_home | 0,24 (17/70) | 0,77 (17/22) | 0,28 (3/14) | 0,14 (3/22) | 0,17 (2/12) | 0,09 (2/22)

variable, which was expected, but also that it can be compared with that of a settled, rule-based
tool. It is interesting to note that chatGPT was able to detect an hidden ambiguity in E3 that
was not found by manual analysis (note also that we have been working on for some time on
this case study and we had never noticed the problem):

Ambiguity in E3: It is not specified if the pop-up will be displayed when a single product
is not found or multiple products.

4.4. Smart Home

Our third experience involved the smart home example: we performed an analysis with QuARS,
and queried chatGPT as usual. We encountered a limitation of chatGPT: it does not accept
documents of this length as input and returns an error. To get around the problem, we divided
the document into two parts and had them analysed separately, then merged the results. Since
we are looking for sources of ambiguity, which do not depend on the joint analysis of multiple
requirements, we claim that this partition-based solution is acceptable. Each part has been
analysed twice, on different days.

This document returned many false positives, both with QuARS and chatGPT, and chatGPT
has a very low recall (Table 7). For space reasons, we do not present the tools output but only
the performance measures. With regard to qualitative analysis, chatGPT found the following
defect not found by QuARS, which is worth noting since it reveals an incompleteness of the
QuARS dictionaries, which do not contain the term compatible.

Ambiguity in 2.2.5, as it states ”The system shall be compatible with a centralized HVAC



Table 8

Library: performance measures.

QuaRS chatGPT 1% run chatGPT 2 run
Library | precision recall precision recall precision recall
0,46 (12/26) | 0,55 (12/22) | 0,5 (2/4) | 0,09 (2/22) | 0,75(3/4) | 0,04 (1/22)

chatGPT 3 run

chatGPT 47 run

chatGPT 5 run

precision

recall

precision

recall

precision

recall

0,5 (4/8)

0,18 (4/22)

0,41 (9/22)

0,41 (9/22)

0,59 (10/17)

0,46 (10/22)

(Heating, Ventilation and Air Conditioning) systems: gas, oil, electricity, solar, or a
combination of two or more.” It is unclear what “compatible with” means in this context and
how it applies to the different types of HVAC systems mentioned.

4.5. Library

The last document considered is Library, which is slightly smaller in size than Smart Home. We
analysed the document with QuaRS and then with chatGPT for 5 times, on 5 different days. In the
table named GPT_QuARS_library in https://github.com/Vibe-NLP/RequirementsForValidation
we list all the defects found. The table is truncated because all 5 times we queried chatGPT,
although it did not report length errors, it only found defects in the first 38 requirements. We
therefore decided to consider this document fragment to make the performance measurements,
which are shown in Table 8. In the GPT_QuARS_library table, for each analysis, we show
each defect reported, labelling it directly as false positive (fp) or true positive (amb). In the
adjacent column we report: for QuARS, which indicators were considered false positives or
true ambiguities; for chatGPT a fragment of the response, if significant.

4.6. Threats to validity

We have used precision and recall as metrics to compare the tools. The human intervention in
the review and assessment steps, returning the number of true/false positives and false negatives,
is a threat to construct validity, and the involvement of the authors in these phases is also a
threat to internal validity. With regard to external validity, we have presented a preliminary
study, and the quantitative comparison is limited to three case studies, to two compared tools
and to a single kind of query to chatGPT and few chat sessions.

5. Conclusions and Future Work

The findings from the experience allow us to give an answer, albeit preliminar, to the RQs:

RQ1 chatGPT can be used to detect ambiguities in requirements by simply asking: "Find the
ambiguities of the following software requirements document:<list of requirements in text
format>". We note that chatGPT does not process long requirement documents: either
it returns an error or it provides a partial answer. Since ambiguity detection does not



depend on processing the document as a whole, it is possible to break the requirements
document into simpler parts and analyze the pieces separately.

RQ2 ChatGPT’s performance results vary between chat sessions with the bot, especially recall;
precision, on the other hand, is more stable and comparable to that of a rule-based NLP
tool. Running several sessions with the same question improves recall. For example,
when making the union of the 5 responses got from the chatbot for the library case study,
we have the following performance: precision = 0,51(28/55) recall=0, 55(12/22)

Validity threats can be mitigated in future work by involving third-party reviewers and mea-
suring the level of agreement between them and by increasing the number of documents and
querying chatGPT with different queries.

Future work can further develop the analysis presented here along several dimensions:

« Assess the coverage by GPT-3 language model of the technical slang used in requirements;

« Exploit ChatGPT’s ability to rationalise and explain ambiguity;

+ Ask ChatGPT more focused questions, addressing the various classes of ambiguity sepa-
rately;

+ Develop the analysis with additional documents and evaluate the hypothesis that slicing
a requirements document for chatGPT does not influence its results;

« We have seen that chatGPT is able to detect defects, such as incompleteness and incon-
sistency, that traditional NLP tools cannot identify or can identify with difficulty and
after domain-focused training. A future study may be devoted to specifically measuring
the performance of chatGPT in finding these classes of defects in requirements. Positive
results in this respect could lead to the use of chatGPT to complement a rule-based tool
to automatically detect these important quality criteria;
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