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Abstract
The deteriorating air quality in urban areas, particularly in developing countries, has led to increased attention being paid to
the issue. Daily reports of air pollution are essential to effectively manage public health risks. Pollution estimation has become
crucial to expanding spatial and temporal coverage and estimating pollution levels at different locations. The emergence of
low-cost sensors has enabled high-resolution data collection, either in fixed or mobile settings, and various approaches have
been proposed to estimate air pollution using this technology. This study aims to enhance the data from fixed stations by
incorporating opportunistic mobile participatory monitoring (MPM) data. The research question is: "How can we enrich fixed
station data using MPM?" To overcome the limited availability of MPM data, we reuse existing data for periods with similar
pollution maps observed by the fixed stations. The combined fixed and mobile data is then subjected to interpolation methods
to generate more accurate pollution maps. The effectiveness of our approach is demonstrated by experiments conducted on a
real-life dataset.
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1. Introduction
The combination of urbanization and climate change
poses a significant threat to the health of urban popula-
tions and the environment. It is projected that by 2050,
up to 70% of the global population will reside in urban
areas, with 75% of Europeans already living in cities. This
trend presents a range of interconnected challenges that
impact social, economic, and environmental infrastruc-
tures, with deteriorating air quality being a particular
concern, especially in developing nations. Virtually ev-
eryone on Earth is breathing polluted air, according to
the World Health Organization (WHO) [1]. Indeed, 99%
of the world’s population lives in places where air quality
exceeds internationally approved limits. WHO estimates
show that around 7 million premature deaths per year are
attributable to the joint effect of ambient and household
air pollution.

The significance of air pollution monitoring has risen
in recent years due to its ability to generate the Air Qual-
ity (AQ) index for the region under consideration. By
aiding policymakers in devising more effective strategies
to tackle pollution-induced urbanization challenges, air
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pollution monitoring can be highly beneficial.
Air pollution monitoring has extensively relied on

fixed stations for the last three decades to generate the
AQ pollution index. These stations typically record the
hourly average of pollution levels in a specific region. Re-
grettably, the deployment of such stations is financially
demanding, and their maintenance is also a significant
concern, leading to limited coverage.

Researchers have shown recent interest in using air
quality mobile sensing as an alternative method for mea-
suring air pollution.

Mobile sensors for air quality are cost-effective and of-
fer high-resolution pollution measurements while being
deployed in high densities, as noted by [2] and [3]. How-
ever, calibration is typically necessary for such sensors.
In recent years, researchers have attempted to estimate
pollution and broaden spatial coverage by combining
fixed and mobile measurements.

Various researchers specializing in fixed and mobile
monitoring techniques have put forward distinct meth-
ods for estimating pollution based on data from fixed
stations, mobile air quality sensors, or a blend of both.
Fixed stations are capable of producing precise measure-
ments, but they fall short when it comes to the spatial
coverage. Conversely, mobile sensing can expand spatial
coverage but may also yield some imprecise measure-
ments. Additionally, fixed stations generally maintain
continuous temporal coverage at specific locations, while
mobile sensors may not have temporal coverage at cer-
tain locations.

The GoGreen Routes 1 project is committed to address-

1https://gogreenroutes.eu/
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ing a range of challenges, including monitoring and esti-
mating air pollution. The current research contributes to
this project by utilizing fixed and mobile sensor data to
broaden air pollution estimates’ geographical and tem-
poral coverage.

Researchers have utilized fixed stations and mobile sen-
sor data to estimate pollution maps. Some studies have
relied exclusively on fixed stations [4, 5, 6], while oth-
ers have applied air pollution estimation methods used
in fixed stations to low-cost mobile sensor data [7, 8].
However, recent research proposes combining data from
fixed and mobile sensors [9, 10], which raises several
unresolved questions. Firstly, what are the most effec-
tive methods to use deterministic methods, geostatistical
methods, or machine/deep learning models? Secondly,
what features should be considered during the pollution
estimation process? Lastly, how should we address the
challenges of merging data from fixed and mobile sen-
sors, considering the differences in their resolution and
spatiotemporal coverage?

This paper presents a novel approach to assessing air
pollution levels in the city of Versailles by utilizing data
from both fixed and mobile sensors. Prior studies that
integrate fixed and mobile sensor data or solely rely on
mobile sensing typically involve targeted campaigns fo-
cused on specific routes or deploying sensors on buses or
trams following fixed paths. In contrast, our methodology
leverages a mobile crowd-sensing (MCS) approach. MCS
[11], as a new paradigm, harnesses data acquired by vol-
unteers using sensor-enhanced mobile devices with GPS
capabilities while carrying out their daily routines, result-
ing in non-persistent data collection and limited outdoor
data samples as most activities are indoors. Our research
question centers on the incorporation of MCS/MPM2

data to supplement fixed station data and estimate air
pollution levels across the city.

This work proposes a methodology to augment air
pollution monitoring stations with randomly collected
data from mobile sensing devices (MCS). Our goal is
to improve the accuracy of pollution maps by utilizing
data from both fixed and mobile sensors, thus increasing
spatial and temporal coverage. Our approach is based
on the assumption that similar data can be found for
fixed stations at different periods. Specifically, we aim
to identify clusters of different fixed station data, match
them with MCS data at corresponding times, and combine
them to generate more data samples and improve the
pollution map. This method results in enhanced pollution
estimation.

The remainder of this paper is organized as follows:
Section 2 reviews related work and different approaches
discussed in the literature. Section 3 details and explains

2Please note that MPM (opportunistic mobile participatory mon-
itoring) and MCS (opportunistic mobile crowd sensing) are used
interchangeably in this paper

our methodology. Section 4 presents the implementa-
tion and experimental results. In sections 5 and 6, we
summarize our findings and suggest future directions for
research.

2. Related Work
Researchers have shown interest in the problem of esti-
mating pollution for several years. The problem has been
examined in the literature from various perspectives and
scales. While meso-scale air quality modeling systems,
such as CHIMERE[12], are the most commonly used, ur-
ban scale models utilizing Computational Fluid Dynamic
(CFD) simulations have also been proposed. However,
their computational complexity limits their applicability
to a wide area [13]. In addition to these model-driven
approaches, data-driven methods have become popular
due to the increased use of monitoring stations, including
traditional fixed networks, denser networks of low-cost
fixed sensors, and low-cost mobile devices. In this dis-
cussion, we will focus on data-driven approaches that
expand spatial and temporal coverage. This section sum-
marizes the conducted studies on pollution estimation
and interpolation for various measurements.

Over the years, numerous techniques have been sug-
gested for approximating or interpolating pollution lev-
els in areas without monitoring stations. Although air
quality estimation methods are typically intended for
stationary sites, they can also be modified to accommo-
date information obtained from mobile and stationary
sensors. These techniques can be divided into five cate-
gories: Land Use Regression (LUR), Dispersion Models,
Deterministic Interpolation Methods, Geostatistics, and
ML/DL Algorithms.

In their study cited as [4], the authors employed a
deep learning method for predicting the concentration
of PM2.5 in Beijing, China. Their approach involves
using a CNN-LSTM neural network to increase the spa-
tiotemporal coverage by incorporating historical pollu-
tant data, meteorological data, and PM2.5 concentrations
from nearby monitoring stations. The proposed approach
can capture the spatiotemporal characteristics by com-
bining the convolutional neural network and long-short-
term memory network. The study evaluated the proposed
approach against other deep learning methods. Notably,
this paper focused on predicting future PM2.5 concen-
trations rather than estimating or interpolating missing
values using only fixed monitoring stations and other
fixed features in the model.

In [5], the use of LUR methods by Habermann et al.
to visualize NO2 pollution concentration distribution is
discussed. LUR is employed due to its reliance on air
pollutant concentration trends. The authors built a LUR
model based on land use, demographic, and geographical



features with NO2 measurements as the dependent vari-
able. Kriging was then used to visualize the LUR-NO2
surface for each point. The model predicted almost 60%
of NO2 variability, although the authors note limitations
of LUR methods in their paper.

A Multi-AP learning network was introduced in [6]
for estimating pixel-wise pollution based on fixed-station
measures and features such as land use, traffic, and me-
teorology. The authors classified features into micro,
meso, and macro views and used a fully convolutional
network (FCN) to simulate multiple pollutants. The Multi-
AP network outperformed other methods in various ex-
periments, although the authors acknowledge data con-
straints, seasonality, and model extension as potential
challenges.

Guo et al. proposed a high-resolution air quality map-
ping approach for multiple pollutants in [7]. The method
uses a dense monitoring network and combines dense
networks and machine learning techniques. The authors
took advantage of micro-station monitoring systems with
multiple sensors, as well as land use and meteorological
data. XGBoost algorithm was used to estimate pollu-
tion concentration at different grids with fine granularity.
However, the monitoring phase relied on dense network
data collection.

The paper by Cassard et al. [14] introduces an engine
that predicts air quality for PM2.5 and PM10 concentra-
tions in the United States. The authors employed fixed
and low-cost sensors near road networks and used traf-
fic data to build features. They utilized the five nearest
official monitoring stations, the five closest low-cost sen-
sors, as well as road and traffic features. A convolutional
layer was tailored for low-cost sensors, and all features
were combined and flattened before being passed through
a fully connected layer. The authors considered three
prediction models, including using only official stations,
only low-cost sensors, or a combination of both. While
integrating high-quality data from official monitoring
stations with low-cost sensors can improve pollution
estimation, the authors acknowledge that more spatial
coverage is a potential limitation.

In [15], the authors utilized geostatic methods with
data collected from low-cost mobile sensors deployed
on top of trams (OpenSense [16]). The study compared
kriging and deterministic methods such as IDW, where
kriging approaches (simple kriging, ordinary kriging, and
kriging with external drift) were found to be superior.
Although geostatistical methods do not require external
data, machine learning methods that combine different
data types have demonstrated better performance for
pollution estimation.

In [17], the authors proposed a deep autoencoder
model to recover spatiotemporal pollution maps by sep-
arating the processes of pollution generation and data
sampling using an encoder, decoder, and sampling imi-

tator. The approach utilized mobile sensor data without
relying on additional features and incorporated the Con-
vLSTM structure within the decoder based on a previous
study [8].

In [9], the authors introduced HazeEst, a machine
learning-based approach that combines sparse fixed sta-
tions with dense mobile sensor data to estimate hourly air
pollution surfaces. The method utilized air pollution, tem-
poral, and spatial features and merged fixed and mobile
data by averaging mobile sensor measurements hourly.
The approach implemented several regression methods,
such as SVR, DTR, and RFR.

Song et al. proposed the Deep-Maps approach [10] to
estimate PM2.5 measures. The method combined mobile
sensor data with fixed stations’ data to expand spatial
coverage and utilized a machine learning framework that
adapts gradient-boosting decision trees with local fea-
tures such as land use and meteorological data. Neighbor-
ing features captured spatiotemporal correlations among
urban features, while macro features represented pollu-
tion measurements from sites outside the study area.

In [18], Zhang et al. proposed machine learning re-
gression models to predict real-time localized air qual-
ity, utilizing multiple static and IoT mobile sensors of
the same type to monitor air quality effectively. The
approach developed gradient boosting, SVR, and RFR re-
gression models to estimate pollution, where the gradient
boosting model was most responsive to sudden changes.
The results indicated that the hybrid network had better
outcomes for all selected dates.

Existing approaches in the literature that use fixed
and/or mobile data have typically conducted targeted
data collection campaigns on specific roads or outdoor
places. However, this work aims to use MCS data to
enhance fixed stations’ data without relying on directed
data collection campaigns or outdoor data collection.

3. Methodology
In this section, we will present our proposed method-
ology for enhancing fixed station measures with data
obtained through mobile crowd sensing. We may have
very few samples from various outdoor locations when
using mobile crowd sensing. Our proposed solution aims
to address the question of how to leverage MCS data to
improve fixed station measures and estimate air pollu-
tion.

Air pollution levels can vary significantly from one
place to another and may change rapidly due to various
factors such as meteorological conditions, traffic, and
land use. Despite these differences, it is possible to group
these changes into clusters that reflect pollution levels
during specific time periods.

Our methodology is based on the hypothesis that fixed



station measures that fall within the same pollution clus-
ter could share similar MCS data. To test this hypothesis,
we will cluster fixed station measurements and use the
dates and periods to identify relevant MCS data. We will
then use this data to enrich pollution maps and estimate
pollution levels by combining fixed and MCS data.

Algorithm 1: Pollution estimation using Fixed
and MCS data
Input: Hourly Fixed Stations data, Hourly average

MCS
Output: Enriched pollution estimation map

1 Create different snapshots of pollution maps
based on hourly fixed station data.

2 Apply a clustering algorithm to group those
snapshots into clusters.

3 Select the date and periods within each cluster.
4 For each cluster, compute the mean of its

pollution maps, and use it as the representative
map for that cluster.

5 Select hourly average MCS data matching the
periods extracted from each cluster.

6 Enrich each representative map with its
corresponding MCS data.

7 Apply the interpolation method to estimate
pollution on top of the enriched map.

Our approach is detailed in Algorithm 1, which out-
lines the following steps. First, we generate snapshots
from the fixed station data, considering the data from all
fixed stations for each timestamp as the current state of
pollution. Next, we apply a clustering algorithm (such
as K-means) to identify all similar snapshots. We then
calculate each cluster’s mean per fixed station, form-
ing a new map representing the cluster. For exam-
ple, if entries 1 and 𝑛 in Figure 1 are grouped in one
cluster, then the representative vector of this cluster
is ([14.25, 16.6, 5.6, 17.95, 5.3, 3.8, 15.1, 17.3]). These
steps are illustrated in Figure 1.

For MCS data, we begin by calculating the hourly aver-
age. Then, using each cluster’s date and time periods, we
extract the relevant MCS data. The selected data enriches
the representative map, as shown in Figure 2. Finally, we
apply an interpolation technique to generate an air pol-
lution estimation map, as demonstrated in Figure 3.

4. Implementation and
Experiments

This section presents the data and methods utilized in
our implementation, followed by a discussion of the ex-
periments and results. Our study was conducted in Ver-
sailles, within the geographical boundaries of a specified

Figure 1: Clustering Fixed Stations data

Figure 2: Enriching the representative map with MPM data

Figure 3: Pollution Estimation

bounding box (2.08170001, 48.79231, 2.1540488, and
48.8283) that covers the Versailles region. The area of
this bounding box is approximately 32 square kilome-
ters, and we partitioned the map into grids with varying
spatial resolutions.

4.1. Data
Our approach to air quality data collection involves two
types: fixed station measures and MPM data. eLichens 3

has deployed eight fixed stations in Versailles, which pro-
vide the air quality index and measures of particulate

3https://www.elichens.com/



matter (𝑃𝑀1.0, 𝑃𝑀2.5, and 𝑃𝑀10), as well as esti-
mates of 𝑁𝑂2, 𝑂3, temperature, and humidity. These
sensors provide hourly aggregations, resulting in one
representative record per station for each timestamp.

MPM data is collected through the Polluscope 4

project, which conducted multiple campaigns to col-
lect mobile sensory data. Participants are recruited to
collect surrounding pollutant concentration and geo-
location for one week, 24 hours a day while going
about their daily activities. The sensors in their multi-
sensor boxes collect time-annotated measurements of
𝑃𝑀1.0, 𝑃𝑀10, 𝑃𝑀2.5, 𝑁𝑂2, 𝐵𝑙𝑎𝑐𝑘 𝐶𝑎𝑟𝑏𝑜𝑛 (𝐵𝐶),
temperature, and relative humidity. To address typical
quality issues with low-cost sensors (outliers, noise, and
missing values), the data is preprocessed, and thoroughly
screened [19].

We combine fixed station measurements with MCS
outdoor data by classifying samples based on previous
research to identify micro-environments and selecting
only outdoor periods [20, 21]. However, this represents
less than 10% of the data due to the majority of time spent
indoors. To deal with data scarcity, we propose grouping
by similarity after calculating the hourly average of the
MCS data to align with the fixed station data.

4.2. Methods
As illustrated in Section 3, our method for estimating
pollution involves adapting unsupervised learning and
geostatistics techniques. The process consists of three
phases. The first phase clusters similar snapshots from
fixed stations using PM2.5 measures (but the same pro-
cess could apply to any other pollutant) where at each
timestamp 𝑖, the measurements from the eight fixed sta-
tions (𝑆1𝑖, 𝑆2𝑖, ..., 𝑆8𝑖) are considered as a snapshot.
Thus, the input of the clustering algorithm is a set of
snapshots. The K-means algorithm is applied, and the
Elbow method is used to determine the optimal number
of clusters. Each cluster is represented by an aggregated
record that shows the mean values of the stations in that
cluster.

Moving on to the second phase, we select all the date
and time values of the different snapshots in each cluster.
We use these values to select samples from MPM data,
which is then hourly averaged and aggregated over cells.
Using each cluster’s representative map with the selected
MPM data, we generate an enriched map for that cluster.

In the third phase, we estimate pollution in uncovered
areas using enriched maps. While many approaches, such
as machine and deep learning methods like CNN-LSTM,
ConvLSTM, and auto-encoder, have shown promising re-
sults, we use geostatistics methods such as ordinary krig-
ing interpolation and deterministic interpolation IDW

4https://polluscope.uvsq.fr/

for simplicity. We note that additional features, such as
traffic and meteorology, can also improve performance.

4.3. Experiments
The experiments were carried out on real-life data col-
lected in Versailles city. Within the context of the
GoGreen Routes project, eLichens deployed eight fixed
stations in Versailles. Meanwhile, MPM data were col-
lected as part of the Polluscope project. We utilized data
between October and December from both fixed and mo-
bile sensors. The fixed stations produced roughly 1087
hourly average records.

Concerning the MPM data, the experiments affirmed
the reduction in data when we limited it to an outdoor
context. At the start, we had 11500 minutes of outdoor
records during the collection period, out of a total of
642200 records, which comprised only 1.7% of the col-
lected data. After filtering only records within the bound-
ing box, we were left with approximately 2538 outdoor
records out of 103062 records, which equates to roughly
2.4% of the data collected in Versailles. We observed a
rapid increase in pollution levels for all fixed stations after
November 26. Furthermore, we noticed that fixed sensor
S4 had numerous peaks and missing values, implying
that the observations were unreliable. Therefore, we con-
ducted experiments with and without S4 measurements.
For both experiments, we applied the same procedure.
Firstly, we loaded data from all available stations, specif-
ically the PM2.5 dimension. Secondly, we removed all
missing values and kept only records with measurements
from all available stations. Finally, we normalized the
data using min-max normalization.

4.3.1. First Experiment

Once the data was preprocessed and prepared, we utilized
K-means clustering to partition it into distinct clusters.
For each record, there were eight measures associated
with the eight stations in this particular experiment. By
applying the elbow method, we designated 𝐾 = 10,
forming 10 clusters.

After grouping the fixed station measures’ records, we
calculated a representative map for each cluster. The
next step is to select all the date and time values in each
cluster, which will be used to query MPM data.

On the other hand, for MPM data, we first selected the
PM2.5 dimension from the preprocessed data. Then we
split the area of interest into grids where each cell has a
1KM X 1KM granularity. The study area is approximately
32 𝐾𝑀2; thus, we used nine columns and five rows to
split the area of interest into 32 cells. Unfortunately, the
eight stations fall in one cell, number 29. This, on the
one hand, affects the accuracy as the accurate fixed sta-
tions’ measurements are all in one cell. However, on the



1KM X 1KM 500m X 500m
MAE RMSE MAE RMSE

IDW 4.1 5.2 4 4.8
OK 3.4 3.9 4.5 5.6

Table 1
MAE and RMSE values of the first experiment

other hand, it shows the strength of our approach since
the performed MPM enrichment allowed us to estimate
pollution even if we have few fixed station measures.

We merged the MPM data for each cluster, sharing
the exact date and time values. For clusters 0, 3, and 8,
we did not find any MPM data that was collected at the
same time as those clusters. We kept only clusters 1, 2,
4, 5, 6, 7, and 9. We merged the Mobile data with the
representative map of each cluster (fixed data) to get the
enriched maps having MPM data and fixed station data
at resolution 1KM x 1KM x 1h.

The final step is to interpolate missing values. We
use Inverse distance weighting (IDW) and the Ordinary
kriging approach. For each cluster, we applied the two
methods. For validation, we use leave-one-out valida-
tion, where we try to interpolate the cell’s value having
the fixed stations, as it is considered the ground truth.
Mean absolute error (MAE) and root mean squared error
(RMSE) are used as metrics for validation.

We repeated the same experiment while varying the
spatial resolution. We split the area of interest into cells
of 500m X 500m. Now the fixed stations fall within two
cells. We repeated the same procedure and applied the
same approaches. Table 1 reports the results of MAE and
RMSE for the different splits.

4.3.2. Second Experiment

We repeated the whole experiment while removing sen-
sor S4. Now for each record, we have seven measures cor-
responding to the seven available fixed stations. Again,
with the help of the elbow method, we set K=8, and we
have 8 clusters.

Unfortunately, we did not have MPM data at the same
periods in cluster 5, as cluster 5 contains only eight
records. We merged MPM data and fixed station data
for other clusters 0, 1, 2, 3, 4, 6, and 7, and we got the
enriched maps.

The same procedure and methods as in the previous
experiment were applied. We have a grid split of 1KM X
1KM and another split of 500m X 500m. The results are
reported in table 2.

The following results correspond to the second experi-
ment (after removing S4 measures). Figure 4 shows the
enriched clusters for the second experiment. We have
eight clusters if we count cluster 5. As aforementioned,
cluster 5 has only 8 records and no matching MPM data.

Figure 4: Enriched maps

1KM X 1KM 500m X 500m
MAE RMSE MAE RMSE

IDW 3.7 4.8 2 2.6
OK 3.4 3.9 3 4

Table 2
MAE and RMSE values of the second experiment

Therefore, applying interpolation is irrelevant for this
cluster. However, as shown in the figure, the MPM data
has enriched the other clusters. Initially, all the clusters
have located in one 1KM x 1KM cell. The figure shows
the importance of the proposed method and how MPM
values change with the change of fixed station measures.
The light yellow color shows a low pollution level, while
the dark red corresponds to high pollution measures.

Map plot before and after interpolation is shown in
figure 5 We chose those 2 clusters to visualize the impact
of interpolation when we have a low pollution level map
as shown in the top part of figure 5, and a high pollution
level in the bottom part. The interpolation is performed
with 1KM x 1KM resolution. The plots show the superi-
ority of the kriging method over the IDW method.

Figure 5: 1KM X 1KM interpolation – Clusters 4 and 6

Moreover, figure 6 shows the plots of maps before and



after interpolation at 500m X 500m resolution. Again,
clusters 1 and 7 are chosen to show the impact of inter-
polation on spatial measures with high and low pollution
levels. Based on the plots, kriging interpolation preserves
the original measurements and estimates pollution levels
in uncovered spots.

Figure 6: 500m X 500m interpolation – Clusters 1 and 7

5. Discussion and Future work
The main focus of this study is to enhance air monitoring
fixed stations by incorporating mobile sensor data col-
lected from the public. Previous projects have typically
conducted targeted mobile sensing campaigns in specific
areas or along particular paths. In contrast, our study uti-
lizes opportunistic MPM data to supplement fixed station
data.

Our initial challenge was to determine how to inte-
grate MPM data with fixed station data to estimate air
pollution. We formulated a hypothesis that periods of air
pollution where fixed stations’ measurements fall within
the same cluster could share similar MPM data. To test
our hypothesis, we clustered the fixed stations’ data and
merged them with MPM data. Our experiments con-
firmed the validity of our hypothesis, and we believe that
this methodology could improve the accuracy of fixed
station data.

While we achieved acceptable results using basic inter-
polation techniques, we anticipate that more advanced
geostatistics, machine learning, and deep learning tech-
niques could enhance the performance even further. Con-
volutional networks could expand spatial coverage, while
recurrent neural networks could expand temporal cover-
age.

For future research, we aim to investigate the use of
deep learning for interpolation. To generalize our ap-
proach, we plan to collect more MPM data in the con-
text of the GoGreen Routes project and seek out public
datasets with community-based data collection, e.g., ope-
naq.org, aircasting.habitatmap.org, and, if available, data

from similar projects worldwide [22], [3]. One challenge
we face is the distribution of fixed stations, which are
all located in small areas. We hope to distribute them
better to expand spatial coverage and include additional
features such as meteorological data, traffic data, land
use features, and other relevant factors that impact air
pollution. Overall, we believe incorporating deep learn-
ing models will be critical to achieving greater accuracy
in our research.

6. Conclusion
Over the past few years, monitoring air pollution through
fixed stations and inexpensive and portable sensors has
become a popular topic. Due to the constant concern
over air quality in urban areas, improving the air quality
index has become crucial in dealing with the challenges of
urbanization. Several studies have attempted to estimate
pollution levels using fixed stations, mobile sensors, or a
combination of both, using different methodologies and
possibly requiring additional features.

In this study, we present our approach, which involves
combining fixed station data with mobile participatory
sensing (MPM) data collected by individuals during their
daily activities rather than at specific outdoor locations.
This type of data collection presents a challenge, as only
10% of the time is spent outdoors, resulting in a scarcity
of MPM data. To address this issue, we augment the
MPM data by clustering periods with similar pollution
maps based on fixed station measurements, which we hy-
pothesize represent the overall conditions. We aggregate
identical measurements into a single map for each cluster
and use all corresponding periods to select the relevant
MPM data, which we merge with the aggregated map to
enhance the air pollution monitoring data. Finally, we
employ interpolation techniques to estimate pollution
levels in uncovered areas.

We tested our approach on a real-life dataset and ob-
tained acceptable results. However, future work can be
done to improve the model’s accuracy and performance
by adopting more advanced interpolation methods and
features.
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